Skip to main content
  • 597 Accesses

4. Conclusions

A number of different viral gene products are now known to interact with different TLR family members. In some cases, induction of the innate response may limit infection by different viruses, especially when the infectious dose is high. Because these receptors recognize elements of the virus that are highly conserved, instead of evolving to avoid this response, some viruses may have adapted to utilizing the response, as a means of facilitating entry or replication, producing gene products such as transcription factors that increase virus gene expression or by down-modulating or subverting subsequent antiviral immune responses. Future studies are likely to uncover more effects of virus-induced TLR activation on pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belvin, M. P. and Anderson, K. V., 1996, A conserved signaling pathway: the Drosophila Toll-Dorsal pathway. Annu. Rev. Cell. Dev. Biol. 12:393–416

    Article  PubMed  CAS  Google Scholar 

  2. Akira, S., Takeda, K., and Kaisho, T., 2001, Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2:675–680

    Article  PubMed  CAS  Google Scholar 

  3. Medzhitov, R., 2001, Toll-like receptors and innate immunity. Nat. Rev. Immunol. 1:135–145

    Article  PubMed  CAS  Google Scholar 

  4. Nishiya, T. and DeFranco, A. L., 2004, Ligand-regulated chimeric receptor approach reveals distinctive subcellular localization and signaling properties of the Toll-like receptors. J. Biol. Chem. 279:19008–19017

    Article  PubMed  CAS  Google Scholar 

  5. Ahmad-Nejad, P., Hacker, H., Rutz, M., Bauer, S., Vabulas, R. M., and Wagner, H., 2002, Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur. J. Immunol. 32:1958–1968

    Article  PubMed  CAS  Google Scholar 

  6. Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H., and Bauer, S., 2004, Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 303:1526–1529

    Article  PubMed  CAS  Google Scholar 

  7. Latz, E., Schoenemeyer, A., Visintin, A., Fitzgerald, K. A., Monks, B. G., Knetter, C. F., Lien, E., Nilsen, N. J., Espevik, T., and Golenbock, D. T., 2004, TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat. Immunol. 5:190–198

    Article  PubMed  CAS  Google Scholar 

  8. Akira, S. and Hemmi, H., 2003, Recognition of pathogen-associated molecular patterns by TLR family. Immunol. Lett. 85:85–95

    Article  PubMed  CAS  Google Scholar 

  9. Tabeta, K., Georgel, P., Janssen, E., Du, X., Hoebe, K., Crozat, K., Mudd, S., Shamel, L., Sovath, S., Goode, J., Alexopoulou, L., Flavell, R. A., Beutler, B., 2004, Toll-like receptors 9 and 3 as essential components of innate immune defense against mouse cytomegalovirus infection. Proc. Nat. Acad. Sci. USA 101:3516–3521

    Article  PubMed  CAS  Google Scholar 

  10. Sandor, F., Latz, E., Re, F., Mandell, L., Repik, G., Golenbock, D., Espevik, T., Kurt-Jones, E. A., and Finberg, R. W., 2003, Importance of extra-and intracellular domains of TLR1 and TLR2 in NFκB signaling. J. Cell Biol. 162:1099–1110

    Article  PubMed  CAS  Google Scholar 

  11. Poltorak, A., He, X., Smirnova, I., Liu, M.-Y., van Huffel, C., Ku, X., Birdwell, D., Alejos, E., Silva, M., Galanos, C., Freudenberg, M., Ricciarid-Castagnoli, P., Layton, B., and Beutler, B., 1998, Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282:2085–2088

    Article  PubMed  CAS  Google Scholar 

  12. Qureshi, S. T., Lariviere, L., Leveque, G., Clermont, S., Moore, K. J., Gros, P., and Malo, D., 1999, Endotoxin-tolerant mice have mutations in Toll-like receptor 4 (Tlr4). J. Exp. Med. 189:615–625

    Article  PubMed  CAS  Google Scholar 

  13. Shimazu, R., Akashi, S., Ogata, H., Nagai, Y., Fukudome, K., Miyake, K., and Kimoto, M., 1999, MD-2, a molecule that confers lipopolysaccharide responsiveness on toll-like receptor 4. J. Exp. Med. 189:1777–1782

    Article  PubMed  CAS  Google Scholar 

  14. Ozinsky, A., Underhill, D. M., FOntenot, J. D., Hajjai, A. M., Smith, K. D., Wilson, C. B., Schroeder, L., and Aderem, A., 2000, The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc. Natl. Acad. Sci. USA 97:13766–13771

