Skip to main content

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 171))

  • 1644 Accesses

Conclusion

Multidisciplinary groups involving materials scientists, chemists, physicists, biologists work togehter trying to understand the mechanisms controlling the formation of elaborate structure of biological minerals. We believe that further studies of biological systems will increase our understanding of how organisms evolved their sophisticated optical structures for survival and adaptation and will provide additional materials concepts and design solutions. Ultimately, these biological principles will improve our current capabilities to fabricate optical elements and contribute to the construction of novel, adaptive, micro-scale optical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alper, M., Calvert, P.D., Frankel, R., Rieke, P.C. and Tirrell, D.A. (1991) Materials synthesis based onbiological processes,. Materials Research Society, Pittsburgh.

    Google Scholar 

  2. Braun, P.V., Osenar, P. and Stupp, S.I. (1996) Semiconducting superlattices templated by molecularassemblies, Nature 380, 325–328.

    Article  Google Scholar 

  3. Mann, S., Archibald, D.D., Didymus, J.M., Douglas, T., Heywood, B.R., Meldrum, F.C. and Reeves, N.J. (1993) Crystallization at inorganic-organic interfaces — Biominerals and biomimetic synthesis, Science 261, 1286–1292.

    Google Scholar 

  4. Heuer, A.H., Fink, D.J., Laraia, V.J., Arias, J.L., Calvert, P.D., Kendall, K., Messing, G.L., Blackwell, J., Rieke, P.C., Thompson, D.H., Wheeler, A.P., Veis, A. and Caplan, A.I. (1992) Innovative materialsprocessing strategies’ a biomimetic approach, Science 255, 1098–1105.

    Google Scholar 

  5. Mann, S. and Ozin, G.A. (1996) Synthesis of inorganic materials with complex form, Nature 382, 313–318.

    Article  Google Scholar 

  6. Addadi, L. and Weiner, S. (1992) Control and design principles in biological mineralization. Angew. Chem.-Int. Edit. Engl. 31, 153–169.

    Google Scholar 

  7. Aizenberg, J., Black, A.J. and Whitesides, G.M. (1999) Control of crystal nucleation by patterned self-assembled monolayers, Nature 398, 495–498.

    Google Scholar 

  8. Lowenstam, H. A. and Weiner, S. (1989) On Biomineralization, Oxford Univ. Press, Oxford.

    Google Scholar 

  9. Wainwright, S.A., Biggs, W.D., Currey, J.D. and Gosline, J.M. (1976) Mechanical design in organisms, John Wiley and Sons, New York.

    Google Scholar 

  10. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. and Hendler, G. (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars, Nature 412, 819–822.

    Article  Google Scholar 

  11. Cattaneo-Vietti, R., Bavestrello, G., Cerrano, C., Sara, M., Benatti, U., Giovine, M. and Gaino, E. (1996) Optical fibres in an Antarctic sponge, Nature 383, 397–398.

    Article  Google Scholar 

  12. Sundar, V.C., Yablon, A.D., Grazul, J.L., Ilan, M. and Aizenberg, J. (2003) Fiber-optical features of a glass sponge, Nature 424, 899–900.

    Article  Google Scholar 

  13. Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., Mescher, A. and Gaino, E. (2001) Biomimetic model of a sponge-spicular optical fiber — mechanical properties and structure, J. Mater. Res. 16, 1420–1428.

    Google Scholar 

  14. Hyman, L.H. (1955) The invertebrates: Vol. 4, Echinodermata, McGraw-Hill, New York.

    Google Scholar 

  15. Yoshida, M., Takasu, N. and Tamotsu, S. (1984) Photoreception in echinoderms, in M.A. Ali (eds.), Photoreception and vision in invertebrates, Plenum, New York, pp. 743–771.

    Google Scholar 

  16. Millot, N. (1975) The photosensitivity of echinoids, Adv. Mar. Biol. 13, 1–52.

    Google Scholar 

  17. Hendler, G. and Byrne, M. (1987) Fine structure of the dorsal arm plate of Ophiocoma wendti: Evidence for a photoreceptor system (Echinodermata, Ophiuroidea), Zoomorphology 107, 261–272.

    Article  Google Scholar 

  18. Hendler, G. (1984) Brittlestar color-change and phototaxis (Echinodermata: Ophiuroidea: Ophiocomidae), PSZNI Mar. Ecol. 5, 379–401.

    Google Scholar 

  19. Cowles, R.P. (1910) Stimuli produced by light and by contact with solid walls as factors in the behavior of ophiuroids, J. Exp. Zool. 9, 387–416.

    Article  Google Scholar 

  20. Donnay, G. and Pawson, D.L. (1969) X-ray diffraction studies of echinoderm plates, Science 166, 1147–1150.

    Google Scholar 

  21. Ameye, L., Hermann, R., Wilt, F. and Dubois, P. (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization, J. Histochem. Cytochem. 47, 1189–1200.

    Google Scholar 

  22. Flint, H.T. (1936) Geometrical optics, Methuen and Co, London.

    Google Scholar 

  23. Clarkson, E.N.K. and Levi-Setti, R. (1975) Trilobite eyes and the optics of Des Cartes and Huygens, Nature 254, 663–667.

    Article  Google Scholar 

  24. Gal, J., Horvath, G., Clarkson, E.N.K. and Haiman, O. (2000) Image formation by bifocal lenses in a trilobite eye?, Vision Res. 40, 843–853.

    Google Scholar 

  25. Towe, K.M. (1973) Trilobite eyes: Calcified lenses in vivo, Science 179, 1007–1010.

    Google Scholar 

  26. Land, M.F. (1981) Optics and vision in invertebrates, in H. Autrum (eds.), Comparative physiology and evolution in invertebrates B: Invertebrate visual centers and behavior I, Springer, Berlin, pp. 471–592.

