Skip to main content

From Nano to Micro to Macro Scales in Boiling

  • Conference paper
Microscale Heat Transfer Fundamentals and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 193))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, R.C and Nyadhl, J.E. (1989) Numerical calculation of bubble growth in nucleate boiling from inception to departure, Journal of Heat Transfer, Vol. 111, pp. 474–479.

    Article  Google Scholar 

  2. Cooper, M.G. and Lloyd, A.J.P. (1969) The microlayer in nucleate boiling, International Journal of Heat and Mass Transfer, Vol. 12, pp. 895–913.

    Article  Google Scholar 

  3. Zeng, L.Z., Klausner, J.F. and Mei, R. (1993) A unified model for the prediction of bubble detachment diameters in boiling systems-1. Pool boiling, International Journal of Heat and Mass Transfer, Vol. 36, pp. 2261–2270.

    Article  Google Scholar 

  4. Mei, R., Chen, W. and Klausner, J. F. (1995) Vapor bubble growth in heterogeneus boiling-1. growth rate and thermal fields, International Journal of Heat and Mass Transfer, Vol. 38, pp. 921–934.

    Article  Google Scholar 

  5. Welch, S.W.J. (1998) Direct simulation of vapor bubble growth, International Journal of Heat and Mass Transfer, Vol. 41, pp. 1655–1666.

    Article  MATH  Google Scholar 

  6. Sussman, M., Smereka, P and Osher, S. (1994) A level set approach for computing solutions to incompressible two-phase flow, Journal of Computational Physics, Vol. 114, pp. 146–159.

    Article  MATH  Google Scholar 

  7. Chang, Y.C., Hou, T.Y., Merriman, B., and Osher, S. (1996) A level set formulation of Eulerian interface capturing methods for incompressible fluid flows, Journal of Computational Physics, Vol. 124, pp. 449–464.

    Article  MathSciNet  MATH  Google Scholar 

  8. Son, G., Dhir, V.K., and Ramanujapu, N. (1999) Dynamics and heat transfer associated with a single bubble during nucleate boiling on a horizontal surface, Journal of Heat Transfer, Vol.121, pp.623–632.

    Google Scholar 

  9. Son, G. (2001) Numerical study on a sliding bubble during nucleate boiling, KSME International Journal, Vol. 15, pp. 931–940.

    Google Scholar 

  10. Singh, S. and Dhir, V.K. (2000) Effect of gravity, wall superheat and liquid subcooling on bubble dynamics during nucleate boiling, Microgravity Fluid Physics and Heat Transfer (editor: Dhir, V.K.), Begell House, New York, pp.106–113.

    Google Scholar 

  11. Abarajith, H.S. and Dhir, V.K. (2002) Effect of contact angle on the dynamics of a single bubble during pool boiling using numerical simulations, Proceedings of IMECE2002 ASME International Mechanical Engineering Congress & Exposition, New Orleans.

    Google Scholar 

  12. Stephan, P., and Hammer, J. (1994) A new model for nucleate boiling heat transfer, Wärme-und Stoffübertragung, Vol.30, pp. 119–125.

    Google Scholar 

  13. Lay, J.H., and Dhir, V.K. (1995) Numerical calculation of bubble growth in nucleate boiling of saturated liquids, Journal of Heat Transfer, Vol. 117, pp.394–401.

    Google Scholar 

  14. Wayner, P.C. (1992) Evaporation and stress in the contact line region, Proceedings of the Engineering Fundamentals Conference on Pool and Flow Boiling, ASME, pp. 251–256.

    Google Scholar 

  15. Bai, Q., and Dhir, V.K. (2001) Numerical Simulation of Bubble Dynamics in the Presence of Boron in the Liquid, Proceedings of IMECE’01, New York, NY.

    Google Scholar 

  16. Qiu, D.M., Dhir, V.K., Hasan, M.M., Chao, D., Neumann, E., Yee, G., and Witherow, J. (1999) Single Bubble Dynamics During Nucleate Boiling Under Microgravity Conditions, Engineering Foundation Conference on Microgravity Fluid Physics and Heat Transfer, Honolulu, HI.

    Google Scholar 

  17. Son, G, Ramanujapu, N, and Dhir, V.K. (2002) Numerical simulation of bubble merger process on a single nucleation site during pool nucleate boiling, Journal of Heat Transfer, Vol. 124, pp. 51–62.

    Article  Google Scholar 

  18. Mukherjee, A. and Dhir, V.K. (2004) Numerical and experimental study of bubble dynamics associated with lateral merger of vapor bubbles during nucleate pool boiling, In Press, Journal of Heat Transfer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Dhir, V.K., Abarajith, H.S., Warrier, G.R. (2005). From Nano to Micro to Macro Scales in Boiling. In: Kakaç, S., Vasiliev, L., Bayazitoğlu, Y., Yener, Y. (eds) Microscale Heat Transfer Fundamentals and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 193. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3361-3_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3361-3_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3359-9

  • Online ISBN: 978-1-4020-3361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics