Skip to main content

A Hirzebruch Proportionality Principle in Arakelov Geometry

  • Chapter
Number Fields and Function Fields—Two Parallel Worlds

Part of the book series: Progress in Mathematics ((PM,volume 239))

  • 1455 Accesses

Summary

We describe a tautological subring in the arithmetic Chow ring of bases of abelian schemes. Among the results are an Arakelov version of the Hirzebruch proportionality principle and a formula for a critical power of ĉ1 of the Hodge bundle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.-M. Bismut, Equivariant immersions and Quillen metrics, J. Differential Geom., 41 (1995), 53–157.

    MATH  MathSciNet  Google Scholar 

  2. J.-M. Bismut, Holomorphic Families of Immersions and Higher Analytic Torsion Forms, Astérisque 244, Société Mathématique de France, Paris, 1997.

    MATH  Google Scholar 

  3. J.-M. Bismut and X. Ma, Holomorphic immersions and equivariant torsion forms, J. Reine Angew. Math., 575 (2004), 189–235.

    MATH  MathSciNet  Google Scholar 

  4. P. Berthelot, L. Breen, and W. Messing, Théorie de Dieudonné Cristalline II, Lecture Notes in Mathematics 930, Springer, Berlin, New York, Heidelberg, 1982.

    MATH  Google Scholar 

  5. J.-B. Bost, Intersection theory on arithmetic surfaces and L 21 metrics, letter dated March 6, 1998.

    Google Scholar 

  6. J. I. Burgos, J. Kramer, and U. Kühn, Cohomological arithmetic Chow groups, e-print, 2004; J. Inst. Math. Jussieu, to appear; available online from http://www.arxiv.org/abs/math.AG/0404122.

    Google Scholar 

  7. P. Epstein, Zur Theorie allgemeiner Zetafunktionen, Math. Ann., 56 (1903), 615–644.

    Article  MATH  MathSciNet  Google Scholar 

  8. G. Faltings, Lectures on the Arithmetic Riemann-Roch Theorem, Princeton University Press, Princeton, NJ, 1992.

    MATH  Google Scholar 

  9. G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties (with an appendix by David Mumford), Ergebnisse der Mathematik und ihrer Grenzgebiete 22, Springer-Verlag, Berlin, 1990.

    MATH  Google Scholar 

  10. H. Gillet and C. Soulé, Arithmetic intersection theory, Publ. Math. IHES, 72 (1990), 94–174.

    Google Scholar 

  11. H. Gillet and C. Soulé, Characteristic classes for algebraic vector bundles with hermitian metrics I, II, Ann. Math., 131 (1990), 163–203, 205–238.

    Article  MATH  Google Scholar 

  12. H. Gillet and C. Soulé, An arithmetic Riemann-Roch theorem, Invent. Math., 110 (1992), 473–543.

    Article  MATH  MathSciNet  Google Scholar 

  13. G. van der Geer, Cycles on the moduli space of abelian varieties, in C. Faber and E. Looijenga, eds., Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli, Aspects of Mathematics E33, Vieweg, Braunschweig, Germany, 1999, 65–89.

    Google Scholar 

  14. F. Hirzebruch, Collected Papers, Vol. I, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  15. F. Hirzebruch, Collected Papers, Vol. II, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  16. F. Hirzebruch, Topological Methods in Algebraic Geometry, Springer-Verlag, Berlin, 1978.

    Google Scholar 

  17. Ch. Kaiser and K. Köhler, A fixed point formula of Lefschetz type in Arakelov geometry III: Representations of Chevalley schemes and heights of flag varieties, Invent. Math., to appear.

    Google Scholar 

  18. S. Keel and L. Sadun, Oort’s conjecture for A g ⊗ ℂ, J. Amer. Math. Soc., 16 (2003), 887–900.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Köhler, Torus fibrations and moduli spaces, in A. Reznikov and M. Schappacher, eds., Regulators in Analysis, Geometry and Number Theory, Progress in Mathematics 171, Birkhäuser Boston, Cambridge, MA, 2000, 166–195.

    Google Scholar 

  20. K. Köhler,: A Hirzebruch Proportionality Principle in Arakelov Geometry, Prépublication 284, Institut de Mathématiques de Jussieu, Paris, 2001.

    Google Scholar 

  21. K. Köhler and D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry I: Statement and proof, Invent. Math., 145 (2001), 333–396.

    Article  MATH  MathSciNet  Google Scholar 

  22. K. Köhler and D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry II: A residue formula, Ann. Inst. Fourier, 52 (2002), 1–23.

    MATH  Google Scholar 

  23. K. Köhler and D. Roessler, A fixed point formula of Lefschetz type in Arakelov geometry IV: Abelian varieties, J. Reine Angew. Math., 556 (2003), 127–148.

    MATH  MathSciNet  Google Scholar 

  24. U. Kühn, Generalized arithmetic intersection numbers, J. Reine Angew. Math., 534 (2001), 209–236.

    MATH  MathSciNet  Google Scholar 

  25. V. Maillot and D. Roessler, Conjectures sur les dérivées logarithmiques des fonctions L d’Artin aux entiers négatifs, Math. Res. Lett., 9 (2002), 715–724.

    MATH  MathSciNet  Google Scholar 

  26. J. W. Milnor and J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies 76, Princeton University Press, Princeton, NJ, 1974.

    MATH  Google Scholar 

  27. D. Mumford, Hirzebruch proportionality theorem in the non compact case, Invent. Math., 42 (1977), 239–272.

    Article  MATH  MathSciNet  Google Scholar 

  28. D. Roessler, Lambda-structure on Grothendieck groups of Hermitian vector bundles, Israel J. Math., 122 (2001), 279–304.

    MATH  MathSciNet  Google Scholar 

  29. D. Roessler, An Adams-Riemann-Roch theorem in Arakelov geometry, Duke Math. J., 96 (1999), 61–126.

    Article  MATH  MathSciNet  Google Scholar 

  30. C. Soulé, Hermitian vector bundles on arithmetic varieties, in Algebraic Geometry: Santa Cruz 1995, Part 1, Proceedings of Symposia in Pure Mathematics 62, American Mathematical Society, Providence, RI, 1997, 383–419.

    Google Scholar 

  31. C. Soulé, D. Abramovich, J. F. Burnol, and J. Kramer, Lectures on Arakelov Geometry, Cambridge Studies in Mathematics 33, Cambridge University Press, Cambridge, UK, 1992.

    MATH  Google Scholar 

  32. H. Tamvakis, Arakelov theory of the Lagrangian Grassmannian, J. Reine Angew. Math., 516 (1999), 207–223.

    MATH  MathSciNet  Google Scholar 

  33. K. Yoshikawa, Discriminant of theta divisors and Quillen metrics, J. Differential Geom., 52 (1999), 73–115.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Birkhäuser Boston

About this chapter

Cite this chapter

Köhler, K. (2005). A Hirzebruch Proportionality Principle in Arakelov Geometry. In: van der Geer, G., Moonen, B., Schoof, R. (eds) Number Fields and Function Fields—Two Parallel Worlds. Progress in Mathematics, vol 239. Birkhäuser Boston. https://doi.org/10.1007/0-8176-4447-4_11

Download citation

Publish with us

Policies and ethics