Skip to main content

Part of the book series: NATO Security through Science Series ((NASTB))

  • 859 Accesses

Abstract

Scanning probe microscopy offers interesting approaches to not only image but also manipulate samples in the micro- and nanoscale regime.

Atomic force microscopy became one of the most versatile microscopy methods in biology, since this type of microscopy works under ambient conditions and in many cases, no extensive sample preparation is necessary.

From imaging single living cells to large protein molecules and even more interestingly protein-protein interactions in real time, to micro- and nanoscale investigations of mechanical parameters such as viscoelasticity, atomic force microscopy has proved a useful technique.

Imaging biomolecules at atomic resolution is a dream which might come true within the next few years. A powerful new technique is magnetic resonance force microscopy, combining three-dimensional magnetic resonance imaging with the excellent force sensitivity of the atomic force microscope. This type of microscopy opens the possibility of performing scanning probe magnetic resonance imaging with a sensitivity more than 10 million times better than the sensitivity of the medical magnetic resonance imaging devices for visualizing of organs in the human body. This improved sensitivity extends magnetic resonance imaging into the nanometer realm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. Binnig G., Rohrer H., Gerber Ch. and Weibel E. Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 1982; 49: 57–61.

    Article  Google Scholar 

  2. Binnig G., Quate C.F., and Gerber Ch. Atomic force microscope, Phys. Rev. Lett. 1986; 56: 930–933.

    Article  PubMed  Google Scholar 

  3. Pohl D.W., Denk W., and Lanz M. Optical stethoscopy: Image recording with resolution λ/20, Appl. Phys. Lett. 1984; 44(7): 651–653.

    Article  Google Scholar 

  4. Morris V.J., Kirby A.R. and Gunning A.P. Atomic Force Microscopy for Biologists. World Scientific Publishing Company, 1999

    Google Scholar 

  5. Hartmann U. An elementary introduction to atomic force microscopy and related methods, PDF document from the Institute of Experimental Physics, Univ. of Saarbrücken (www.uni-saarland.de/fak7/hartmann/download/afm/afm.pdf)

    Google Scholar 

  6. Binnig G. and Rohrer H. The Scanning Tunneling Microscope. Scientific American 1985; 253: 50–56.

    Article  Google Scholar 

  7. Quate C.F. Vacuum Tunneling: A New Technique for Microscopy. Physics Today 1986; 39: 26–33.

    CAS  Google Scholar 

  8. Binnig G. and H. Rohrer In touch with atoms. Rev. Mod. Phys. 1999; 71(2): S324–S330.

    Article  CAS  Google Scholar 

  9. Hansma P.K., Cleveland J.P., Radmacher M., Walters D.A., Hillner P.E., Bezanilla M., Fritz M., Vie D., Hansma H.G., Prater C.B., Massie J., Fukunaga L., Gurley J. and Elings V. Tapping mode atomic force microscopy in liquids. Appl. Phys. Lett. 1994; 64(13): 1738–1740.

    Article  CAS  Google Scholar 

  10. Prater C.B., Hansma P.K., Tortonese M. and Quate C.F. Improved scanning ionconductance microscope using microfabricated probes. Rev. Sci. Instrum. 1991; 62(11): 2635–2638.

    Article  Google Scholar 

  11. Hansma P.K., Drake B., Marti O., Gould S.A. and Prater C.B. The scanning ionconductance microscope. Science 1989; 243(4891): 641–643.

    PubMed  CAS  Google Scholar 

  12. Schraml S. Setup and application of a Scanning Ion Conductance Microscope, Diploma thesis, Vienna University of Technology, Austria, 2003

    Google Scholar 

  13. Werner D. The biology of diatoms. University of California Press, 1977

    Google Scholar 

  14. Round F.E., Crawford R.M. and Mann D.G. Diatoms: Biology and morphology of the genera. Cambridge University Press., 1990

    Google Scholar 

  15. Gebeshuber I.C., Thompson J.B., Del Amo Y., Stachelberger H. and Kindt J.H. In vivo nanoscale atomic force microscopy investigation of diatom adhesion properties. Materials Science and Technology 2002; 18: 763–766.

    Article  CAS  Google Scholar 

  16. Gebeshuber I.C., Kindt J.H., Thompson J.B., Del Amo Y., Stachelberger H., Brzezinski M., Stucky, G.D. Morse D.E. and Hansma P.K. Atomic force microscopy study of living diatoms in ambient conditions. J. Microsc. 2003; 212: 292–299.

    Article  PubMed  CAS  Google Scholar 

  17. Smith B.L., Schäffer T.E., Viani M., Thompson J.B., Frederick N.A., Kindt J., Belcher A., Stucky G.D., Morse D.E. and Hansma P.K. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 1999; 399: 761–763.

