Skip to main content

Complexity and Intermittent Turbulence in Space Plasmas

  • Chapter
Nonequilibrium Phenomena in Plasmas

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 321))

Abstract

Sporadic and localized interactions of coherent structures arising from plasma resonances can be the origin of “complexity” of the coexistence of non-propagating spatiotemporal fluctuations and propagating modes in space plasmas. Numerical simulation results are presented to demonstrate the intermittent character of the non-propagating fluctuations. The technique of the dynamic renormalization-group is introduced and applied to the study of scale invariance of such type of multiscale fluctuations. We also demonstrate that the particle interactions with the intermittent turbulence can lead to the efficient energization of the plasma populations. An example related to the ion acceleration processes in the auroral zone is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • André, M., and T. Chang, Ion heating perpendicular to the magnetic field, Physics of Space Plasmas, Scientific Publishers, Inc., eds.: T. Chang and J.R. Jasperse, vol. 12, p. 35, 1992.

    Google Scholar 

  • Angelopoulos, V., T. Mukai and S. Kokubun, Evidence for intermittency in Earth's plasma sheet and implications for self-organized criticality, Physics of Plasmas, 6, 4161, 1999.

    Article  ADS  Google Scholar 

  • Bak, P., C. Tang, and K. Wiesenfeld, Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Lett., 59, 381, 1987.

    Article  MathSciNet  ADS  Google Scholar 

  • Baker, D., A.J. Klimas, R.L. McPherron and J. Büchner, The evolution from weak to strong geomagnetic activity: An interpretation in terms of deterministic chaos, Geophys. Res. Lett., 17, 41, 1990.

    Article  ADS  Google Scholar 

  • Biskamp, D., Nonlinear Magnetohydrodynamics, Cambridge University Press, Cambridge, U.K., 1993.

    Book  Google Scholar 

  • Boffetta, G., V. Carbone, P. Giuliani, P. Veltri, and A. Vulpiani, Power laws in solar flares: Self-organized criticality or turbulence?, Phys. Rev. Lett., 83, 4662, 1999.

    Article  ADS  Google Scholar 

  • Bruno, R., V. Carbone, P. Veltri, E. Pietropaolo, B. Bavassano, Identifying intermittency events in the solar wind, Planetary and Space Science, 49, 1201, 2001.

    Article  ADS  Google Scholar 

  • Bruno, R., V. Carbone, L. Sorriso-Valvo, B. Bavassano, Truncated Levy-flight statistics recovered from interplanetary solar wind velocity and magnetic field fluctuations, EOS Trans. AGU, 83(47), Fall Meet. Suppl., Abstract SH12A-0396, 2002.

    Google Scholar 

  • Castaing, B., Y. Cagne, and E.J. Hopfinger, Velocity probability density functions of high Reynolds number turbulence, Physica D., 46, 177, 1990.

    Article  ADS  MATH  Google Scholar 

  • Chandrasekhar, S., Stochastic problems in physics and astronomy, Rev. Mod. Phys., 15, 1, 1943.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Chang, T., and H.E. Stanley, Renormalization-group verification of crossover with respect to lattice anisotropy parameter, Phys. Rev., B8, 1178, 1973.

    ADS  Google Scholar 

  • Chang, T., A. Hankey, and H.E. Stanley, Double-power scaling functions near tricritical points, Phys. Rev., B7, 4263, 1973a.

    ADS  Google Scholar 

  • Chang, T., A. Hankey, and H.E. Stanley, Generalized scaling hypothesis in multi-component systems. I. Classification of critical points by order and scaling at tricritical points, Phys. Rev., B8, 346, 1973b.

    ADS  Google Scholar 

  • Chang, T., J.F. Nicoll and J.E. Young, A closed-form differential renormalization-group generator for critical dynamics, Physics Letters, 67A, 287, 1978.

