Skip to main content

A Paradigm Shift in Cryopreservation: Molecular-Based Advances to Improve Outcome

  • Chapter
Cryogenic Engineering

Part of the book series: International Cryogenics Monograph Series ((ICMS))

Abstract

First-generation strategies of cryopreservation developed in the mid 1950s focused on the maintenance of structural integrity of cells through inclusion of penetrating cryoprotectants and management of ice and chemo-osmotic perturbations. There is now an increasing body of evidence suggesting that elevated levels of cryoprotective agents impact and alter the cellular proteome, genome, and fragmentome. Accordingly, second-generation cryopreservation strategies consider a combination of first-generation principles with new concepts in preservation solution design that reduce the effects of preservation-induced oxidative stresses. This chapter provides the background for this change in strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baust, J.G., “Concepts in Biopreservation”, Baust, J.G., and Baust, J.M., eds, Advances in Biopreservation, T&F Informa, Boca Raton, Florida, 2006, in press.

    Google Scholar 

  2. Lane, N., “The Future of Cryobiology”, Fuller, B.J., Lane, N., and Benson, E.E., eds, Life in the Frozen State, CRC Press, Boca Raton, FL, 2004, pp. 645–657.

    Google Scholar 

  3. Mazur, P., “Principles of Cryobiology”, Fuller, B.J., Lane, N., and Benson, E.E., eds, Life in the Frozen State, CRC Press, Boca Raton, FL, 2004, pp. 3–65.

    Google Scholar 

  4. Fahy, G.M., “The Relevance of Cryoprotectant ‘Toxicity’ to Cryobiology”, Cryobiology, 23(1), 1–13, 1986.

    MATH  Google Scholar 

  5. Fuller, B.J., “Cryoprotectants: The Essential Antifreezes to Protect Life in the Frozen State”, Cryo Letters, 25(6), 375–388, 2004.

    Google Scholar 

  6. Parks, J.E., “Hypothermia and Mammalian Gametes”, Karow, A.M., and Critser, J.K., eds, Reproductive Tissue Banking: Scientific Principles, Academic Press, San Diego, 1997, pp. 229–262.

    Google Scholar 

  7. Baust, J.M., “Molecular Mechanisms of Cellular Demise Associated with Cryopreservation Failure”, Cell Preservation Technology, 1(1), 17–32, 2002.

    ADS  Google Scholar 

  8. Baust, J.M., Van Buskirk, R., and Baust, J.G., “Cell Viability Improves Following Inhibition of Cryopreservation-Induced Apoptosis”, In Vitro Cell Dev. Biol. Anim., 36(4), 262–270, 2000.

    Google Scholar 

  9. Baust, J.M., Van Buskirk, R., and Baust, J.G., “Cryopreservation Outcome is Enhanced by Intracellular-Type Medium and Inhibition of Apoptosis”, Cryobiology, 37(4), 410–411, 1998.

    Google Scholar 

  10. Fu, T., Guo, D., and Huang, X., et al., “Apoptosis Occurs in Isolated and Banked Primary Mouse Hepatocytes”, Cell Transplant, 10(1), 59–66, 2001.

    Google Scholar 

  11. Yagi, T., Hardin, J.A., Valenzuela, Y.M., Miyoshi, H., Gores, G.J., and Nyberg, SL., “Caspase Inhibition Reduces Apoptotic Death of Cryopreserved Porcine Hepatocytes”, Hepatology, 33(6), 1432–1440, 2001.

    Google Scholar 

  12. Baust, J.M., Vogel, M.J., Van Buskirk, R., and Baust, J.G., “A Molecular Basis of Cryopreservation Failure and Its Modulation to Improve Cell Survival”, Cell Transplant, 10(7), 561–571, 2001.

    Google Scholar 

  13. de Boer, F., Drager A.M., Pinedo H.M., et al., “Extensive Early Apoptosis in Frozen-Thawed CD34-Positive Stem Cells Decreases Threshold Doses for Haematological Recovery After Autologous Peripheral Blood Progenitor Cell Transplantation”, Bone Marrow Transplant, 29(3), 249–255, 2002.

    Google Scholar 

  14. Abrahamsen, J.F., Bakken, A.M., Bruserud, O., and Gjertsen, B.T., “Flow Cytometric Measurement of Apoptosis and Necrosis in Cryopreserved PBPC Concentrates from Patients with Malignant Diseases”, Bone Marrow Transplant, 29(2), 165–171, 2002.

