Skip to main content

Single-Phase Forced Convection in Microchannels

A State-of-the-Art Review

  • Conference paper
Microscale Heat Transfer Fundamentals and Applications

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 193))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, T.M., Abdel-Khalik, S.I., Jeter, S.M. and Qureshi, Z.H., An Experimental Investigation of Single-Phase Forced Convection in Microchannels, Int. J. Heat Mass Transfer, 1998, 41, 851ā€“857.

    ArticleĀ  Google ScholarĀ 

  2. Ameel, T.A., Wang, X., Barron, R.F. and Warrington, R.O., Laminar Forced Convection in a Circular Tube with Constant Heat Flux and Slip Flow, Microscale Thermophys. Eng, 1(4), 1997, 303ā€“320.

    ArticleĀ  Google ScholarĀ 

  3. Arkilic, E.B., Breuer, K.S. and Schmidt, M.A., Gaseous Flow in Microchannels, Application of Microfabrication to Fluid Mechanics, ASME FED-197, 1994, 57ā€“66.

    Google ScholarĀ 

  4. Aul, R.W. and Olbricht, W.L., Stability of a Thin Annular Film in Pressure Driven, Low-Reynolds-Number Flow Through a Capillary, Journal of Fluid Mechanics, 1990, 215, 585ā€“599.

    ArticleĀ  Google ScholarĀ 

  5. Bar-Cohen, A., State of the Art and Trends in the Thermal Packaging of The Electronic Equipment, ASME Journal of Electronic Packaging, 1992, 114, 257ā€“270.

    Google ScholarĀ 

  6. Barron, R.F, Wang, X. Ameel, T.A. and Warrington, R.O., The Graetz Problem Extended to Slip-Flow, Int. J. Heat Mass Transfer, 1997, 40(8), 1817ā€“1823.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  7. Beskok, A. and Karniadakis, G.E., Simulation of Heat and Momentum Transfer in Complex Micro Geometries, J. Thermophysics and Heat Transfer, 1994, 8(4), 647ā€“655.

    ArticleĀ  Google ScholarĀ 

  8. Beskok, A., Karniadakis, G.E. and Trimmer, W., Rarefaction, Compressibility and Thermal Creep Effects in Micro-Flows, Proceedings of the ASME Dynamic Systems and Control Division, 1995, DSC-57-2, 877ā€“892.

    Google ScholarĀ 

  9. Choi, S.B., Barron R.F. and Warrington R.O., Fluid Flow and Heat Transfer in Microtubes, Micromechanical Sensors, Actuators, and Systems, ASME DSC-32, 1991, 123ā€“134.

    Google ScholarĀ 

  10. Choquette, S.F., Faghri, M., Channchi, M. and Asako, Y., Optimum Design of Microchannel Heat Sinks, ASME Microelectromechanical Systems, 1996, DSC-59, 115ā€“126.

    Google ScholarĀ 

  11. Fan, Q., Xue, H. and Shu, C., DSMC Simulation of Gaseous Flows in Microchannels, 5th ASME/JSME Thermal Engineering Joint Conference, San Diego, U.S.A, AJTE99-6519, 1999.

    Google ScholarĀ 

  12. Gad-El-Hak, M., Momentum and Heat Transfer in MEMS, Congrs francais de Thermique, SFT, Grenoble, France, 3ā€“6 June, Elsevier, 2003.

    Google ScholarĀ 

  13. Gui, F. and Scaringe, R.P., Enhanced Heat Transfer in the Entrance Region of Microchannels, IECEC Paper No. ES-40, ASME, 1995, 289ā€“294.

    Google ScholarĀ 

  14. Hadjiconstantinou, N.G., Convective Heat Transfer in Micro and Nano Channels: Nusselt Number Beyond Slip Flow, Proceedings of the ASME Heat Transfer Division, 2000, 366-2, 13ā€“22.

    Google ScholarĀ 

  15. Iwai, H. and Suzuki, K., Effects of Velocity Slip and Temperature Jump Conditions on Backward-Facing Step Flow in a Microchannel, Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, 1999, 1ā€“8.

    Google ScholarĀ 

  16. KakaƧ, S., YĆ¼ncĆ¼, H. and Hijkata, K., (eds.), Cooling of Electronic Systems, NATO ASI series E., 1992, 258, Kluwer, The Netherlands.

    Google ScholarĀ 

  17. KakaƧ, S. and Yener, Y. Heat Conduction, 3rd ed., Taylor & Francis, 1993.

    Google ScholarĀ 

  18. KakaƧ, S. and Yener, Y. Convective Heat Transfer, CRC Press, 2nd ed., 1995.

    Google ScholarĀ 

  19. KakaƧ, S., Vasiliev, L.L., Bayazıtoįø”lu, Y. and Yener, Y., (eds.), Microscale Heat Transfer ā€” Fundamentals and Applications, 2005, Kluwer, The Netherlands.

    Google ScholarĀ 

  20. Kavehpour, H.P., Faghri, M. and Asako, Y., Effects of Compressibility and Rarefaction on Gaseous Flows in Microchannels, Numerical Heat Transfer, 1997, Part A, 32, 677ā€“696.

