Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 21))

Summary

This is an account of my personal and professional life as a student of the violaxanthin-antheraxanthin-zeaxanthin scheme for the xanthophyll cycle in higher plants. I had no early vision of becoming a scientist, but one circumstance led to another, and what began as a random walk ultimately developed into a life-long study of the biochemistry, physiology, and function of the xanthophyll cycle. The circumstances and people with whom I shared this path are described, with special attention given to the early developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Aihara MS and Yamamoto HY (1968) Occurrence of antheraxanthin in two Rhodophyceae Acanthophora spicerera and Gracilaria lichenoides. Photochem Photobiol 7: 497–499

    CAS  Google Scholar 

  • Allen CF, Good P, Davis HF, Chisum P and Fowler SD (1966) Methodology for the separation of plant lipids and application to spinach leaf and chloroplast lamellae. J Am Oil Chem Soc 43: 223–231

    Article  CAS  Google Scholar 

  • Bugos RC and Yamamoto HY (1996) Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proc Natl Acad Sci USA 93: 6320–6325

    Google Scholar 

  • Bugos RC, Hieber AD and Yamamoto HY (1998) Xanthophyll cycle enzymes are members of the lipocalin family, the first identified from plants. J Biol Chem 273: 15321–15324

    Article  PubMed  CAS  Google Scholar 

  • Demmig B, Winter K, Krüger A and Czygan F-C (1987) Photoinhibition and zeaxanthin formation in intact leaves. A possible role of the xanthophyll cycle in the dissipation of excess light energy. Plant Physiol 84: 218–224

    PubMed  CAS  Google Scholar 

  • Demmig-Adams B (2003) Linking the xanthophyll cycle with thermal energy dissipation. Photosynth Res 76: 73–80

    Article  PubMed  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III, Ebbert V and Logan BA (1999) Ecophysiology of the xanthophyll cycle. In: Frank HA, Young AJ, BrittonGand Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 245–268. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Demmig-Adams B, Ebbert V, Zarter CR and Adams WW III (2005) Characteristics and species-dependent employment of flexible versus sustained thermal dissipation and photoinhibition. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 39–48. Springer, Dordrecht

    Google Scholar 

  • Egger K (1962) Dünnschichtchromatographie der Chloroplastenpigmente. Planta 58: 664–667

    Article  CAS  Google Scholar 

  • Gilmore A Mand Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a non-encapped, lightly carbon-loaded C18 high-performance liquid chromatographic column. J Chromatogr 543: 137–145

    Article  CAS  Google Scholar 

  • Gilmore AM and Yamamoto HY (1993) Linear models relating xanthophylls and lumen acidity to non-photochemical fluorescence quenching. Evidence that antheraxanthin explains zeaxanthin-independent quenching. Photosynth Res 35: 67–78

    Article  CAS  Google Scholar 

  • Goss R, Böhme K and Wilhelm C (1998) The xanthophyll cycle of Mantoniella squamata converts violaxanthin into antheraxanthin but not to zeaxanthin: consequences for the mechanism of enhanced non-photochemical energy dissipation. Planta 205: 613–621

    Article  CAS  Google Scholar 

  • Grotz B, Moln’ar P, Stransky H and Hager A (1999) Substrate specificity and functional aspects of violaxanthinde- epoxidase, an enzyme of the xanthophyll cycle. J Plant Physiol 154: 437–446

    CAS  Google Scholar 

  • Hager A (1966) Die Zusammenhänge zwischen lichtinduzierten Xanthophyll-Umwandlungen und Hill-Reaktion. Ber Deutsch Bot Ges 79: 94–107

    CAS  Google Scholar 

  • Hager A (1975) Die reversiblen, lichtabhängigen Xanthophyllumwandlungen im Chloroplasten. Ber Deutsch Bot 88: 27– 44

    CAS  Google Scholar 

  • Hager A and Stransky H (1970) Das Carotinoidmuster und die Verbreitung des lichtinduzierten Xanthophyllcyclus in verschiedenen Algenklassen. V. Einzelne vertreter der Cryptophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyseae und Phaeophyceae. Arch Mikrobiol 73: 77–89

    Article  PubMed  CAS  Google Scholar 

  • Hieber AD, Kawabata O and Yamamoto HY (2004) Significance of the lipid phase in the dynamics and functions of the xanthophyll cycle as revealed by PsbS overexpression in tobacco and in-vitro de-epoxidation in monogalactosyldiaclyglycerol micelles. Plant Cell Physiol 45: 90–102

    Article  Google Scholar 

  • Jung H-S and Niyogi KK (2005) Molecular analysis of photoprotection of photosynthesis. In: Demmig-Adams B, Adams WW III and Mattoo AK (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 127–143. Springer, Dordrecht

    Google Scholar 

  • Külheim C, Agren J and Jansson S (2002) Rapid regulation of light harvesting and plant fitness in the field. Science 297: 91–93

    Article  PubMed  Google Scholar 

  • Latowski D, Kruk J, Burda K, Skrzynecka-Jaskier M, Kostecka- Gugata A and Strzalka D (2002) Kinetics of violaxanthin deepoxidation by violaxanthin de-epoxidase, a xanthophyll cycle enzyme, is regulated by membrane fluidity in model lipid bilayers. Eur J Biochem 269: 4656–4665