    Google Scholar 

  15. Peter, M.E., Heufelder, A.E., and Hengartner, M.O., “Advances in Apoptosis Research”, Proc. Natl. Acad. Sci. U. S. A., 94(24), 12, 736–12737, 1997.

    ADS  Google Scholar 

  16. Xiao, M., and Dooley, D.C., “Assessment of Cell Viability and Apoptosis in Human Umbilical Cord Blood Following Storage”, J. Hematother. Stem Cell Res., 12(1), 115–122, 2003.

    Google Scholar 

  17. Matsushita, T., Yagi, T., Hardin, J.A., et al., “Apoptotic Cell Death and Function of Cryopreserved Porcine Hepatocytes in a Bioartificial Liver”, Cell Transplant, 12(2), 109–121, 2003.

    Google Scholar 

  18. Baust, J.M., Van Buskirk, R., and Baust, J.G., “Gene Activation of the Apoptotic Caspase Cascade Following Cryogenic Storage”, Cell Preservation Technology, 1(1), 63–80, 2002.

    Google Scholar 

  19. Baust, J.M., “Advances in Media for Cryopreservation and Storage”, Bioprocess International, 3(Suppl 3), 46–56, 2005.

    Google Scholar 

  20. Martin, G., Sabido, O., Durand, P., and Levy, R., “Cryopreservation Induces an Apoptosis-Like Mechanism in Bull Sperm”, Biol. Reprod., 71(1), 28–37, 2004.

    Google Scholar 

  21. Paasch, U., Grunewald, S., Agarwal, A., and Glandera, H.J., “Activation Pattern of Caspases in Human Spermatozoa”, Fertil. Steril., 81(Suppl. 1), 802–809, 2004.

    Google Scholar 

  22. Gao, D., Mazur, P., and Critser, K.K., “Fundamentals of Mammalian Spermatozoa”, Karow, A.M., and Critser, J.K., eds, Reproductive Tissue Banking: Scientific Principles, Academic Press, San Diego, 1997, pp. 263–328.

    Google Scholar 

  23. Southard, J.H., van Gulik, T.M., Ametani, M.S., et al., “Important Components of the UW Solution”, Transplantation, 49(2), 251–257, 1990.

    Google Scholar 

  24. Southard, J.H., and Belzer, F.O., “Organ Preservation”, Annu. Rev. Med., 46, 235–247, 1995.

    Google Scholar 

  25. Taylor, M.J., Elrifai, A.M., and Bailes, J.E., “Hypothermia in Relation to the Acceptable Limits of Ischemia for Bloodless Surgery”, Advances in Low-Temperature Biology, 3(1), 1–64, 1996.

    Google Scholar 

  26. Mazur, P., “The Role of Intracellular Freezing in the Death of Cells Cooled at Supraoptimal Rates”, Cryobiology, 14(3), 251–272, 1977.

    Google Scholar 

  27. Lovelock, J.E., “The Haemolysis of Human Red Blood-Cells by Freezing and Thawing”, Biochim. Biophys. Acta, 10(3), 414–426, 1953.

    Google Scholar 

  28. Taylor, M.J., Song, Y.C., and Brockbank, K.G.M., “Vitrification in Tissue Preservation”, Fuller, B.J., and Benson, L.N., eds, Life in the Frozen State, CRC Press, Boca Raton, FL, 2004, pp. 603–692.

    Google Scholar 

  29. Van Buskirk, R.G., Baust, J.M., Snyder, K.K., Mathew, A.J., and Baust, J.G., “Hypothermic Storage and Cryopreservation—Successful Short- and Long-Term Preservation of Cells and Tissues”, Bioprocess International, 2(10), 42–49, 2004.

    Google Scholar 

  30. Huang, J.S., Downes, G.L., Childress, G.L., Felts, J.M, and Belzer, F.O., “Oxidation of 14C-Labeled Substrates by Dog Kidney Cortex at 10 and 38 Degrees C”, Cryobiology, 11(5), 387–394, 1974.

    Google Scholar 

  31. Tani, M., and Neely, J.R., “Role of Intracellular Na+ in Ca2 + Overload and Depressed Recovery of Ventricular Function of Reperfused Ischemic Rat Hearts: Possible Involvement of H+-Na+ and Na+-Ca2 + Exchange”, Circ. Res., 65(4), 1045–1056, 1989.