    Article  PubMed  CAS  Google Scholar 

  15. Hajjar, A. M., O’Mahony, D. S., Ozinsky, A., Underhill, D. M., Aderem, A., Klebanoff, S. J., and Wilson, C. B., 2001, Functional interactions between Toll-like receptor (TLR) 2 and TLR1 or TLR6 in reponse to phenol-soluble modulin. J. Immunol. 166:15–19

    PubMed  CAS  Google Scholar 

  16. Medzhitov, R., Preston-Hurlburt, P., Kopp, E., Stadlen, A., Chen, C., Ghosh, S., and Janeway, C. A. Jr., 1998, MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell. 2: 253–258

    Article  PubMed  CAS  Google Scholar 

  17. McGettrick, A. F. and O’Neill, L. A. J., 2004, The expanding family of MyD88-like adaptors in Toll-like receptor signal transduction. Mol. Immunol. 41:577–582

    Article  PubMed  CAS  Google Scholar 

  18. Yamamoto, M., Sato, S., Mori, K., Hoshino, K., Takeuchi, O., Takeda, K., and Akira, S., 2002, A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169:6668–6672

    PubMed  CAS  Google Scholar 

  19. Oshiumi, H., Matsumoto, M., Funami, K., Akazawa, T., and Seya, T., 2003, TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-β induction. Nature Immunol. 4:161–167

    Article  CAS  Google Scholar 

  20. Kawai, T., Takeuchi, O., Fujita, T., Inoue, J.-I., Muhlradt, P. F., Sato, S., Hoshino, K., and Akira, S., 2001, Lipopolysaccharide stimulates the Myd88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J. Immunol. 167:5887–5894

    PubMed  CAS  Google Scholar 

  21. Hoshino, K., Kaisho, T., Iwabe, T., Takeuchi, O., and Shizuo, A., 2002, Differential involvement of IFN-ß in Toll-like receptor-stimulated dendritic cell activation. Int. Immunol. 14:1225–1231

    Article  PubMed  CAS  Google Scholar 

  22. Toshchakov, V., Jones, B. W., Perera, P. Y., Thomas, K., Cody, M. J., Zhang, S., Williams, B. R., Major, J., Hamilton, T. A., Fenton, M. J., and Vogel, S. N., 2002, TLR4, but not TLR2, mediates IFN-β-induced STAT1α/β-dependent gene expression in macrophages. Nat. Immunol. 3:392–398

    Article  PubMed  CAS  Google Scholar 

  23. Doyle, S. E., Vaidya, S. A., O’Connell, R., Dadgostar, H., Dempsey, P. W., Wu, T.-T., Rao, G., Sun, R., Haberland, M. E., Modlin, R. L., and Cheng, G., 2002, IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17:251–263

    Article  PubMed  CAS  Google Scholar 

  24. Sieling, P. A., Chung, W., Duong, B. T., Godowski, P. J., and Modlin, R. L., 2003, Tolllike receptor 2 ligands as adjuvants for human Th1 responses. J. Immunol. 170:194–200

    PubMed  CAS  Google Scholar 

  25. Dabbagh, K., Dahl, M. E., Stepick-Biek, P., and Lewis, D. B., 2002, Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J. Immunol. 168:4524–4530

    PubMed  CAS  Google Scholar 

  26. Kaisho, T., Hoshino, K., Iwabe, T., Takeuchi, O., Yasui, Y., and Akira, A., 2002, Endotoxin can induce MyD88-deficient dendritic cells to support Th2 cell differentiation. Int. Immunol. 14:695–700

    Article  PubMed  CAS  Google Scholar 

  27. Barton, G. M. and Medzhitov, R., 2002, Control of adaptive immune responses by Toll-like receptors. Curr. Opin. Immunol. 14:380–383

    Article  PubMed  CAS  Google Scholar 

  28. Schnare, M., Barton, G. M., Holt, A. C., Takeda, K., Akira, S., and Medzhitov, R., 2001, Toll-like receptors control activation of adaptive immune responses. Nat. Immunol. 2:947–950

    Article  PubMed  CAS  Google Scholar 

  29. Graham, B. S., 1996, Immunological determinants of disease caused by respiratory syncytial virus. Trends Microbiol. 4:290–293