    MathSciNet  ADS  Google Scholar 

  • Chang, T., G.B. Crew, N. Hershkowitz, J.R. Jasperse, J.M. Retterer, and J.D. Winningham, Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broadband left-hand polarized waves, Geophys. Res. Lett., 13, 636, 1986.

    Article  ADS  Google Scholar 

  • Chang, T., Low-dimensional behavior and symmetry breaking of stochastic systems near criticality—can these effects be observed in space and in the laboratory? IEEE Trans. on Plasma Science, 20, 691, 1992.

    Article  ADS  Google Scholar 

  • Chang, T., D.D. Vvedensky and J.F. Nicoll, Differential renormalization-group generators for static and dynamic critical phenomena, Physics Reports, 217, 279, 1992.

    Article  MathSciNet  ADS  Google Scholar 

  • Chang, T., Sporadic, localized reconnections and multiscale intermittent turbulence in the magnetotail, AGU Monograph on “Encounter between Global Observations and Models in the ISTP Era”, vol. 104, p. 193, Horwitz, J.L., D.L. Gallagher, and W.K. Peterson, Am. Geophys. Union, Washington, D.C., 1998a.

    Google Scholar 

  • Chang, T., Multiscale intermittent turbulence in the magnetotail, Proc. 4th Intern. Conf. on Substorms, ed. Kamide, Y. et al., Kluwer Academic Publishers, Dordrecht and Terra Scientific Publishing Company, Tokyo, p. 431, 1998b.

    Google Scholar 

  • Chang, T., Self-organized criticality, multi-fractal spectra, and intermittent merging of coherent structures in the magnetotail, Astrophysics and Space Science, ed. Büchner, J. et al., Kluwer Academic Publishers, Dordrecht, Netherlands, vol. 264, p. 303, 1998c.

    Google Scholar 

  • Chang, T., Self-organized criticality, multi-fractal spectra, sporadic localized reconnections and intermittent turbulence in the magnetotail, Physics of Plasmas, 6, 4137, 1999.

    Article  ADS  Google Scholar 

  • Chang, T., Colloid-like behavior and topological phase transitions in space plasmas: intermittent low frequency turbulence in the auroral zone, Physica Scripta, T89, 80, 2001.

    Article  ADS  Google Scholar 

  • Chang, T. and C.C. Wu, “Complexity” and anomalous transport in space plasmas, Physics of Plasmas, 9, 3679, 2002.

    Article  ADS  Google Scholar 

  • Chang, T., C.C. Wu, and V. Angelopoulos, Preferential acceleration of coherent magnetic structures and bursty bulk flows in Earth's magnetotail, Physics Scripta, T98, 48, 2002.

    Article  ADS  Google Scholar 

  • Chang, T., “Complexity” induced plasma turbulence in coronal holes and the solar wind, in Solar Wind Ten, ed. by M. Velli, R. Bruno, and F. Malara, AIP Conference Proceedings, vol. 679, Melville, NY, p. 481, 2003.

    Google Scholar 

  • Chang, T., S.W.Y. Tam, C.C. Wu, and G. Consolini, Complexity, forced and/or self-organized criticality, and topological phase transitions in space plasmas, Space Science Reviews, 107, 425, 2003.

    Article  ADS  Google Scholar 

  • Chang, T., S.W.Y. Tam, and C.C. Wu, Complexity induced bimodal intermittent turbulence in space plasmas, Physics of Plasmas, 11, 1287, 2004.

    Article  ADS  Google Scholar 

  • Chapman, S.C., N.W. Watkins, R.O. Dendy, P. Helander and G. Rowlands, Geophys. Res. Lett., 25, 2397, 1998.

    Article  ADS  Google Scholar 

  • Consolini, G., Sandpile cellular automata and magnetospheric dynamics, Cosmic Physics in the Year 2000, ed. S. Aiello, N. Lucci, G. Sironi, A. Treves and U. Villante, Soc. Ital. di Fis., Bologna, Italy, p. 123, 1997.