    Google Scholar 

  32. Renlund, D.G., Gerstenblith, G., Lakatta, E.G., Jacobus, W.E., Kallman, C.H., and Weisfeldt, M.L., “Perfusate Sodium During Ischemia Modifies Post-Ischemic Functional and Metabolic Recovery in the Rabbit Heart”, J. Mol. Cell. Cardiol., 16(9), 795–801, 1984.

    Google Scholar 

  33. Neely, J.R., and Grotyohann, L.W., “Role of Glycolytic Products in Damage to Ischemic Myocardium. Dissociation of Adenosine Triphosphate Levels and Recovery of Function of Reperfused Ischemic Hearts”, Circ. Res., 55(6), 816–824, 1984.

    Google Scholar 

  34. Lyons, J.M., and Raison, J.K., “A Temperature-Induced Transition in Mitochondrial Oxidation: Contrast Between Cold and Warm Blooded Animals”, Comp. Biochem. Physiol., 37, 405–411, 1970.

    Google Scholar 

  35. Raison, J.K., “The Influence of Temperature-Induced Phase Changes on the Kinetics of Respiratory and Other Membrane-Associated Enzyme Systems”, J. Bioenerg., 4(1), 285–309, 1973.

    Google Scholar 

  36. Southard, J.H., Van der Laan, N.C., Lutz, M., Pavlock, G.S., Belzer, J.P., and Belzer, F.O., “Comparison of the Effect of Temperature on Kidney Cortex Mitochondria from Rabbit, Dog, Pig, and Human: Arrhenius Plots of ADP-Stimulated Respiration”, Cryobiology, 20(4), 395–400, 1983.

    Google Scholar 

  37. Wilson, J.M., and McMurdo, A.C., “Chilling Injury in Plants”, Morris, G.J., and Clarke, A., eds, Effects of Low Temperature on Biological Membranes, Academic Press, London, 1987, pp. 146–172.

    Google Scholar 

  38. Ricciutti, M.A., “Lysosomes and Myocardial Cellular Injury”, Am. J. Cardiol., 30(5), 498–502, 1972.

    Google Scholar 

  39. Weglicki, W.B., Owens, K., Ruth, R.C., and Sonnenblick, E.H., “Activity of Endogenous Myocardial Lipases During Incubation at Acid pH”, Cardiovasc. Res., 8(2), 237–342, 1974.

    Google Scholar 

  40. Liu., X., Engelman, R.M., Rousou, J.A., and Das, D.K., “Myocardial Reperfusion Injury During Adult Cardiac Surgery”, Das, D.K., ed., Pathophysiology of Reperfusion Injury, CRC Press, Boca Raton, FL, 1993, pp. 263–293.

    Google Scholar 

  41. de Jong, J.W., “Cardioplegia and Calcium Antagonists: A Review”, Ann. Thorac. Surg., 42(5), 593–598, 1986.

    Google Scholar 

  42. Schwertz, D.W., Halverson, J., Isaacson, T., Feinberg, H., and Palmer, J.W., “Alterations in Phospholipid Metabolism in the Globally Ischemic Rat Heart: Emphasis on Phosphoinositide Specific Phospholipase C Activity”, J. Mol. Cell. Cardiol., 19(7), 685–697, 1987.

    Google Scholar 

  43. White, B.C., Wiegenstein. J. G., and Winegar, C.D., “Brain Ischemic Anoxia: Mechanisms of Injury.” JAMA, 251(12), 1586–1590, 1984.

    Google Scholar 

  44. Jennings, R.B., and Ganote, C.E., “Mitochondrial Structure and Function in Acute Myocardial Ischemic Injury”, Circ. Res., 38(5 Suppl. 1), 180–191, 1976.

    Google Scholar 

  45. Jennings, R.B., and Ganote, C.E., “Structural Changes in Myocardium During Acute Ischemia”, Circ. Res., 35(Suppl 3), 156–172, 1974.

    Google Scholar 

  46. Clarke, D.M., Baust, J.M., Van Buskirk, R.G., and Baust, J.G., “Addition of Anticancer Agents Enhances Freezing-Induced Prostate Cancer Cell Death: Implications of Mitochondrial Involvement”, Cryobiology, 49(1), 45–61, 2004.