    Article  PubMed  CAS  Google Scholar 

  30. Connors, M., Giese, N. A., Kulkarni, A. B., Firestone, C.-Y., Holmes, K. L., Morse III, H. C., and Murphy, B. R., 1994, Enhanced pulmonary histopathology induced by respiratory syncytial virus (RSV) challenge of formalin-inactivated RSV-immunized BALB/c mice is abrogated by depletion of interleukin-4 (IL-4) and IL-10. J. Virol. 68:55321–5325

    Google Scholar 

  31. Waris, M. E., Tsou, C., Erdman, D. D., Zaki, S. R., and Anderson, L. J., 1996, Respiratory syncytial virus infection in BALB/c mice previously immunized with formalin-inactivated virus induces enhanced pulmonary inflammatory response with a predominant Th2-like cytokine pattern. J. Virol. 70:2852–2860

    PubMed  CAS  Google Scholar 

  32. Becker, S., Quay, J., and Soukup, J., 1991, Cytokine (tumor necrosis factor, IL-6, and IL-8) production by respiratory syncytial virus-infected human alveolar macrophages. J. Immunol. 147:4307–4312

    PubMed  CAS  Google Scholar 

  33. Tripp, R. A. and Anderson, L. J., 1998, Cytoxic T-lymphocyte precursor frequencies in BALB/c mice after acute respiratory syncytial virus (RSV) infection or immunization with a formalin-inactivated RSV vaccine. J. Virol. 72:8971–8975

    PubMed  CAS  Google Scholar 

  34. Haeberle, H. A., Takizawa, R., Casola, A., Brasier, A. R., Dieterich, H. J., Van Rooijen, N., Gatalica, Z., and Garofalo, R. P., 2002, Respiratory syncytial virus-induced activation of nuclear factor-kappaB in the lung involves alveolar macrophages and toll-like receptor 4-dependent pathways. J. Infect. Dis. 186:1199–1206

    Article  PubMed  CAS  Google Scholar 

  35. Kurt-Jones, E. A., Popova, L., Kwinn, L., Haynes, L. M., Jones, L. P., Tripp, R. A., Walsh, E. E., Freeman, M. W., Golenbock, D. T., Anderson, L. J., and Finberg, R. W., 2000, Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1:398–401

    Article  PubMed  CAS  Google Scholar 

  36. Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S., and Reis e Sousa, C., 2004, Innate antiviral responses by mean of TLR7-mediated recognition of single-stranded RNA. Science 303:1529–1531

    Article  PubMed  CAS  Google Scholar 

  37. Haynes, L. M., Moore, D. D., Kurt-Jones, E. A., Finberg, R. W., Anderson, L. J., and Tripp, R. A., 2001, Involvement of toll-like receptor 4 in innate immunity to respiratory syncytial virus. J. Virol. 75:10730–10737

    Article  PubMed  CAS  Google Scholar 

  38. Poltorak, A., Merlin, T., Nielsen, P. J., Sandra, O., Smirnova, I., Schupp, I., Boehm, T., Galanos, C., and Freudenberg, M. A., 2001, A point mutation in the IL-12R□2 gene underlies the IL-12 unresponsiveness of Lps-defective C57BL/10ScCr mice. J. Immunol. 167:2106–2111

    PubMed  CAS  Google Scholar 

  39. Ehl, S., Bischoff, R., Ostler, T., Vallbracht, S., Schulte-Monting, J., Poltorak, A., and Freudenberg, M., 2004, The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur. J. Immunol. 34:1146–1153

    Article  PubMed  CAS  Google Scholar 

  40. Tal, G., Mandelberg, A., Dalal, I., Cesar, K., Somekh, E., Tal, A., Oron, A., Itskovich, S., Ballin, A., Houri, S., Beigelman, A., Lider, O., Rechavi, G., and Amariglio, N., 2004, Association between common Toll-like receptor 4 mutations and severe respiratory syncytial virus disease. J. Infect. Dis. 189:2057–2063

    Article  PubMed  CAS  Google Scholar 

  41. Aberle, J. H., Aberle, S. W., Dworzak, M. N., Mandl, C. W., Rebhandl, W., Vollnhofer, G., Kundi, M., and Popow-Kraupp, T., 1999, Reduced interferon-gamma expression in a peripheral blood mononuclear cells of infants with severe respiratory syncytial virus disease. Am. J. Respir. Crit. Care Med. 160:1263–1268

