Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 184))

  • 1503 Accesses

Abstract

A detailed analysis of the magnetic susceptibilities for a number of binary Zr-M (M = Cu, Ni, Co and Fe) and for ternary Zr2(Nil−xMx)1 glassy alloys with M = Ti, V, Cr, Mn, Fe, Co, and Cu respectively has been performed. By combining our data for the magnetic susceptibility and superconducting transition temperature with the literature data for a low temperature specific heat we extracted the Pauli susceptibilities (χp) and the Stoner enhancement factors (S) for all alloys. The data for Zr-M alloys reflect smooth change in the electronic band structure on alloying and the onset of magnetic correlations for M = Co and Fe. The results for ternary alloys can be explained by the combination of the small systematic change in the electronic band structure with M and the appearance of localized magnetic moments for M around Mn. For ternary alloys we also estimated S from the low temperature magnetoresistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babić, E., Ristić, R., Miljak, M., and Scott, M.G., (1982) Electronic and magnetic properties of Zr-3d glasses, Proc. 4 th Int. Conf on Rapidly Quenched Metals, Sendai, Japan, 1079–1082.

    Google Scholar 

  2. Altounian, Z. and Strom-Olsen, J.O., (1983) Superconductivity and spin fluctuations in M-Zr metallic glasses (M = Cu, Ni, Co and Fe), Phys. Rev. B 27, 4149–4156.

    Google Scholar 

  3. Batalla, E., Altounian, Z., and Strom-Olsen, J. O., (1985) Magnetism and mass enhancement in zirconium-rich Fe-Zr and Co-Zr metallic glasses, Phys. Rev. B 27, 577–580.

    Google Scholar 

  4. Babić, E., Butcher, S., Day, R.K., and Dunlop J.B., (1984) Magnetic susceptibility of Zr67Ni33 based metallic glasses, Proc. 5 th Int. Conf on Rapidly Quenched Metals, Würzburg, Germany, 1157–1160.

    Google Scholar 

  5. Ristić, R., Marohnić, Ž., and Babić, E., (1997) Electrical transport in ternary glassy Zr2(Nil−xMx)1 alloys, Mater. Sci. Eng. A226–228, 1060–1063.

    Google Scholar 

  6. Hausleitner, Ch. and Hafner, J., (1990) Microscopic approach to the structure of transitionmetal glasses, Phys. Rev. B 42, 5863–5866.

    Google Scholar 

  7. Jank, W., Hausleitner, Ch., and Hafner, J., (1991) Self-Consistent Electronic Structure of NixZrl−x Glasses, Europhys. Lett. 16, 473–478 and references therein.

    Google Scholar 

  8. Oelhafen, P., Hauser, E., and Güntherodt, H.-J., (1979) Varying d-band splitting in glassy transition metal alloys, Solid State Commun. 35, 1017–1019.

    Google Scholar 

  9. Babić, E., Ristić, R., Scott, M.G., and Gregan, G., (1981) Superconductivity in Zirconium-Nickel Glasses, Solid State Commun. 39, 139–141.

    Google Scholar 

  10. Banhart, J., Ebert, H., and Voitländer, J., (1986) Diamagnetic susceptibility of pure metals and binary alloys, Journal of Magnetism and Magnetic Materials 61, 221–224.

    Google Scholar 

  11. Place, C.M. and Rhodes, P., (1971) Paramagnetic orbital susceptibilities of transition metals, Phys. stat. sol. (b) 47, 475–486.

    Google Scholar 

  12. Ivkov, J. and Babić, E., (1990) On the origin of the positive Hall coefficient in disordered TE-TL alloys, J. Phys.: Cond. Mater. 2, 3891–3896.

    Google Scholar 

  13. von Minigerode, G. and Samwer, K., (1981) Electronic properties and superconductivity of ZrxCul−x glasses, Physica 107 B + C, 1217–1218.