    Google Scholar 

  47. Baust, J.G., and Gage, A.A., “The Molecular Basis of Cryosurgery”, BJU Int., 95(9), 1187–1191, 2005.

    Google Scholar 

  48. Russotti, G., Brieva, T.A., Toner, M., and Yarmush, M.L., “Induction of Tolerance to Hypothermia By Previous Heat Shock Using Human Fibroblasts in Culture”, Cryobiology, 33(5), 567–580, 1996.

    Google Scholar 

  49. Brinkley, B.R., and Cartwright, J., Jr., “Cold-Labile and Cold-Stable Microtubules in the Mitotic Spindle of Mammalian Cells”, Ann. N. Y. Acad. Sci., 253, 428–439, 1975.

    ADS  Google Scholar 

  50. Stefanovich, P., Ezzell, R.M., Sheehan, S.J., Tompkins, R.G., Yarmush, M.L., and Toner, M., “Effects of Hypothermia on the Function, Membrane Integrity, and Cytoskeletal Structure of Hepatocytes”, Cryobiology, 32(4), 389–403, 1995.

    Google Scholar 

  51. Fuhram, G.J., and Fuhram, F.A., “Oxygen Consumption of Animals and Tissues as a Function of Temperature”, J. Gen. Physiol., 42, 215, 1959.

    Google Scholar 

  52. van't Hoff, A., Etudes sur la Dynamique Chimique, Muller, Amsterdam, 1884.

    Google Scholar 

  53. Lanir, A., Clouse, M.E., and Lee, R.G., “Liver Preservation for Transplant. Evaluation of Hepatic Energy Metabolism by 31P NMR”, Transplantation, 43(6), 786–790, 1987.

    Google Scholar 

  54. Fuller, B.J., Gower, J.D., and Green, C.J., “Free Radical Damage and Organ Preservation: Fact or Fiction? A Review of the Interrelationship Between Oxidative Stress and Physiological Ion Disbalance”, Cryobiology, 25(5), 377–393, 1988.

    Google Scholar 

  55. Stubenitsky, B.M., Ametani, M., Danielewicz, R., Southard, J.H., and Belzer, F.O., “Regeneration of ATP in Kidney Slices After Warm Ischemia and Hypothermic Preservation”, Transpl. Int., 8(4), 293–297, 1995.

    Google Scholar 

  56. Scholander, P.P., Flaff, W., Waters, V., and Irving, L., “Climatic Adaptations in Arctic and Tropical Poikilotherma”, Physiol. Zool., 26, 67–92, 1953.

    Google Scholar 

  57. Storey, K.B., and Storey, J.M., “Metabolic Rate Depression and Biochemical Adaptation in Anaerobiosis, Hibernation and Estivation”, Q. Rev. Biol., 65(2), 145–174, 1990.

    MathSciNet  Google Scholar 

  58. Mazur, P., and Cole, K.W., “Influence of Cell Concentration on the Contribution of Unfrozen Fraction and Salt Concentration to the Survival of Slowly Frozen Human Erythrocytes”, Cryobiology, 22(6), 509–536, 1985.

    Google Scholar 

  59. Baust, J.M., Van Buskirk, R., and Baust, J.G., “Cryopreservation of an Engineered Skin Equivalent: the Apoptosis Paradigm”, Advances in Heat and Mass Transfer in Biotechnology, Vol. 363, BED, HTD, ASME, New York, 1999, pp. 71–76.

    Google Scholar 

  60. Mazur, P., Leibo, S.P., and Chu, E.H., “A Two-Factor Hypothesis of Freezing Injury. Evidence from Chinese Hamster Tissue-Culture Cells”, Exp Cell Res, 71(2), 345–355, 1972.

    Google Scholar 

  61. Rhoads, L.S., Zlobinsky, Y., Van Buskirk, R.G., Baust, J.G., “Patterns of Latent Heat Liberation During Controlled Rate Cooling: Absence of Effects on the Survival of Cryopreserved Cells”, Cryo-Letters, 12, 329–338, 1991.

    Google Scholar 

  62. Franks, F., “The Properties of Aqueous Solutions at Sub-Zero Temperature”, Franks, F., and Mathias, S., eds, Biophysics of Water, John Wiley, New York, 1982, pp. 279–294.