    PubMed  CAS  Google Scholar 

  42. Roman, M., Calhoun, W. J., Hinton, K. L., Avendano, L. F., Simon, V., Escobar, A. M., Gaggero, A., and Diaz, P. V., 1997, Respiratory syncytial virus infection in infants is associated with predominant Th-2-like response. Am. J. Respir. Crit. Care Med. 156:190–195

    PubMed  CAS  Google Scholar 

  43. Becker, M. N., Diamond, G., Verghese, M. W., and Randell, S. H., 2000, CD14-dependent lipopolysaccharide-induced beta-defensin-2 expression in human tracheobronchial epithelium. J. Biol. Chem. 275:29731–29736

    Article  PubMed  CAS  Google Scholar 

  44. Ross, S. R., 2000, Using genetics to probe host-virus interactions: the mouse mammary tumor virus model. Microbes and Inf. 2:1215–1223

    Article  CAS  Google Scholar 

  45. Outzen, H. C., Morrow, D., and Shultz, L. D., 1985, Attenuation of exogenous murine mammary tumor virus virulence in the C3H/HeJ mouse substrain bearing the Lps mutation. J. Natl. Canc. Inst. 75:917–923

    CAS  Google Scholar 

  46. Ardavin, C., Luthi, F., Andersson, M., Scarpellino, L., Martin, P., Diggelmann, H., and Acha-Orbea, H., 1997, Retrovirus-induced target cell activation in the early phases of infection: the mouse mammary tumor virus model. J. Virol. 71:7295–7299

    PubMed  CAS  Google Scholar 

  47. Rassa, J. C., Meyers, J. L., Zhang, Y., Kudaravalli, R., and Ross, S. R., 2002, Murine retroviruses activate B cells via interaction with Toll-like receptor 4. Proc. Natl. Acad. Sci. USA 99:2281–2286

    Article  PubMed  CAS  Google Scholar 

  48. Burzyn, D., Rassa, J. C., Kim, D., Nepomnaschy, I., Ross, S. R., and Piazzon, I., 2004, Toll-like receptor 4-dependent activation of dendritic cells by a retrovirus. J. Virol. 78:576–584

    Article  PubMed  CAS  Google Scholar 

  49. Vogel, S. N., Johnson, D., Perera, P., Medvedev, A., Lariviere, L., Qureshi, S. T., and Malo, D., 1999, Functional characterization of the effect of the C3H/HeJ defect in mice that lack an Lpsn gene: In vivo evidence for a dominant negative mutation. J. Immunol. 162:5666–5670

    PubMed  CAS  Google Scholar 

  50. Martin, P., Ruiz, S. R., Martinez del Hoyo, G., Anjuere, F., Vargas, H. H., Lopez-Bravo, M., and Ardavin, C., 2002, Dramatic increase in lymph node dendritic cell numbers during infection by the mouse mammary tumor virus occurs by a CD62L-dependent blood-borne DC recruitment. Blood 99:1282–1288

    Article  PubMed  CAS  Google Scholar 

  51. Vacheron, S., Luther, S. J., and Acha-Orbea, H., 2002, Preferential infection of immature dendritic cells and B cells by mouse mammary tumor virus. J. Immunol. 168:3470–3476

    PubMed  CAS  Google Scholar 

  52. Harel, J., Rassart, E., and Jolicoeur, P., 1981, Cell cycle dependence of synthesis of unintegrated viral DNA in mouse cells newly infected with murine leukemia virus. Virol. 110:202–207

    Article  CAS  Google Scholar 

  53. Roe, T., Reynolds, T. C., Yu, G., and Brown, P. O., 1983, Integration of murine leukemia virus DNA depends on mitosis. EMBO J. 12:2099–2108

    Google Scholar 

  54. Jude, B. A., Pobezinskaya, Y., Bishop, J., Parke, S., Medzhitov, R. M., Chervonsky, A. V., and Golovkina, T. V., 2003, Subversion of the innate immune system by a retrovirus. Nat. Immunol. 4:573–578

    Article  PubMed  CAS  Google Scholar 

  55. Hook, L. M., Agafonova, Y., Ross, S. R., Turner, S. J., and Golovkina, T. V., 2000, Genetics of mouse mammary tumor virus-induced mammary tumors: linkage of tumor induction to the gag gene. J. Virol. 74:8876–8883