    Google ScholarĀ 

  21. Kennard, E.H., Kinetic Theory of Gases, McGraw-Hill Book Company, Inc., New York, 1938.

    Google ScholarĀ 

  22. Kim, S.J., Kim. D. and Lee, D.Y., On the Thermal Equilibrium in Microchannel Heat Sinks, Int. J. Heat Mass Transfer, 2000, 43, 1735ā€“1748.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  23. Kleiner, M.B., Kuehn, S.A. and Haberger, K., High Performance Forced Air Cooling Scheme Employing Microchannel Heat Exchangers, IEEE Transactions on Components, Packaging, and Manufacturing Technology, Part A, 18, Issue 4, 1995, 795ā€“804.

    ArticleĀ  Google ScholarĀ 

  24. Knudsen, M., Die gesetze der molekularstrmung und der inneren reibungsstrmung der gase durch rhren, Annalen der Physik, 28, 1909, 75ā€“130.

    MATHĀ  Google ScholarĀ 

  25. LarrodĆ©, F.E., Housiadas, C. and Drossinos, Y., Slip Flow Heat Transfer in Circular Tubes, Int. J. Heat Mass Transfer, 2000, 43, 2669ā€“2680.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  26. Mahulikar, S.P., PhD Thesis, Heat Transfer Studies in Microchannels, School of Mechanical and Production Engineering, Nanyang Technological University, Singapore, 1999.

    Google ScholarĀ 

  27. Makihara, M., Sasakura, K. and Nagayama, A., The Flow of Liquids in Micro-Capillary Tubes-Consideration to Application of the Navier-Stokes Equations, Journal of the Japan Society of Precision Engineering, 1993, 59(3), 399ā€“404.

    Google ScholarĀ 

  28. Mala, G.M., Li, D. and Dale, J.D., Heat Transfer and Fluid Flow in Microchannels, Int. J. Heat Mass Transfer, 1997, 40(13), 3079ā€“3088.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  29. Maynes, D. and Webb, B.W., Fully Developed Electro-Osmotic Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 2003, 46, 1359ā€“1369.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  30. Peng, X.F., Peterson, G.P. and Wang, B.X., Frictional Flow Characteristics of Water Flowing Through Micro-Channels, Experimental Heat Transfer, 1994, 7, 249ā€“264.

    Google ScholarĀ 

  31. Peng, X.F., Peterson, G.P., and Wang, B.X., Heat Transfer Characteristics of Water Flowing Through Micro-Channels, Experimental Heat Transfer, 1994, 7, 265ā€“283.

    Google ScholarĀ 

  32. Peng, X.F., Wang, B.X., Peterson, G.P. and Ma, H.B., Experimental Investigation of Heat Transfer in Flat Plates with Rectangular Microchannels, Int. J. Heat Mass Transfer, 1995, 38(1), 127ā€“137.

    ArticleĀ  Google ScholarĀ 

  33. Peng, X.F. and Peterson, G.P., The Effect of Thermofluid and Geometrical Parameters on Convection of Liquids Through Rectangular Microchannels, Int. J. Heat Mass Transfer, 1995, 38(4), 755ā€“758.

    ArticleĀ  Google ScholarĀ 

  34. Peng, X.F. and Peterson, G.P., Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures, Int. J. Heat Mass Transfer, 1996, 39(12), 2599ā€“2608.

    ArticleĀ  Google ScholarĀ 

  35. Pfahler, J., Harley, J., Bau, H. and Zemel, J., Liquid Transport in Micron and Submicron Channels, Sensors and Actuators, A21ā€“A23, 1990, 431ā€“434.

    Google ScholarĀ 

  36. Pfahler, J., Harley, J., Bau, H. and Zemel, J., Gas and Liquid Flow in Small Channels, Micromechanical Sensors, Actuators, and Systems, ASME DSC-32, 1991, 49ā€“60.

    Google ScholarĀ 

  37. Qu, W., Mala, G.M. and Li, D., Pressure-driven Water Flows in Trapezoidal Silicon Microchannels, Int. J. Heat Mass Transfer, 2000, 43, 353ā€“364.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  38. Qu, W., Mala, G.M. and Li, D., Heat Transfer for Water Flow in Trapezoidal Silicon Microchannels, Int. J. Heat Mass Transfer, 2000, 43, 3925ā€“3936.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  39. Qu, W. and Mudawar, I., Analysis of Three-Dimensional Heat Transfer in Micro-Channel Heat Sinks, Int. J. Heat Mass Transfer, 2002, 45, 3973ā€“3985.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  40. Rahman, M.M. and Gui, F., Experimental Measurements of Fluid Flow and Heat Transfer in Microchannel Cooling Passages in A Chip Substrate, Advances in Electronic Packaging, ASME EEP-4-2, 1993, 685ā€“692.