    Google Scholar 

  63. Rall, W.F., Mazur, P., and McGrath, J.J., “Depression of the Ice-Nucleation Temperature of Rapidly Cooled Mouse Embryos by Glycerol and Dimethyl Sulfoxide”, Biophys. J., 41(1), 1–12, 1983.

    Google Scholar 

  64. Polge, C., Smith, A.U., and Parkes, A.S., “Retrieval of Spermatozoa After Vitrification and Dehydration at Low Temperature”, Nature, 164, 666–667, 1949.

    ADS  Google Scholar 

  65. Smith, A.U., “Prevention of Haemolysis During Freezing and Thawing of Red Blood-Cells”, Lancet, 2(27), 910–911, 1950.

    Google Scholar 

  66. Lovelock, J.E., and Bishop, M.W., “Prevention of Freezing Damage to Living Cells by Dimethyl Sulphoxide”, Nature, 183(4672), 1394–1395, 1959.

    ADS  Google Scholar 

  67. Borderie, V.M., Lopez, M., Lombet, A., Carvajal-Gonzalez, S., Cywiner, C., and Laroche, L., “Cryopreservation and Culture of Human Corneal Keratocytes”, Invest. Ophthalmol. Vis. Sci., 39(8), 1511–1519, 1998.

    Google Scholar 

  68. Donaldson, C., Armitage, W.J., Denning-Kendall, P.A., Nicol, A.J., Bradley, B.A., and Hows, J.M., “Optimal Cryopreservation of Human Umbilical Cord Blood”, Bone Marrow Transplant, 18(4), 725–731, 1996.

    Google Scholar 

  69. Frim, J., Snyder, R.A., McGann, L.E., and Kruuv, J., “Growth Kinetics of Cells Following Freezing in Liquid Nitrogen”, Cryobiology, 15(5), 502–516, 1978.

    Google Scholar 

  70. Zambelli, A., Poggi, G., Da Prada, G., et al., “Clinical Toxicity of Cryopreserved Circulating Progenitor Cells Infusion”, Anticancer Res., 18(6B), 4705–4708, 1998.

    Google Scholar 

  71. Williams, R.J., “The Mechanisms of Cryoprotection in the Intertidal Mollusk”, Cryobiology, 4, 250–255, 1969.

    Google Scholar 

  72. De Loecker, P., Fuller, B.J., Koptelov, V.A., Grischenko, V.I., and De Loecker, W., “Cryopreservation of Isolated Rat Hepatocytes: Effects of Iron-mediated Oxidative Stress of Metabolic Activity”, Cryobiology, 34(2), 150–156, 1997.

    Google Scholar 

  73. Mazur, P., “Freezing of Living Cells: Mechanisms and Implications”, Am. J. Physiol., 247(3 Pt 1), C125–C142, 1984.

    Google Scholar 

  74. Meryman, H.T., “The Exceeding of a Minimum Tolerable Cell Volume in Hypertonic Suspension as a Cause of Freezing Injury”, The Frozen Cell, Wolstenholme G.E.W., and O'Connor, M., eds, Ciba Foundation Symposium, Churchill, 1970, pp. 51–64.

    Google Scholar 

  75. Pegg, D.E., and Diaper, M.P., “On the Mechanism of Injury to Slowly Frozen Erythrocytes”, Biophys. J., 54(3), 471–488, 1988.

    ADS  Google Scholar 

  76. Paynter, S.J., Fuller, B.L., McGrath, J.J., and Shaw, R.W., “The Effects of Cryoprotectant Permeability on Mouse Oocytes”, Cryo-Letters, 16, 321–324, 1995.

    Google Scholar 

  77. Coger, R., and Toner, M., “Preservation Techniques for Biomaterials”, Brunzion, J.D., ed., The Biomedical Engineering Handbook, CRC Press, Boca Raton, FL, 1995, pp. 1567–1579.

    Google Scholar 

  78. Morris, C.B., “Cryopreservation of Animal and Human Cell Lines”, Methods Mol. Biol., 38, 179–187, 1995.

    Google Scholar 

  79. Eroglu, A., Russo, M.J., Bieganski, R., et al., “Intracellular Trehalose Improves the Survival of Cryopreserved Mammalian Cells”, Nat. Biotechnol., 18(2), 163–167, 2000.