    Google Scholar 

  14. Matsuura, M. and Mizutani, U., (1981) Low temperature specific heat study of Ni100−xZrx (x = 30–80) metallic glasses, J. Phys. F: Metal. Phys. 16, L183–L189.

    Google Scholar 

  15. Onn, D.G., Wang, L.Q., and Fukamichi, K., (1980), Superconductivity in Fe-Zr, Ni-Zr and Cu-Zr amorphous metal alloys: analysis of low temperature specific heat, Solid State Commun. 35, 479–483.

    Google Scholar 

  16. Kuentzler, R., Amamou, A., Clad, R., and Turek, P., (1987) Electronic structure, super-conductivity and magnetism in the Zr-Co system, J. Phys. F: Met. Phys. 17, 459–474.

    Google Scholar 

  17. Yamada, Y., Itoh, Y., and Mizutani U., (1988) Electronic structure of (Ni33Zr67)85X15 (X = Ti, V, Cr, Mn, Fe, Co and Cu) ternary metallic glasses studied by low temperature specific heat measurements, Mater. Sci. Eng. 99, 289–293.

    Google Scholar 

  18. Zehringer, R., Oelhafen, P., Güntherodt, H.-J. Yamada, Y., and Mizutani U., (1988) Electronic structure of (Ni33Zr67)85X15 (X = Ti, V, Cr, Mn, Fe, Co and Cu), Mater. Sci. Eng. 99, 317–320.

    Google Scholar 

  19. McMillan, W.L., (1968) Transition temperature of strong-coupled superconductors, Phys. Rev. B 167, 331–344.

    Google Scholar 

  20. Bakonyi, I., (1995) Electronic properties and atomic structure of (Ti, Zr, Hf)-(Ni, Cu) metallic glasses, J. Non-Cryst. Solids 180, 131–150.

    Google Scholar 

  21. Ristić, R., Babić, E., and Miljak, M., (1983) Electrical and magnetic properties of amorphous Zr100−xCux alloys, Fizika 15, 363–373.

    Google Scholar 

  22. Ristić, R. and Babić, E. (1994) Electronic band structure and magnetic effects in ternary Zr2(Ni1−xMx)1 glassy alloys, Solid State Commun. 91, 937–940.

    Google Scholar 

  23. Rizzuto C., (1974) Formation of localized moments in metals: experimental bulk properties, Rep. Prog. Phys. 37, 147–229.

    Google Scholar 

  24. Jones, H.C., Montgomery, A.G., Lin, I.B., Lue, J.W., Nadler, H., and Hake, R.R., (1977) High-magnetic-field magnetization and magnetoresistance of transition-metal-base spin glass: Zr-Mn, Phys. Rev. B 16, 1177–1196.

    Google Scholar 

  25. Ristić, R. and Marohnić, Ž., (2000) Transport properties of the Zr2(Ni0.9M0.1) glassy alloys, Physica B 284–288, 1109–1110.

    Google Scholar 

  26. Lindqvist, P. and Rapp, Ö., (1988) Weak localisation and interaction effects in amorphous CuTi alloys, J. Phys.F: Met.Phys. 18, 1979–1994.

    Google Scholar 

  27. Ousset, J.C., Askenazy, S., Rakoto, H., and Broto J.M., (1985) Analytic expressions of the magnetoresistance due to localization and electron-electron interaction effects. Application to the amorphous alloys La3Al and La3Ga, J. Physique 46, 2145–2149.

    Google Scholar 

  28. Baxter, D.V., Richter, R., Trudeau, M.L., Cochrane, R.W., and Strom-Olsen, J.O., (1989) Fitting to magnetoresistance under weak localization in three dimensions, J. Phys. France 50, 1673–1688.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Ristić, R., Marohnić, Ž., Babić, E. (2005). Magnetic Properties of Zr-3d Glassy Alloy Systems. In: Idzikowski, B., Švec, P., Miglierini, M. (eds) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2965-9_33

Download citation

Publish with us

Policies and ethics