    Google Scholar 

  • Consolini, G., and T. Chang, “Magnetic Field Topology and Criticality in Geotail Dynamics: Relevance to Substorm Phenomena”, Space Science Reviews, 95, 309, 2001.

    Article  ADS  Google Scholar 

  • Consolini, G., T. Chang, and A.T.Y. Lui, Complexity and topological disorder in the Earth's magnetotail dynamics, Chapter 3, this volume, 2004.

    Google Scholar 

  • Crew, G.B., and T. Chang, Path-integral formulation of ion heating, Physics of Fluids, 31, 3425, 1988.

    Article  ADS  Google Scholar 

  • Einstein, A., Ann. d. Physik, 17, 549, 1905.

    Article  MATH  ADS  Google Scholar 

  • Farge, M., Wavelet transforms and their applications to turbulence, Annual Reviews of Fluid Mechanics, 24, 395, 1992.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Forman, M., and L.F. Burlaga, Exploring the Castaing distribution function to study intermittence in the solar wind at L1 in June 2000, in Solar Wind Ten, ed. M. Velli, R. Bruno, and F. Malara, AIP Conference Proceedings, vol. 679, Melville, NY, p. 554, 2003.

    Google Scholar 

  • Freeman, M.P., N.W. Watkins and D.J. Riley, Evidence for a solar wind origin of the power law burst lifetime distribution of AE indices, Geophys. Res. Lett., 27, 1087, 2000.

    Article  ADS  Google Scholar 

  • Gorney, D.J., Y.T. Chiu, and D.R. Croley, Trapping of ion conics by downward parallel electric fields, J. Geophys. Res., 90, 4205, 1985.

    Google Scholar 

  • Hnat, B., S.C. Chapman, G. Rowlands, N.W. Watkins, W.M. Farrel, Geophys. Res. Lett., 29(10), 10.1029/2001GL014587, 2002.

    Google Scholar 

  • Hoshino, M., Nishida, A., Yamamoto, T., Kokubum, S., Turbulence magnetic field in the distant magnetotail: bottom-up process of plasmoid formation? Geophys. Res. Lett., 21, 2935, 1994.

    Article  ADS  Google Scholar 

  • Jasperse, J.R., Ion heating, electron acceleration, and self-consistent E field in downward auroral current regions, Geophys. Res. Lett., 25, 3485, 1998.

    Article  ADS  Google Scholar 

  • Jasperse, J.R., and N.J. Grossbard, The Alfvén-Fälthammar formula for the parallel E-field and its analogue in downward auroral-current region, IEEE Trans. Plasma Science, 28, 1874, 2000.

    Article  ADS  Google Scholar 

  • Jurac, S., private communication, 2003.

    Google Scholar 

  • Klimas, A.J., D.N. Baker, D.A. Roberts, D.H. Fairfield and J. Büchner, A nonlinear dynamical analogue model of geomagnetic activity, J. Geophys. Res., 97, 12253, 1992.

    Article  ADS  Google Scholar 

  • Klimas, A.J., J.A. Valdivia, D. Vassiliadis, D.N. Baker, M. Hesse, and J. Takalo, Self-organized criticality in the substorm phenomenon and its relation to localized reconnection in the magnetospheric plasma sheet, J. Geophys. Res., 105, 18765, 2000.

    Article  ADS  Google Scholar 

  • Lu, E.T., Avalanches in continuum driven dissipative systems, Phys. Rev. Lett., 74, 2511, 1995.

    Article  ADS  Google Scholar 

  • Lui, A.T.Y., Multiscale and intermittent nature of current disruption in the magnetotail, in Physics of Space Plasmas, MIT Geo/Cosmo Plasma Physics, eds.:T. Chang and J.R. Jasperse, vol. 15, p. 233, 1998.

    Google Scholar 

  • Lui, A.T.Y., S.C. Chapman, K. Liou, P.T. Newell, C.I. Meng, M. Brittnacher, G.D. Parks, Is the dynamic magnetosphere an avalanching system?. Geophys. Res. Lett., 27, 911, 2000.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., and M.L. Goldstein, Low-frequency 1/f noise in the interplanetary magnetic field, Phys. Rev. Lett., 57, 495, 1986.