    Article  PubMed  CAS  Google Scholar 

  56. Schneider-Schaulies, S. and ter Meulen, V., 2002, Triggering of and interference with immune activation: interactions of measles virus with monocytes and dendritic cells. Viral Immunol. 15:417–428

    Article  PubMed  CAS  Google Scholar 

  57. Schneider-Schaulies, S., Klagge, I. M., and ter Meulen, V., 2003, Dendritic cells and measles virus infection. Curr. Top. Microbiol. Immunol. 276:77–101

    PubMed  CAS  Google Scholar 

  58. Schneider-Schaulies, J., Meulen, V., and Schneider-Schaulies, S., 2003, Measles infection of the central nervous system. J. Neurovirol. 9:247–252

    PubMed  CAS  Google Scholar 

  59. Dorig, R. E., Marcil, A., Chopra, A., and Richardson, C. D., 1993, The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 75:295–305

    Article  PubMed  CAS  Google Scholar 

  60. Tatsuo, H., Ono, N., Tanaka, K., and Yanagi, Y., 2000, SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897

    Article  PubMed  CAS  Google Scholar 

  61. Klagge, I. M. and Schneider-Schaulies, S., 1999, Virus interactions with dendritic cells. J. Gen. Virol. 80:823–833

    PubMed  CAS  Google Scholar 

  62. Helin, E., Vainionpaa, R., Hyypia, T., Julkunen, I., and Matikainen, S., 2001, Measles virus activates NF-kappa B and STAT transcription factors and production of IFN-alpha/beta and IL-6 in the human lung epithelial cell line A549. Virology 290:1–10

    Article  PubMed  CAS  Google Scholar 

  63. Schnorr, J. J., Xanthakos, S., Keikavoussi, P., Kaempgen, E., ter Meulen, V., and Schneider-Schaulies, S., 1997, Induction of maturation of human blood dendritic cell precursors by measles virus is associated with immunosuppression. Proc. Natl. Acad. Sci. USA 94:5326–5331

    Article  PubMed  CAS  Google Scholar 

  64. Bieback, K., Lien, E., Klagge, I. M., Avota, E., Schneider-Schaulies, J., Duprex, W. P., Wagner, H., Kirschning, C. J., ter Meulen, V., and Schneider-Schaulies, S., 2002, Hemagglutinin protein of wild-type measles virus activates toll-like receptor 2 signaling. J. Virol. 76:8729–8736

    Article  PubMed  CAS  Google Scholar 

  65. Murabayashi, N., Kurita-Taniguchi, M., Ayata, M., Matsumoto, M., Ogura, H., and Seya, T., 2002, Susceptibility of human dendritic cells (DCs) to measles virus (MV) depends on their activation stages in conjunction with the level of CDw150: role of Toll stimulators in DC maturation and MV amplification. Microbes and Inf. 4:785–794

    Article  CAS  Google Scholar 

  66. Zhu, H., Cong, J. P., and Shenk, T., 1997, Use of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc. Natl. Acad. Sci. USA 94:13985–13990

    Article  PubMed  CAS  Google Scholar 

  67. Zhu, H., Cong, J. P., Mamtora, G., Gingeras, T., and Shenk, T., 1998, Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 95:14470–14475

    Article  PubMed  CAS  Google Scholar 

  68. Simmen, K. A., Singh, J., Luukkonen, B. G., Lopper, M., Bittner, A., Miller, N. E., Jackson, M. R., Compton, T., and Fruh, K., 2001, Global modulation of cellular transcription by human cytomegalovirus is initiated by viral glycoprotein B. Proc. Natl. Acad. Sci. USA 98:7140–7145

    Article  PubMed  CAS  Google Scholar 

  69. Compton, T., Kurt-Jones, E. A., Boehme, K. W., Belko, J., Latz, E., Golenbock, D. T., and Finberg, R. W., 2003, Human cytomegalovirus activates inflammatory cytokine responses via CD14 and Toll-like receptor 2. J. Virol. 77:4588–4596

    Article  PubMed  CAS  Google Scholar 

  70. Boehme, K. W., SIngh, J., Perry, S. T., and Compton, T., 2004, Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J. Virol. 78:1202–1211

    Article  PubMed  CAS  Google Scholar 

  71. Kurt-Jones, E. A., Chan, M., Zhou, S., Wang, J., Reed, G., Bronson, R., Arnold, M. M., Knipe, D. M., and Finberg, R. W., 2004, Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc. Natl. Acad. Sci USA 101:1315–1320