    Google ScholarĀ 

  41. Randall, F.B., Wang, X. and Ameel, T.A, The Graetz Problem Extended to slip flow, Int. J. Heat Mass Transfer, 1997, 40, 1817ā€“1823.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  42. Ryu, J.H., Choi, D.H. and Kim, S.J., Three-Dimensional Numerical Optimization of a Manifold Microchannel Heat Sink, Int. J. Heat Mass Transfer, 2003, 46, 1553ā€“1562.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  43. Samalam, V.K., Convective Heat Transfer in Microchannels, Journal of Electronic Materials, 1989, 18(5), 611ā€“617.

    Google ScholarĀ 

  44. Shih, J.C., Ho, C., Liu, J. and Tai, Y., Monatomic and Polyatomic Gas Flow Through Uniform Microchannels, Micro Electro Mechanical Systems (MEMS), National Heat Transfer Conference, DSC 59, 1996, 197ā€“203.

    Google ScholarĀ 

  45. Toh, K.C., Chen, X.Y. and Chai, J.C., Numerical Computation of Fluid Flow and Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 2002, 45, 5133ā€“5141.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  46. Tso, C.P. and Mahulikar, S.P., The Use of the Brinkman Number for Single Phase Forced Convective Heat Transfer in Microchannels, Int. J. Heat Mass Transfer, 1998, 41(12), 1759ā€“1769.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  47. Tso, C.P. and Mahulikar, S.P., The Role of the Brinkman Number in Analysing Flow Transitions in Microchannels, Int. J. Heat Mass Transfer, 1999, 42, 1813ā€“1833.

    ArticleĀ  Google ScholarĀ 

  48. Tuckerman, D.B. and Pease, R.F.W., IEEE Electron Device Letter, 2(5), 1981, 126ā€“129.

    Google ScholarĀ 

  49. Tuckerman, D.B. and Pease, R.F.W., Optimized Convective Cooling Using Micromachined Structure, J. Electrochem. Soc., 1982, 129(3),98C.

    Google ScholarĀ 

  50. Tunc, G. and Bayazitoglu, Y., Heat Transfer for Gaseous Flow in Microtubes with Viscous Heating, Proceedings of the ASME Heat Transfer Division, HTD 366-2, 2000, 299ā€“306.

    Google ScholarĀ 

  51. Tunc, G. and Bayazitoglu, Y., Heat Transfer in Microtubes with Viscous Dissipation, Int. J. Heat Mass Transfer, 2001, 44, 2395ā€“2403.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  52. Tunc, G. and Bayazitoglu, Y., Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass Transfer, 2002, 45, 765ā€“773.

    ArticleĀ  MATHĀ  Google ScholarĀ 

  53. Wang, B.X. and Peng, X.F., Experimental Investigation of Liquid Forced-Convection Heat Transfer Through Microchannels, Int. J. Heat Mass Transfer, 1994, 37,Suppl. 1, 73ā€“82.

    ArticleĀ  Google ScholarĀ 

  54. Weisberg, A., Bau, H.H. and Zemel, J.N., Analysis of Microchannels for Integrated Cooling, Int. J. Heat Mass Transfer, 1992, 35(10), 2465ā€“2474.

    ArticleĀ  Google ScholarĀ 

  55. Wu, H.Y. and Cheng, P., An Experimental Study of Convective Heat Transfer in Silicon Microchannels with Different Surface Conditions, Int. J. Heat Mass Transfer, 2003, 46, 2547ā€“2556.

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  56. Wu, P.Y. and Little, W.A., Measurement of Friction Factor For The Flow of Gases in Very Fine Channels Used For Microminiature Joule-Thompson Refrigerators, Cryogenics, 1983, 23(5), 273ā€“277.

    ArticleĀ  Google ScholarĀ 

  57. Wu, P.Y. and Little, W.A., Measurement of Heat Transfer Characteristics of Gas Flow in Fine Channels Heat Exchangers Used For Microminiature Refrigerators, Cryogenics, 1984, 24(5), 415ā€“420.

    ArticleĀ  Google ScholarĀ 

  58. Xu, B., Ooi, K.T., Wong, N.T., Liu, C.Y., and Choi, W.K., Liquid Flow in Microchannels, Proceedings of the 5th ASME/JSME Joint Thermal Engineering Conference, 1999, 1ā€“7.

    Google ScholarĀ 

  59. Yu, D., Warrington, R., Barron, R. and Ameel, T., An Experimental and Theoretical Investigation and Heat Transfer in Microtubes, Proceedings of ASME/JSME Thermal Engineering Conference 1, 1995, 523ā€“530.

    Google ScholarĀ 

  60. Yu, S. and Ameel, T.A., Slip-Flow Heat Transfer in Rectangular Microchannels, Int. J. Heat Mass Transfer, 2001, 44, 4225ā€“4234.

    ArticleĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2005 Springer

About this paper

Cite this paper

Yener, Y., KakaƧ, S., Avelino, M., Okutucu, T. (2005). Single-Phase Forced Convection in Microchannels. In: KakaƧ, S., Vasiliev, L., Bayazitoğlu, Y., Yener, Y. (eds) Microscale Heat Transfer Fundamentals and Applications. NATO Science Series II: Mathematics, Physics and Chemistry, vol 193. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3361-3_1

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3361-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3359-9

  • Online ISBN: 978-1-4020-3361-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics