Skip to main content

Hydriding Properties of Magnesium-Salt Mechanical Alloys

  • Conference paper
Hydrogen Materials Science and Chemistry of Carbon Nanomaterials

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 172))

  • 2182 Accesses

Abstract

Mechanical alloying of magnesium with inorganic salt addition has been demonstrated to promote metal powdering and modify the metal surface. This leads to an acceleration of the hydriding and dehydriding reactions of obtained materials and to quite high hydrogen capacities (about 5.5–6 wt.%). The investigated salts (NaF, NaCl, MgF2 or CrCl3) had a different influence on the metal surface properties, which was reflected in reaction kinetics, in particular at first hydriding. MgF2 and NaCl peel off of the oxide layer from magnesium surface facilitating hydride nucleation. CrCl3 may additionally act as catalysis for hydrogen chemisorption. The formation of NaMgF3 ternary fluoride has been observed at the initial stages of hydriding of Mg-NaF mechanical alloys. This ternary fluoride was found to play an active role in the hydriding process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gerasimov, K.B., Goldberg, E.L. and Ivanov, E.Yu. (1987) On the kinetic model of magnesium hydriding, J Less-Common Met. 131, 99–107.

    CAS  Google Scholar 

  2. Gerasimov, K.B. and Ivanov, E.Yu. (1985) The mechanism and kinetics of formation and decomposition of magnesium hydride, Materials Lett. 3(12), 497–499.

    CAS  Google Scholar 

  3. Ivanov, E., Konstanchuk, I., Stepanov, A. and Boldyrev, V. (1987) Magnesium mechanical alloys for hydrogen storage, J. Less-Common Met. 131, 25–29.

    Article  CAS  Google Scholar 

  4. Stepanov, A., Ivanov, E., Konstanchuk, I. and Boldyrev, V. (1987) Hydriding properties of mechanical alloys Mg-Ni, J. Less-Common Met. 131, 89–97.

    Article  CAS  Google Scholar 

  5. Konstanchuk, I., Ivanov, E., Darriet, B., Pezat, M., Boldyrev, V. and Hagenmüller, P. (1987) The hydriding properties of a mechanical alloy with composition Mg-25 wt.% Fe, J. Less-Common Met. 131, 181–189.

    Article  CAS  Google Scholar 

  6. Khrussanova, M., Terzieva, M., Peshev, P., Konstanchuk, I. and Ivanov, E. (1989) Hydriding kinetics of mixtures containing some 3d-transition metal oxides and magnesium, Zeitschrift für Phys. Chem. N.F. Bd. 164, 1261–1266.

    Google Scholar 

  7. Khrussanova, M., Terzieva, M., Peshev, P., Konstanchuk, I. and Ivanov, E. (1991) Hydriding of mechanically alloyed mixtures of magnesium with MnO2, Fe2O3 and NiO, Materials Research Bulletin 26, 561–567.

    Google Scholar 

  8. Liang, G., Boily, S., Huot, J., Van Neste, A. and Schulz, R. (1998) Hydrogen absorption properties of a mechanically milled Mg-50 wt.% LaNi5 composite, J. Alloys Comp. 268, 302–307.

    Article  CAS  Google Scholar 

  9. Oelerich, W., Klassen, T. and Bormann, R. (2001) Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials, J. Alloys Comp. 315, 237–242.

    Article  CAS  Google Scholar 

  10. Khrussanova, M., Grigorova, E., Mitov, I., Radev, D. and Peshev, P. (2001) Hydrogen sorption properties of an Mg-Ti-V-Fe nanocomposite obtained by mechanical alloying, J. Alloys Comp. 327, 230–234.

    Article  CAS  Google Scholar 

  11. Imamura, H., Sakasai, N. and Fujinaga, T. (1997) Characterisation and hydriding properties of Mg-graphite composites prepared by mechanical alloying as new hydrogen storage materials, J. Alloys Comp. 253–254, 34–37.

    Google Scholar 

  12. Imamura, H., Takesue, Y., Akimoto, T. and Tabata, S. (1999) Hydrogen-absorbing magnesium composites prepared by mechanical grinding with graphite: effects of additives on composite structures and hydriding properties, J. Alloys Comp. 295, 564–568.