    Article  ADS  Google Scholar 

  • Matthaeus, W.H., M.L. Goldstein and D.A. Roberts, Evidence for the presence of quasi-two-dimensional nearly incompressible fluctuations in the solar wind, J. Geophys. Res., 95, 20673, 1990.

    Article  ADS  Google Scholar 

  • Meneveau, C., Analysis of turbulence in the orthogonal wavelet representation, J. Fluid Mech., 232, 469, 1991.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Milovanov, A., Zelenyi, L., Zimbardo, G., Fractal structures and power law spectra in the distant magnetotail, J. Geophys. Res., 101, 19903, 1996.

    Article  ADS  Google Scholar 

  • Morrison, P.J. and R.D. Hazeltine, Hamiltonian formulation of reduced magnetohydrodynamics, Phys. Fluids, 27, 886, 1984.

    Article  ADS  MATH  Google Scholar 

  • Nicoll, J.F., T. Chang, and H.E. Stanley, Nonlinear solutions of renormalization-group equations, Phys. Rev. Lett., 32, 1446, 1974.

    Article  MathSciNet  ADS  Google Scholar 

  • Nicoll, J.F., T. Chang, and H.E. Stanley, Nonlinear crossover between critical and tricritical behavior, Phys. Rev. Lett., 36, 113, 1976.

    Article  ADS  Google Scholar 

  • Retterer, J.M., T. Chang, G.B. Crew, J.R. Jasperse and J.D. Winningham, Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broadband electromagnetic turbulence, Phys. Rev. Lett., 59, 148, 1987.

    Article  ADS  Google Scholar 

  • Rutherford, P.H., Nonlinear growth of the tearing mode, Phys. Fluids, 16, 1903, 1973.

    Article  ADS  Google Scholar 

  • Sharma, A.S., D. Vassiliadis and K. Papadopoulos, Reconstruction of low-dimensional magnetospheric dynamics by singular spectrum analysis, Geophys. Res. Lett., 20, 335, 1993.

    Article  ADS  Google Scholar 

  • Seyler, C.E., Jr., Nonlinear 3-D evolution of bounded kinetic Alfvén waves due to shear flow and collisionless tearing instability, Geophys. Res. Lett., 15, 756, 1988.

    Article  ADS  Google Scholar 

  • Sitnov, M.I., A.S. Sharma, K. Papadopoulos, D. Vassiliadis, J.A. Valdivia, A.J. Klimas, and D.N. Baker, Phase transition-like behavior of the magnetosphere during substorms, J. Geophys. Res., 105, 12955, 2000.

    Article  ADS  Google Scholar 

  • Sorriso-Valvo, L., V. Carbone, P. Veltri, G. Consolini, and R. Bruno, Intermittency in the solar wind turbulence through probability distribution functions of fluctuations, Geophys. Res. Lett. 26, 1801, 1999.

    Article  ADS  Google Scholar 

  • Stanley, H.E., Introduction to Phase Transitions and Critical Phenomena, Oxford University Press, New York, 1971.

    Google Scholar 

  • Strauss, H.R., Nonlinear, three-dimensional magnetohydrodynamics of noncircular tokamaks, Phys. Fluids, 19, 134, 1976.

    Article  ADS  Google Scholar 

  • Tam, S.W.Y., F. Yasseen, T. Chang, and S.B. Ganguli, Self-consistent kinetic photoelectron effects on the polar wind, Geophys. Res. Lett., 22, 2107, 1995.

    Article  ADS  Google Scholar 

  • Tam, S.W.Y., F. Yasseen, and T. Chang, Further development in theory/data closure of the photoelectron-driven polar wind and day-night transition of the outflow, Ann. Geophys., 16, 948, 1998.