    Article  PubMed  CAS  Google Scholar 

  • Ma YZ, Holt NE, Li X-P, Niyogi KK and Fleming GR (2003) Evidence for direct carotenoid involvement in the regulation of photosynthetic light harvesting. Proc Natl Acad Sci USA 100: 4377–4382

    Google Scholar 

  • Matsubara S, Gilmore AM and Osmond CB (2001) Diurnal and acclimatory responses of violaxanthin and lutein epoxide in the Australian mistletoe Amyema miquelii. Aust J Plant Physiol 28: 793–800

    CAS  Google Scholar 

  • Mohanty N and Yamamoto HY (1966) Induction of two types of non-photochemical chlorophyll fluorescence quenching in carbon-assimilating intact spinach chloroplasts: the effects of ascorbate, de-epoxidation, and dibucaine. Plant Science 115: 267–275

    Article  Google Scholar 

  • Niyogi KK, Grossman AR and Björkman O (1998) Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion. Plant Cell 10:1121–1134

    Article  PubMed  CAS  Google Scholar 

  • Rockholm DD and Yamamoto HY (1996) Purification of a 43-kilodalton lumenal protein from lettuce by lipid-affinity precipitation with monogalactosyldiacylglyceride. Plant Physiol 110: 697–703

    Article  PubMed  CAS  Google Scholar 

  • Sapozhnikov DI (1973) Investigations of the violaxanthin cycle. Pure Appl Chem 35: 47–61

    Article  PubMed  CAS  Google Scholar 

  • Sapozhnikov DI, Krasovskaya TA and Maevskaya AN (1957) Change in the interrelationship of the basic carotenoids of the plastids of green leaves under the action of light. Dokl Akad Nauk SSSR 13: 465–467 (or 74–76, English translation)

    Google Scholar 

  • Shibata K(1973) Dualwavelength scanning of leaves and tissues with opal glass. Biochim Biophys Acta 304: 249–259

    Google Scholar 

  • Siefermann D and Yamamoto HY (1974) Light-induced deepoxidation of violaxanthin in lettuce chloroplasts III. Reaction kinetics and effect of light intensity on de-epoxidase activity and substrate availability. Biochim Biophys Acta 357: 144–150

    Article  PubMed  CAS  Google Scholar 

  • Siefermann D and Yamamoto HY (1975) Properties of NADPH and oxygen-dependent zeaxanthin epoxidation in isolated chloroplasts. Arch Biochem Biophys 171: 70 –77

    Article  PubMed  CAS  Google Scholar 

  • Takeguchi CA and Yamamoto HY (1968) Light-induced 18O2 uptake by epoxy xanthophylls in New Zealand spinach leaves (Teragonia expansa). Biochim Biophys Acta 153: 459–465

    Article  PubMed  CAS  Google Scholar 

  • Thayer SS and Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23: 331–343

    Article  CAS  Google Scholar 

  • Verhoeven AS, Bugos RC and Yamamoto HY (2001) Transgenic tobacco with suppressed zeaxanthin formation is susceptible to stress-induced photoinhibition. Photosyn Res 67: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Webb MS and Green BR (1991) Biochemical and biophysical properties of thylakoid acyl lipids. Biochim. Biophys Acta 1060: 133–158

    Article  CAS  Google Scholar 

  • Yamamoto H(1985) Xanthophyll cycles. Methods Enzymol 110: 303–312

    Google Scholar 

  • Yamamoto HY and Higashi RM (1978) Violaxanthin deepoxidase. Lipid composition and substrate specificity. Arch Biochem Biophys 190: 514–522

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY and Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267: 538–543

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto H, Yokoyama H, Simpson K, Nakayama TOM and Chichester CO (1961) Incorporation of 5,10,15 14C-farnesol phyrophosphate into Phycomyces carotenoids. Nature 191: 1299–1300

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Nakayama TOM and Chichester CO(1962) Studies on the light and dark interconversions of leaf xanthohylls. Arch Biochem Biophys 97: 168–173

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Kamite L and Wang YY (1972) An ascorbateinduced absorbance change in chloroplasts from violaxanthin de-epoxidation. Plant Physiol 49: 224–228

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto HY, Chenchin EE and Yamada DK (1974) Effects of chloroplast lipids on violaxanthin de-epoxidase activity. In: Avron M(ed) Proceedings of the Third International Congress of Photosynthesis, Vol III, pp 1999–2006. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands

    Google Scholar 

  • Yamamoto HY, Bugos CB and Hieber AD (1999) Biochemistry and molecular biology of the xanthophyll cycle. In: Frank HA, Young AJ, BrittonGand Cogdell RJ (eds) The Photochemistry of Carotenoids, pp 293–303. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yokthongwattana K and Melis A (2005) Photoinhibition and recovery in oxygenic photosynthesis: mechanism of a photosystem-II damage and repair cycle. In: Demmig-Adams B, Adams WWIII and Mattoo AK(eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment, pp 175–191. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yamamoto, H.Y. (2008). A Random Walk To and Through the Xanthophyll Cycle. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_1

Download citation

Publish with us

Policies and ethics