    Article  CAS  Google Scholar 

  18. Gebeshuber I.C., Stachelberger H. and Drack M. Diatom bionanotribology-Biological surfaces in relative motion: their design, friction, adhesion, lubrication and wear. J. Nanosci. Nanotechnol. 2005; 5: 1–9.

    Article  CAS  Google Scholar 

  19. Gebeshuber I.C., Stachelberger H. and Drack M. “Surfaces in relative motion: bionanotribological investigations.” In: First International Industrial Conference Bionik 2004, I. Boblan and R. Bannasch, eds. Düsseldorf: VDI Verlag 2004. ISBN 3-18-324915-4, ISSN 0178-9589229-236, 229–236, 2004.

    Google Scholar 

  20. Hartl F.U. Molecular chaperones in cellular protein folding. Nature 1996; 381: 571–580.

    Article  PubMed  CAS  Google Scholar 

  21. Ranson N.A., White H.E. and Saibil H.R. Chaperonins. Biochem J. 1998; 333(2): 233–242.

    PubMed  CAS  Google Scholar 

  22. Sigler P.B., Xu Z., Rye H.S., Burston S.G., Fenton W.A. and Horwich A.L. Structure and function in GroEl-Mediated protein folding. Annu. Rev. Biochem. 1998; 67: 581–608.

    Article  PubMed  CAS  Google Scholar 

  23. Fink A.L. Chaperone-Mediated Protein Folding. Physiol. Rev 1999; 79(2): 425–449.

    PubMed  CAS  Google Scholar 

  24. Walters D.A., Cleveland J.P., Thomson N.H., Hansma P.K., Wendman M.A., Gurley G. and Elings V. Short cantilevers for atomic force microscopy. Rev. Sci. Instrum. 1996; 67(10): 3583–3590.

    Article  CAS  Google Scholar 

  25. Viani M.B., Schäffer T.E., Chand A., Rief M., Gaub H.E. and Hansma P.K. Small cantilevers for force spectroscopy of single molecules. J. Appl. Phys. 1999; 86(4): 2258–2262.

    Article  CAS  Google Scholar 

  26. Viani M.B., Schäffer T.E., Paloczi G.T., Pietrasanta L.I., Smith B.L., Thompson J.B., Richter M., Rief M., Gaub H.E., Plaxco K.W., Cleland A.N., Hansma H.G. and Hansma P.K. Fast imaging and fast force spectroscopy of single biopolymers with a new atomic force microscope designed for small cantilevers. Rev. Sci. Instrum. 1999; 70(11): 4300–4303.

    Article  CAS  Google Scholar 

  27. Viani M.B., Pietrasanta L.I., Thompson J.B., Chand A., Gebeshuber I.C., Kindt J.H., Richter M., Hansma H.G. and Hansma P.K. Probing protein-protein interactions in real time. Nature Structural Biology 2000; 7: 644–647.

    Article  PubMed  CAS  Google Scholar 

  28. Braig K., Otwinowski Z., Hegde R., Boisvert D.C., Joachimiak A., Horwich A.L. and Sigler P.B. The crystal structure of the bacterial chaperonin GroEL at 2.8 A. Nature 1994; 371: 557–559.

    Article  Google Scholar 

  29. Xu Z., Horwich A.L. and Sigler P.B. The crystal structure of the asymmetric GroELGroES-(ADP)7 chaperonin complex. Nature 1997; 388: 741–750.

    Article  PubMed  CAS  Google Scholar 

  30. Roseman A.M., Chen S., White H., Braig K. and Saibil H.R. The chaperonin ATPase cycle: mechanism of allosteric switching and movements of substrate-binding domains in GroEL. Cell 1996; 87: 241–251.

    Article  PubMed  CAS  Google Scholar 

  31. Winter HP. and Aumayr F. Slow multicharged ions hitting a solid surface: From hollow atoms to novel applications. Europhys. News 2002; 6: 215–217.

    Article  Google Scholar 

  32. Arnau A., Aumayr F., Echenique P.M., Grether M., Heiland W., Limburg J., Morgenstern R., Roncin P., Schippers S., Schuch R., Stolterfoht N., Varga P., Zouros T.J.M. and Winter HP. Interaction of slow multicharged ions with solid surfaces. Surf. Sci. Rep. 1997; 27: 113–240.

    Article  CAS  Google Scholar 

  33. Sporn M., Libiseller G., Neidhart T., Schmid M., Aumayr F., Winter HP., Varga P., Grether M., Niemann D. and Stolterfoht N. Potential sputtering of clean SiO2 by slow highly charged ions. Phys. Rev. Lett. 1997; 79: 945–948.

    Article  CAS  Google Scholar 

  34. Aumayr F., Burgdörfer J., Varga P. and Winter HP. Sputtering of insulator surfaces by slow highly charged ions: “coulomb explosion” or “defect-mediated desorption”? Comm. Atom. Molecul. Phys. 1999; 34: 201–219.