    Google Scholar 

  27. Cobb, J.L.S. and Hendler, G. (1990) Neurophysiological characterization of the photoreceptor system in a brittlestar, Ophiocoma wendtii (Echinodermata: Ophiuroidea), Comp. Biochem. Physiol. 97A, 329–333.

    Google Scholar 

  28. Stubbs, T.R. (1982) The neurophysiology of photosensitivity in ophiuroids, in J.M. Lawrence (eds.), Echinoderms: Proceedings of the International Conference, Tampa Bay, Balkema, Rotterdam, pp. 403–408.

    Google Scholar 

  29. Johnsen, S. (1997) Identification and localization of a possible rhodopsin in the echinoderms Asterias forbesi (Asteroidea) and Ophioderma brevispinum (Ophiuroidea), Biol. Bull. 193, 97–105.

    Google Scholar 

  30. Berman, A., Addadi, L., Kvick, Å., Leiserowitz, L., Nelson, M. & Weiner, S. (1990) Intercalation of sea urchin proteins in calcite: Study of a crystalline composite material, Science 250, 664–667.

    Google Scholar 

  31. Addadi, L., Aizenberg, J., Albeck, S., Berman, A., Leiserowitz, L. & Weiner, S. (1994) Controlled occlusion of proteins — a tool for modulating the properties of skeletal elements, Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A-Mol. Cryst. Liq. Cryst. 248, 185–198.

    Google Scholar 

  32. Albeck, S., Aizenberg, J., Addadi, L. & Weiner, S. (1993) Interactions of various skeletal intracrystalline components with calcite crystals, J. Am. Chem. Soc. 115, 11691–11697.

    Article  Google Scholar 

  33. Gonis, A. (2000) Nucleation and Growth Processes in Materials, Materials Research Society, Boston.

    Google Scholar 

  34. Vere, A.W. (1988) Crystal Growth: Principles and Progress, Plenum, New York.

    Google Scholar 

  35. Beniash, E., Aizenberg, J., Addadi, L. and Weiner, S. (1997) Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth, Proc. R. Soc. Lond. Ser. B-Biol. Sci. 264, 461–465.

    Google Scholar 

  36. Beniash, E., Addadi, L. and Weiner, S. (1999) Cellular control over spicule formation in sea urchin embryos: A structural approach, J. Struct. Biol. 125, 50–62.

    Article  Google Scholar 

  37. Aizenberg, J., Hanson, J., Koetzle, T.F., Leiserowitz, L., Weiner, S. & Addadi, L. (1995) Biologically induced reduction in symmetry — a study of crystal texture of calcitic sponge spicules, Chem.-Eur. J. 1, 414–422.

    Google Scholar 

  38. Aizenberg, J., Black, A.J. and Whitesides, G.M. (1999) Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver, J. Am. Chem. Soc. 121, 4500–4509.

    Article  Google Scholar 

  39. Han, Y.-J. and Aizenberg, J. (2003) Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols: Effect of the parity of the alkyl chain, Angew. Chem. Int. Ed. 42, 3668–3670.

    Google Scholar 

  40. Xia, Y.N. and Whitesides, G.M. (1998) Soft lithography, Annu. Rev. Mater. Sci. 28, 153–184.

    Article  Google Scholar 

  41. Koga, N., Nakagoe, Y.Z. and Tanaka, H. (1998) Crystallization of amorphous calcium carbonate, Thermochim. Acta 318, 239–244.

    Article  Google Scholar 

  42. Gower, L.B. and Odom, D.J. (2000) Deposition of calcium carbonate films by a polymer-induced liquid-precursor (PILP) process, J. Cryst. Growth 210, 719–734.

    Article  Google Scholar 

  43. Raz, S., Weiner, S. and Addadi, L. (2000) Formation of high-magnesian calcites via an amorphous precursor phase: Possible biological implications, Adv. Mater. 12, 38–41.

    Google Scholar 

  44. Sawada, K. (1997) The mechanisms of crystallization and transformation of calcium carbonates, Pure Appl. Chem. 69, 921–928.

    MathSciNet  Google Scholar 

  45. Aizenberg, J., Lambert, G., Addadi, L. and Weiner, S. (1996) Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates, Adv. Mater. 8, 222–225.

    Article  Google Scholar 

  46. Aizenberg, J., Lambert, G., Weiner, S. and Addadi, L. (2002) Factors involved in the formation of amorphous and crystalline calcium carbonate: A study of an ascidian skeleton, J. Am. Chem. Soc. 124, 32–39.

    Article  Google Scholar 

  47. Aizenberg, J., Muller, D.A., Grazul, J.L. and Hamann, D.R. (2003) Direct fabrication of large micropatterned single crystals, Science 299, 1205–1208.

    Article  Google Scholar 

  48. Yang, S., Megens, M. and Aizenberg, J. (2003) Fabrication of biomimetic microlens arrays with integrated pores by interference lithography, Unpublished data.

    Google Scholar 

  49. Campbell, M., Sharp, D.N., Harrison, M.T., Denning, R.G. and Turberfield, A.J. (2000) Nature 404, 53–55.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Kluwer Academic Publishers

About this paper

Cite this paper

Aizenberg, J., Hendler, G. (2004). Learning from Marine Creatures How to Design Micro-Lenses. In: Reis, R.L., Weiner, S. (eds) Learning from Nature How to Design New Implantable Biomaterialsis: From Biomineralization Fundamentals to Biomimetic Materials and Processing Routes. NATO Science Series II: Mathematics, Physics and Chemistry, vol 171. Springer, Dordrecht. https://doi.org/10.1007/1-4020-2648-X_9

Download citation

Publish with us

Policies and ethics