Skip to main content

Monte Carlo Simulations of Model Particles Forming Phases of Negative Poisson Ratio

  • Conference paper
Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors

Part of the book series: NATO Science Series ((NAII,volume 184))

Abstract

Systems with negative Poisson ratio (NPR) behave in a counterintuitive way: when pulled (pushed) in one direction, they expand (shrink) in all directions. In this lecture we discuss application of computer simulations to study NPR systems and sketch an idea — based on the Cauchy relations — of systematic studies of mechanisms which may lead to NPR. Roughly speaking, the NPR systems can be divided into three groups: (i) systems of artificial structures (on micro-, mezo- or macroscopic scale), (ii) systems at special conditions (e.g. systems at negative pressure, systems near some phase transitions, etc.), and (iii) thermodynamically stable phases. We concentrate on the third group and study a class of two-dimensional model particles forming isotropic solid phases which exhibit the NPR. Depending on the interaction potential used, they show periodic or periodic structures. The Poisson ratio of the periodic solids can be decreased by transforming them into periodic crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Landau, L.D. and Lifshits, E.M. (1993) Theory of Elasticity, Pergamon, Oxford.

    Google Scholar 

  2. Almgren, R.F. (1985) An isotropic three-dimensional structure with Poisson’s ratio = −1, J. Elasticity 15, 427–430.

    Google Scholar 

  3. Kolpakov, A.G. (1985) Determination of the average characteristics of elastic frameworks, PMM USSR 49, 739–745.

    Google Scholar 

  4. Wojciechowski, K.W. (1987) Constant thermodynamic tension Monte Carlo studies of elastic properties of a two-dimensional system of hard cyclic hexamers, Molec. Phys. 61, 1247–1258.

    Google Scholar 

  5. Lakes, R.S. (1987) Foam structures with a negative Poisson’s ratio, Science 235, 1038–1040.

    Google Scholar 

  6. Lakes, R.S. (1993) Advances in negative Poisson’s ratio materials, Advanced Materials 5, 293–296.

    Google Scholar 

  7. Wojciechowski, K.W. and Brańka, A.C. (1994) Auxetics: Materials and Models with Negative Poisson’s Ratios, Molec. Phys. Reports 6, 71–85.

    Google Scholar 

  8. Evans, K.E. and Alderson A. (2000) Auxetic materials: Functional materials and structures from lateral thinking, Advanced Materials 12, 617–628.

    Google Scholar 

  9. Grima, J.N., Jackson, R. Alderson, A. and Evans, K.E. (2000) Do zeolites have negative Poisson’s ratios?, Advanced Materials 12, 1912–1918.

    Google Scholar 

  10. Lipsett, A.W. and Beltzer, A.I. (1988) Reexamination of dynamic problems of elasticity for negative Poisson’s ratio, J. Acoustical Soc. America 84, 2179–2186.

    Google Scholar 

  11. Wojciechowski, K.W. (1998) Isotropic systems of negative Poisson ratios, in Statistical Physics: Experiments, Theories, and Computer Simulations, Tokuyama, M. and Oppenheim, I. (eds.) World Scientific, p. 107.

    Google Scholar 

  12. Grima, J.N. and and Evans, K.E. (2000) Auxetic behaviour from rotating squares J. Materials Sci. Letters 19, 1563–1565.

    Google Scholar 

  13. Ishibashi, Y. and Iwata, M. (2000) A microscopic model of a negative Poisson’s ratio in some crystals J. Phys. Soc. Japan 69, 2702–2703.

    Google Scholar 

  14. Bowick, M., Cacciuto, A., Thorleifsson, G. and Travesset A. (2001) Universal negative Pois son ratio of self-avoiding fixed-connectivity membranes, Phys. Rev. Lett. 87, 148103_1-4.

    Google Scholar 

  15. Alderson, A. and Evans, K.E. (2002) Molecular origin of auxetic behaviour in tetrahedral framework silicates, Phys. Rev. Lett. 89, 225503_1-4.

    Google Scholar 

  16. Vasiliev, A.A., Dmitriev, S.V., Ishibashi, Y. and Shigenari T. (2002) Elastic properties of a two-dimensional model of crystals containing particles with rotational degrees of freedom, Phys. Rev. E 65, 094101_1-7.

    Google Scholar 

  17. Hailing, T., Saunders, G.A., Yogurtcu, Y.K., Bach, H. and Methfesse, S. (1984) Poisson’s ratio limits and effects of hydrostatic pressure on elastic behaviour of Sm1−xYxS alloys in the intermediate valence state, J. Phys. C: Solid State Physics 17, 4559–4573.