    CAS  Google Scholar 

  35. Schenkel T., Hamza A.V., Barnes A.V. and D.H. Schneider Interaction of slow, very highly charged ions with surfaces. Progr. Surf. Sci. 1999; 61: 23–84.

    Article  CAS  Google Scholar 

  36. Hayderer G., Cernusca S., Schmid M., Varga P., Winter HP., Aumayr F., D. Niemann, Hoffmann V., Stolterfoht N., Lemell C., Wirtz L. and Burgdörfer J. Kinetically-assisted potential sputtering of insulators by highly charged ions. Phys. Rev. Lett. 2001; 86: 3530–3533.

    Article  PubMed  CAS  Google Scholar 

  37. Hayderer G., Schmid M., Varga P., Winter HP., Aumayr F., Wirtz L., Lemell C., Burgdörfer J., Hägg L. and Reinhold C.O. Threshold for potential sputtering of LiF. Phys. Rev. Lett. 1999; 83: 3948–3951.

    Article  CAS  Google Scholar 

  38. Hayderer G., Cernusca S., Schmid M., Varga P., Winter HP. and Aumayr F. STM studies of HCI-induced surface damage on highly oriented pyrolytic graphite. Physica Scripta 2001; T92: 156–157.

    Article  CAS  Google Scholar 

  39. Gebeshuber I.C., Cernusca S., Aumayr F. and Winter HP. Nanoscopic surface modification by slow ion bombardment. Int. J. Mass Spectrometry 2003; 229(1–2): 27–34.

    Article  CAS  Google Scholar 

  40. Gebeshuber I.C., Cernusca S., Aumayr F. and Winter HP. Slow multicharged-ion induced nanodefects on monocrystalline insulator surfaces studied by UHV-AFM. Nucl. Instr. Meth. Phys. Res. B 2003; 205: 751–757.

    Article  CAS  Google Scholar 

  41. Hembacher S., Giessibl F.J., Mannhart J. Force microscopy with light atom probes. Science 2004; 305: 380–383.

    Article  PubMed  CAS  Google Scholar 

  42. Sidles J.A. Noninductive detection of single-proton magnetic resonance. Appl. Phys. Lett. 1991; 58: 2854–2856.

    Article  Google Scholar 

  43. Rugar D., Budakian R., Mamin H.J. and Chui B.W. Single spin detection by magnetic resonance force microscopy. Nature 2004; 430: 329–332.

    Article  PubMed  CAS  Google Scholar 

  44. Manassen Y., Hamers R.J., Demuth J.E. and Castellano A.J. Direct observation of the precession of individual paramagnetic spins on oxidized silicon surfaces. Phys. Rev. Lett. 1989; 62: 2531–2534.

    Article  PubMed  Google Scholar 

  45. Durkan C. and Welland M.E. Electronic spin detection in molecules using scanningtunnelingmicroscopy-assisted electron-spin resonance. Appl. Phys. Lett. 2002; 80: 458–460.

    Article  CAS  Google Scholar 

  46. Wrachtrup J., von Borczyskowski C., Bernard J., Orritt M. and Brown R. Opticaldetection of magnetic resonance in a single molecule. Nature 1993; 363: 244–245.

    Article  CAS  Google Scholar 

  47. Köhler J., Disselhorst J.A.J.M., Donckers M.C.J.M., Groenen E.J.J., Schmidt J. and Moerner W.E. Magnetic resonance of a single molecular spin. Nature 1993; 363: 242–244.

    Article  Google Scholar 

  48. Jelezko F., Popa I., Gruber A., Tietz C., Wrachtrup J., Nizovtsev A. and Kilin S. Single spin states in a defect center resolved by optical spectroscopy. Appl. Phys. Lett. 2002; 81: 2160–2162.

    Article  CAS  Google Scholar 

  49. Elzerman J.M., Hanson R., Willems van Beveren L.H., Witkamp B., Vandersypen L.M.K. and Kouwenhoven L.P. Single-shot read-out of an individual electron spin in a quantum dot. Nature 2004; 430: 431–435.

    Article  PubMed  CAS  Google Scholar 

  50. Xiao M., Martin I., Yablonovitch E. and Jiang H.W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 2004; 430: 435–439.

    Article  PubMed  CAS  Google Scholar 

  51. Manoharan H.C. Applied physics: Spin spotting. Nature 2002; 416: 24–25.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Gebeshuber, I.C., Smith, R.A.P., Winter, H., Aumayr, F. (2005). Scanning Probe Microscopy across Dimensions. In: Evangelista, V., Barsanti, L., Passarelli, V., Gualtieri, P. (eds) From Cells to Proteins: Imaging Nature across Dimensions. NATO Security through Science Series. Springer, Dordrecht . https://doi.org/10.1007/1-4020-3616-7_8

Download citation

Publish with us

Policies and ethics