    Article  ADS  Google Scholar 

  • Tam, S.W.Y. and T. Chang, Kinetic evolution and acceleration of the solar wind, Geophys. Res. Lett., 26, 3189, 1999a.

    Article  ADS  Google Scholar 

  • Tam, S.W.Y. and T. Chang, Solar wind acceleration, heating, and evolution with wave-particle interactions, Comments on Modern Physics, vol. 1, Part C, 141, 1999b.

    Google Scholar 

  • Tam, S.W.Y. and T. Chang, Effect of electron resonant heating on the kinetic evolution of the solar wind, Geophys. Res. Lett., 28, 11351, 2001.

    Article  ADS  Google Scholar 

  • Tam, S.W.Y. and T. Chang, Comparison of the effects of wave-particle interactions and the kinetic suprathermal electron population on the acceleration of the solar wind, Astronomy & Astrophysics, 395, 1001, 2002.

    Article  ADS  Google Scholar 

  • Tetreault, D., Turbulent relaxation of magnetic fields, 1. Coarse-grained dissipation and reconnection, J. Geophys. Res., 97, 8531, 1992a; ibid, 2. self-organization and intermittency, 97, 8541, 1992b.

    Article  ADS  Google Scholar 

  • Taylor, J.B., Relaxation of toroidal plasma and generation of reversed magnetic fields, Phys. Rev. Lett., 33, 1139, 1974.

    Article  ADS  Google Scholar 

  • Tu, C.Y. and E. Marsch, MHD structures, waves and turbulence in the solar wind: observations and theories, Space Science Reviews, 73, 1, 1995.

    Article  ADS  Google Scholar 

  • Uritsky, V.M., A.J. Klimas, D. Vassiliadis, D. Chua, and G.D. Parks, Scale-free statistics of spatiotemporal auroral emissions as depicted by POLAR UVI images: The dynamic magnetosphere is an avalanching system, J. Geophys. Res., 107, 1426, 2002.

    Article  Google Scholar 

  • Waddell, B.V., B. Carreras, H.R. Hicks, and J.A. Holmes, Nonlinear interaction of tearing modes in highly resistive tokamaks, Phys. Fluids, 22, 896, 1979.

    Article  ADS  MATH  Google Scholar 

  • Watkins, N.W., Scaling in the space climatology of the auroral indices: Is SOC the only possible description?, Nonlinear Processes in Geophysics, 9, 389, 2002.

    Article  ADS  Google Scholar 

  • Watkins, N.W., S.C. Chapman, R.O. Dendy and G. Rowlands, Robustness of collective behavior in strongly driven avalanche models: magnetospheric implications, Geophys. Res. Lett., 26, 2617, 1999.

    Article  ADS  Google Scholar 

  • Weygand, J., private communication, 2003.

    Google Scholar 

  • Wilson, K.G. and J. Kogut, The renormalization group and the epsilonexpansion, Physics Reports, 12C, 76, 1974.

    ADS  Google Scholar 

  • Wu, C.C., and T. Chang, 2D MHD Simulation of the Emergence and Merging of Coherent Structures, Geophys. Res. Lett., 27, 863, 2000a.

    Article  ADS  Google Scholar 

  • Wu, C.C., and T. Chang, Dynamical evolution of coherent structures in intermittent two-dimensional MHD turbulence, IEEE Trans. on Plasma Science, 28, 1938, 2000b.

    Article  ADS  Google Scholar 

  • Wu, C.C., and T. Chang, Further study of the dynamics of two-dimensional MHDcoherent structures—A large scale simulation, Journal of Atmospheric Sciences and Terrestrial Physics, 63, 1447, 2001.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Chang, T., Tam, S.W., Wu, Cc. (2005). Complexity and Intermittent Turbulence in Space Plasmas. In: Burton, W., et al. Nonequilibrium Phenomena in Plasmas. Astrophysics and Space Science Library, vol 321. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3109-2_2

Download citation

Publish with us

Policies and ethics