    Google Scholar 

  80. Loretz, L.J., Li, A.P., Flye, M.W., and Wilson, A.G., “Optimization of Cryopreservation Procedures for Rat and Human Hepatocytes”, Xenobiotica, 19(5), 489–498, 1989.

    Google Scholar 

  81. Fowke, K.R., Behnke, J., Hanson, C., Shea, K., and Cosentino, L.M., “Apoptosis: A Method for Evaluating the Cryopreservation of Whole Blood and Peripheral Blood Mononuclear Cells”, J. Immunol. Methods, 244(1–2), 139–144, 2000.

    Google Scholar 

  82. Martin, H., Bournique, B., Sarsat, .P., Albaladejo, V., and Lerche-Langrand, C., “Cryopreserved Rat Liver Slices: A Critical Evaluation of Cell Viability, Histological Integrity, and Drug-Metabolizing Enzymes”, Cryobiology, 41(2), 135–144, 2000.

    Google Scholar 

  83. Searle, J., Kerr, J.F., and Bishop, C.J., “Necrosis and Apoptosis: Distinct modes of Cell Death With Fundamentally Different Significance”, Pathol. Annu., 17(Pt 2), 229–259, 1982.

    Google Scholar 

  84. Walker, N.I., Harmon, B.V., Gobe, G.C., and Kerr, J.F., “Patterns of Cell Death”, Methods Achiev. Exp. Pathol., 13, 18–54, 1988.

    Google Scholar 

  85. Kerr, J.F., “Shrinkage Necrosis of Adrenal Cortical Cells”, J. Pathol., 107(3), 217–219, 1972.

    Google Scholar 

  86. Columbano, A., “Cell Death: Current Difficulties in Discriminating Apoptosis From Necrosis in the Context of Pathological Processes in vivo”, J. Cell Biochem., 58(2), 181–190, 1995.

    Google Scholar 

  87. Habibovic, S., Hrgovic, Z., Bukvic, I., and Hrgovic, I., “Molecular Mechanisms in Apoptosis”, Med. Arh., 54(1), 33–40, 2000.

    Google Scholar 

  88. Peters, G., and Wirth, C.J., “The Current State of Meniscal Allograft Transplantation and Replacement”, Knee, 10(1), 19–31, 2003.

    Google Scholar 

  89. Wyllie, A.H., Kerr, J.F., and Currie, A.R., “Cell Death: The Significance of Apoptosis”, Int. Rev. Cytol., 68, 251–306, 1980.

    Google Scholar 

  90. Alnemri, E.S., “Mammalian Cell Death Proteases: A Family of Highly Conserved Aspartate Specific Cysteine Proteases”, J. Cell Biochem., 64(1), 33–42, 1997.

    Google Scholar 

  91. Cohen, G.M., “Caspases: The Executioners of Apoptosis”, Biochem. J., 326(Pt 1), 1–16, 1997.

    Google Scholar 

  92. Kanzler, S., and Galle, P.R. “Apoptosis and the Liver”, Semin Cancer Biol, 10(3), 173–184, 2000.

    Google Scholar 

  93. Sheikh, M.S., and Fornace, A.J., Jr., “Death and Decoy Receptors and p53-Mediated Apoptosis”, Leukemia, 14(8), 1509–1513, 2000.

    Google Scholar 

  94. Gewirtz, D.A., “Growth Arrest and Cell Death in the Breast Tumor Cell in Response to Ionizing Radiation and Chemotherapeutic Agents Which Induce DNA Damage”, Breast Cancer Res. Treat., 62(3), 223–235, 2000.

    Google Scholar 

  95. Nicotera, P., Leist, M., Fava, E., Berliocchi, L., and Volbracht, C., “Energy Requirement for Caspase Activation and Neuronal Cell Death”, Brain Pathol., 10(2), 276–282, 2000.

    Google Scholar 

  96. Xue, D., Shaham, S., and Horvitz, H.R., “The Caenorhabditis elegans Cell-Death Protein CED-3 is a Cysteine Protease With Substrate Specificities Similar to Those of the Human CPP32 Protease”, Genes Dev., 10(9), 1073–1083, 1996.

    Google Scholar 

  97. Yin, X.M., “Signal Transduction Mediated by Bid, a Pro-Death Bcl-2 Family Proteins, Connects the Death Receptor and Mitochondria Apoptosis Pathways”, Cell Res., 10(3), 161–167, 2000.