    Article  PubMed  CAS  Google Scholar 

  72. Sen, G. C., 2001, Viruses and interferons. Annu. Rev. Microbiol. 55:255–281

    Article  PubMed  CAS  Google Scholar 

  73. Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S., 2000, A Toll-like receptor recognizes bacterial DNA. Nature 408:740–745

    Article  PubMed  CAS  Google Scholar 

  74. Leadbetter, E. A., Rifkin, I. R., Hohlbaum, A. M., Beaudette, B. C., Shlomchik, M. J., and Marshak-Rothstein, A., 2002, Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 416:603–607

    Article  PubMed  CAS  Google Scholar 

  75. Zhao, X. Y., Deak, E., Soderberg, K., Linehan, M., Spezzano, D., Zhu, J., Knipe, D. M., and Iwasaki, A., 2003, Vaginal submucosal dendritic cells, but not Langerhans’ cells, induce protective Th1 responses to herpes simplex virus-2. J. Exp. Med. 197:153–162

    Article  PubMed  CAS  Google Scholar 

  76. Lund, J., Sato, A., Akira, S., Medzhitov, R., and Iwasaki, A., 2003, Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J. Exp. Med. 198:513–520

    Article  PubMed  CAS  Google Scholar 

  77. Krug, A., Luker, G. D., Barchet, W., Leib, D. A., Akira, S., and Colonna, M., 2004, Herpes simplex virus type 1 activates murine natural interferon-producing cells through Toll-like receptor 9. Blood 103:1433–1437

    Article  PubMed  CAS  Google Scholar 

  78. Karlin, S., Doerfler, W., and Cardon, L. R., 1994, Why is CpG suppressed in the genome of virtually all small eukaryotic viruses but not in those of large eukaryotic viruses? J. Virol. 68:2889–2897

    PubMed  CAS  Google Scholar 

  79. Krmpotic, A., Bubic, I., Polic, B., Lucin, P., and Jonjic, S., 2003, Pathogenesis of murine cytomegalovirus infection. Microbes Infect. 5:1263–1277

    Article  PubMed  CAS  Google Scholar 

  80. Brown, M. G., Dokun, A. O., Heusel, J. W., Smith, H. R., Beckman, D. L., Blattenberger, E. A., Dubbelde, C. E., Stone, L. R., Scalzo, A. A., and Yokoyama, W. M., 2001, Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292:934–937

    Article  PubMed  CAS  Google Scholar 

  81. Lee, S. H., Girard, S., Macina, D., Busa, M., Zafer, A., Belouchi, A., Gros, P., and Vidal, S. M., 2001, Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nat. Genet. 28:42–45

    Article  PubMed  CAS  Google Scholar 

  82. Edelmann, K. H., Richardson-Burns, S., Alexopoulou, L., Tyler, K. L., Flavell, R. A., and Oldstone, M. B. A., 2004, Does Toll-like receptor 3 play a biological role in virus infections? Virol. 322:231–238

    Article  CAS  Google Scholar 

  83. Seet, B. T., Johnston, J. B., Brunetti, C. R., Barrett, J. W., Everett, H., Cameron, C., Sypula, J., Nazarian, S. H., Lucas, A., and Grant McFadden, G., 2003, Poxviruses and immune evasion. Annu. Rev. Immunol. 21:377–423

    Article  PubMed  CAS  Google Scholar 

  84. Bowie, A., Kiss-Toth, E., Symons, J. A., Smith, G. L., Dower, S. K., and O’Neill, L. A., 2000, A46R and A52R from vaccinia virus are antagonists of host IL-1 and Toll-like receptor signaling. Proc. Natl. Acad. Sci. USA 97:10162–10167

    Article  PubMed  CAS  Google Scholar 

  85. Xu, Y., Tao, X., Shen, B., Horng, T., Medzhitov, R., Manley, J. L., and Tong, L., 2000, Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408: 111–115

    Article  PubMed  CAS  Google Scholar 

  86. Harte, M. T., Haga, I. R., Maloney, G., Gray, P., Reading, P. C., Bartlett, N. W., Smith, G. L., Bowie, A., and O’Neill, L. A., 2003, The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J. Exp. Med. 197:343–351

    Article  PubMed  CAS  Google Scholar 

  87. Merchant, M., Caldwell, R. G., and Longnecker, R., 2000, The LMP2A ITAM is essential for providing B cells with development and survival signals in vivo. J. Virol. 74:9115–9124

    Article  PubMed  CAS  Google Scholar 

  88. DiPerna, G., Stack, J., Bowie, A. G., Boyd, A., Kotwal, G., Zhang, Z., Arvikar, S., Latz, E., Fitzgerald, K. A., and Marshall, W. L., 2004, Poxvirus protein N1L targets the I-κB kinase complex, inhibits signaling to NF-κB by the tumor necrosis factor superfamily of receptors, and inhibits NF-κB and IRF3 signaling by Toll-like receptors. J. Biol. Chem. in press.