    Google Scholar 

  18. Hirotsu, S. (1991) Softening of bulk modulus and negative Poisson’s ratio near the volume phase transition of polymer gels, J. Chem. Phys. 94, 3949–3957.

    Google Scholar 

  19. Tretiakov, K.V. (2000) Monte Carlo simulation studies of mechanical and thermodynamic stability of selected molecular models, PhD Thesis, IFM PAN, Poznań.

    Google Scholar 

  20. Novikov, V.V. and Wojciechowski, K.W. (1999) Negative Poisson coefficient of fractal structures, Solid State Physics 41, 1970–1975.

    Google Scholar 

  21. Wojciechowski, K.W. and Novikov, V.V. (2001) Negative Poisson’s ratio and percolating structures, TASK Quarterly 5, 5–11.

    Google Scholar 

  22. Wojciechowski, K.W. (1995) Negative Poisson ratios at negative pressures, Molec. Phys. Reports 10, 129–136.

    Google Scholar 

  23. Wojciechowski, K.W. and Tretiakov, K.V. (1996) Determination of elastic constants by Monte Carlo simulations, Computational Methods in Science and Technology 1, 25–29.

    Google Scholar 

  24. Wojciechowski, K.W. (2003) Non-chiral, molecular model of negative Poisson ratio in two dimensions, J. Phys. A: Math. & Gen. 36, 11765–11778

    Google Scholar 

  25. Milstein, F. and Huang, K. (1979) Existence of a negative Poisson ratio in FCC crystals, Phys. Rev. B 19, 2030–2033.

    Google Scholar 

  26. Kittinger, E., Tichy, J. and Bertagnolli, E. (1981) Example of a negative effective Poisson’s ratio, Phys. Rev. Lett. 47, 712–714.

    Google Scholar 

  27. Yeganeh-Haeri, A., Weidner, D. J. and Parise, J.B. (1992) Elasticity of alpha-cristobalite: a silicon dioxide with a negative Poisson’s ratio, Science 257, 650–652.

    Google Scholar 

  28. Wallace, D.C. (1972) Thermodynamics of Crystals, Wiley, New York.

    Google Scholar 

  29. Parrinello, M. and Rahman, A. (1982) Polymorphic transitions in single crystals: A new molecular dynamics method, J. Applied Phys. 52, 7182–7190.

    Google Scholar 

  30. Wojciechowski, K.W., Tretiakov, K.V. and Kowalik, M. (2003) Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions, Phys. Rev. E 67, 036121_1-14.

    Google Scholar 

  31. Weiner, J.H. (1983) Statistical Mechanics of Elasticity, Wiley, New York.

    Google Scholar 

  32. Wojciechowski, K.W. (1989) Two-dimensional isotropic system with a negative Poisson ratio, Phys. Lett. A 137, 60–64.

    Google Scholar 

  33. Wojciechowski, K.W. and Brańka, A. C. (1989) Negative Poisson ratio in a two-dimensional ‘isotropicc’ solid, Phys. Rev. E 40, 7222–7225.

    Google Scholar 

  34. Wojciechowski, K.W. (2003) Remarks on “Poisson ratio beyond the limits of the elasticity theory”, J. Phys. Soc. Japan 72, 1819–1820.

    Google Scholar 

  35. Wojciechowski, K.W. and Tretiakov, K.V. (2003) in preparation.

    Google Scholar 

  36. Wojciechowski, K.W., Frenkel, D. and Brańka, A.C. (1991) Non-periodic solid phase in a two-dimensional hard dimer system, Phys. Rev. Lett. 64, 3168–3171.

    Google Scholar 

  37. Wojciechowski, K.W., Tretiakov, K.V., Brafika, A.C. and Kowalik, M. (2003) Elastic properties of two-dimensional hard discs in the close-packing limit, J. Chem. Phys. 119, 939–946.

    Google Scholar 

  38. Wojciechowski, K.W. and Tretiakov, K.V. (2002) Elastic properties of the f.c.c. hard sphere crystal free of defects, Computational Methods in Science and Technology 8(2), 84–92.

    Google Scholar 

  39. Tretiakov, K.V. and Wojciechowski, K.W. (2002) Orientational phase transition between hexagonal solids in planar systems of hard cyclic pentamers and heptamers, J. Phys.: Cond. Matter 14, 1261–1273.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic Publishers

About this paper

Cite this paper

Wojciechowski, K. (2005). Monte Carlo Simulations of Model Particles Forming Phases of Negative Poisson Ratio. In: Idzikowski, B., Švec, P., Miglierini, M. (eds) Properties and Applications of Nanocrystalline Alloys from Amorphous Precursors. NATO Science Series, vol 184. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2965-9_22

Download citation

Publish with us

Policies and ethics