    Google Scholar 

  13. Imamura, H., Tabata, S., Takesue, Y., Sakata, Y. and Kamazaki, S. (2000) Hydriding-dehydriding behavior of magnesium composites obtained by mechanical grinding with graphite carbon, Int. J Hydrogen Energy 25, 837–843.

    CAS  Google Scholar 

  14. Bouaricha, S., Dodelet, J.P., Guay, D., Huot, J. and Schulz, R. (2001) Activation characteristics of graphite modified hydrogen absorbing materials, J. Alloys Comp. 325, 245–251.

    Article  CAS  Google Scholar 

  15. Bogdanovic, B. and Schwickardi, M. (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials, J. Alloys Comp. 253–254, 1–9.

    Google Scholar 

  16. Sandrock, G., Gross, K., Thomas, G., Jensen, C., Meeker, D. and Takara S. (2002) Engineering considerations in the use of catalyzed sodium alanates for hydrogen storage, J. Alloys Comp. 330–332, 696–701.

    Google Scholar 

  17. Yu, Z., Liu, Z. and Wang, E. (2002) Hydrogen storage properties of the Mg-Ni-CrCl3 nanocomposite, J. Alloys Comp. 333, 207–214.

    Article  CAS  Google Scholar 

  18. Wang, X.L. and Suda, S. (1995) Surface characteristics of fluorinated hydriding alloys, J. Alloys Comp. 231, 380–386.

    CAS  Google Scholar 

  19. Wang, X.L., Haraikawa, N. and Suda, S. (1995) A study of the surface composition and structure of fluorinated Mg-based alloys, J. Alloys Comp. 231, 397–402.

    CAS  Google Scholar 

  20. Liu, F.G. and Suda, S. (1996) Hydriding behavior of F-treated Mg2Ni at moderate conditions, J. Alloys Comp. 232, 212–217.

    CAS  Google Scholar 

  21. Sun, Y.M., Gao, X.P., Araya, N., Higuchi, E. and Suda, S. (1999) A duplicated fluorination technique for hydrogen storage alloys, J. Alloys Comp. 295, 364–368.

    Google Scholar 

  22. Higuchi, E., Li Zh., P., Suda, S., Nohara, Sh., Inoue, H. and Iwakura, Ch. (2002) Structural and electrochemical characterization of fluorinated AB2-type Laves phase alloys obtained by different pulverization methods, J. Alloys Comp. 335, 241–245.

    Article  CAS  Google Scholar 

  23. Bouamrane, A., de Brauer, C., Soulié, J.-P., Létoffé, J.M. and Bastide, J.P. (1999) Standard enthalpies of formation of sodium-magnesium hydride and hydridofluorides NaMgH3, NaMgH2F and NaMgF2H, Thermochimica Acta 326, 37–41.

    Article  CAS  Google Scholar 

  24. Bouamrane, A., Laval, J.P., Soulié, J.-P. and Bastide, J.P. (2000) Structural characterization of NaMgH2F and NaMgH3, Mater. Res. Bull. 35, 545–549.

    Article  CAS  Google Scholar 

  25. Ronnebro, E., Noreus, D., Kadir, K., Reiser, A. and Bogdanovic, B. (2000) Investigation of the perovskite related structures of NaMgH3, NaMgF, and Na3AlH6, J. Alloys Comp. 299, 101–106.

    CAS  Google Scholar 

  26. Stander, C.M. (1977) Kinetics of formation of magnesium hydride from magnesium and hydrogen, Z. Phys. Chem. N.-F. 104, 229.

    CAS  Google Scholar 

  27. Gerasimov, K.B. (1986) Reversible interaction of magnesium with hydrogen, Ph.D thesis, Novosibirsk, (in Russ.).

    Google Scholar 

  28. Fernándes, J.F. and Sánchez, C.R. (2002) Rate determining step in the absorption and desorption of hydrogen by magnesium, J. Alloys Comp. 340, 189–198.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Yu. Ivanov, E., Konstanchuk, I.G., Boldyrev, V.V. (2004). Hydriding Properties of Magnesium-Salt Mechanical Alloys. In: Veziroglu, T.N., Yu. Zaginaichenko, S., Schur, D.V., Baranowski, B., Shpak, A.P., Skorokhod, V.V. (eds) Hydrogen Materials Science and Chemistry of Carbon Nanomaterials. NATO Science Series II: Mathematics, Physics and Chemistry, vol 172. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2669-2_56

Download citation

Publish with us

Policies and ethics