    Google Scholar 

  89. van den Broek, M. F., Muller, U., Huang, S., Zinkernagel, R. M., and Aguet, M., 1995, Immune defense in mice lacking type I and/or type II interferon receptors. Immunol. Rev. 148:5–18

    Article  PubMed  Google Scholar 

  90. Engelmayer, J., Larsson, M., Subklewe, M., Chahroudi, A., Cox, W. I., Steinman, R. M., and Bhardwaj, N., 1999, Vaccinia virus inhibits the maturation of human dendritic cells: a novel mechanism of immune evasion. J. Immunol. 163:6762–6768

    PubMed  CAS  Google Scholar 

  91. Hoebe, K., Du, X., Georgel, P., Janssen, E., Tabeta, K., Kim, S. O., Goode, J., Lin, P., Mann, N., Mudd, S., Crozat, K., Sovath, S., Han, J., and Beutler, B., 2003, Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424:743–748

    Article  PubMed  CAS  Google Scholar 

  92. Akula, S. M., Naranatt, P. P., Walia, N. S., Wang, F. Z., Fegley, B., and Chandran, B., 2003, Kaposi’s sarcoma-associated herpesvirus (human herpesvirus 8) infection of human fibroblast cells occurs through endocytosis. J. Virol. 77:7978–7990

    Article  PubMed  CAS  Google Scholar 

  93. Nicola, A. V., McEvoy, A. M., and Straus, S. E., 2003, Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J. Virol. 77:5324–5332

    Article  PubMed  CAS  Google Scholar 

  94. Alexopoulou, L., Holt, A. C., Medzhitov, R., and Flavell, R. A., 2001, Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 413:732–738

    Article  PubMed  CAS  Google Scholar 

  95. Honda, K., Sakaguchi, S., Nakajima, C., Watanabe, A., Yanai, H., Matsumoto, M., Ohteki, T., Kaisho, T., Takaoka, A., Akira, S., Seya, T., and Taniguchi, T., 2003, Selective contribution of IFN-alpha/beta signaling to the maturation of dendritic cells induced by double-stranded RNA or viral infection. Proc. Natl. Acad. Sci. USA 100:10872–10877

    Article  PubMed  CAS  Google Scholar 

  96. Lund, J. M., Alexopoulou, L., Sato, A., Karow, M., Adams, N. C., Gale, N. W., Iwasaki, A., and Flavell, R. A., 2004, Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc. Natl. Acad. Sci. USA 101:5598–5603

    Article  PubMed  CAS  Google Scholar 

  97. Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K., and Akira, S., 2002, Small antiviral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol.. 3:196–200

    Article  PubMed  CAS  Google Scholar 

  98. Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K., Akira, S., Wagner, H., and Bauer, S., 2003, The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. Eur. J. Immunol. 33:2987–2997

    Article  PubMed  CAS  Google Scholar 

  99. Hernandez, L. D., Hoffman, L. R., Wolfsberg, T. G., and White, J. M., 1996, Virus-cell and cell-cell fusion. Annu. Rev. Cell. Dev. Biol. 12:627–661

    Article  PubMed  CAS  Google Scholar 

  100. Skehel, J. J. and Wiley, D. C., 2000, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu. Rev. Biochem. 69:531–569

    Article  PubMed  CAS  Google Scholar 

  101. Equils, O., Faure, E., Thomas, L., Bulut, Y., Trushin, S., and Arditi, M., 2001, Bacterial lipopolysaccharid activates HIV long terminal repeat through toll-like receptor 4. J. Immunol. 166:2342–2347

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Ross, S.R. (2005). Viral Pathogenesis and Toll-Like Receptors. In: Palese, P. (eds) Modulation of Host Gene Expression and Innate Immunity by Viruses. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3242-0_10

Download citation

Publish with us

Policies and ethics