    Google Scholar 

  98. Hengartner, M.O., and Horvitz, H.R., “C. elegans Cell Survival Gene ced-9 Encodes a Functional Homolog of the Mammalian Proto-Oncogene bcl-2Cell, 76(4), 665–676, 1994.

    Google Scholar 

  99. Leist, M., Single, B., Castoldi, A.F., Kuhnle, S., and Nicotera, P., “Intracellular Adenosine Triphosphate (ATP) Concentration: A Switch in the Decision Between Apoptosis and Necrosis”, J. Exp. Med., 185(8), 1481–1486, 1997.

    Google Scholar 

  100. Fink, K.B., Andrews, L.J., Butler, W.E., et al., “Reduction of Post-Traumatic Brain Injury and Free Radical Production by Inhibition of the Caspase-1 Cascade”, Neuroscience, 94(4), 1213–1218, 1999.

    Google Scholar 

  101. Emery, E., Aldana, P., Bunge, M.B., et al., “Apoptosis After Traumatic Human Spinal Cord Injury”, J. Neurosurg., 89(6), 911–920, 1998.

    Google Scholar 

  102. Elsasser, A., Suzuki, K., and Schaper, J., “Unresolved Issues Regarding the Role of Apoptosis in the Pathogenesis of Ischemic Injury and Heart Failure”, J. Mol. Cell Cardiol., 32(5), 711–724, 2000.

    Google Scholar 

  103. Brune, B., von Knethen, A., and Sandau, K.B., “Nitric Oxide and Its Role in Apoptosis”, Eur. J. Pharmacol., 351(3), 261–272, 1998.

    Google Scholar 

  104. Saikumar, P., Dong, Z., Weinberg, J.M., and Venkatachalam, M.A., “Mechanisms of Cell Death in Hypoxia/Reoxygenation Injury”, Oncogene, 17(25), 3341–3349, 1998.

    Google Scholar 

  105. Reutelingsperger, C.P., and van Heerde, W.L., “Annexin V, The Regulator of Phosphatidylserine-Catalyzed Inflammation and Coagulation During Apoptosis”, Cell Mol. Life Sci., 53(6), 527–532, 1997.

    Google Scholar 

  106. Condo, I., and Testi, R., “Intracellular Mediators of Programmed Cell Death initiated at the Cell Surface Receptor”, Fas. Transpl. Int, 13(Suppl 1), S3–S6, 2000.

    Google Scholar 

  107. Blankenberg, F.G., Katsikis, P.D., and Tait, J.F., et al., “In vivo Detection and Imaging of Phosphatidylserine Expression During Programmed Cell Death”, Proc Natl Acad Sci U S A, 95(11), 6349–6354, 1998.

    ADS  Google Scholar 

  108. Li, P., Nijhawan, D., Budihardjo, I., et al., “Cytochrome c and dATP-Dependent Formation of Apaf-1/caspase-9 Complex Initiates an Apoptotic Protease Cascade”, Cell, 91(4), 479–489, 1997.

    Google Scholar 

  109. Kroemer, G., Dallaporta, B., and Resche-Rigon, M., “The Mitochondrial Death/Life Regulator in Apoptosis and Necrosis”, Annu. Rev. Physiol., 60, 619–642, 1998.

    Google Scholar 

  110. Bratton, S.B., and Cohen, G.M., “Caspase Cascades in Chemically-Induced Apoptosis”, Adv. Exp. Med. Biol., 500, 407–420, 2001.

    Google Scholar 

  111. Bras, M., Queenan, B., and Susin, S.A., “Programmed Cell Death via Mitochondria: Different Modes of Dying”, Biochemistry (Mosc.), 70(2), 231–239, 2005.

    Google Scholar 

  112. Zimmermann, K.C., and Green, D.R., “How Cells Die: Apoptosis Pathways”, J. Allergy Clin. Immunol., 108(4 Suppl.), S99–S103, 2001.

    Google Scholar 

  113. Thornberry, N.A., and Lazebnik, Y., “Caspases: Enemies Within”, Science 281(5381), 1312–1316, 1998.

    Google Scholar 

  114. Liu, C.Y., Liu, Y.H., Lin, S.M., et al., “Apoptotic Neutrophils Undergoing Secondary Necrosis Induce Human Lung Epithelial Cell Detachment”, J. Biomed. Sci., 10(6 Pt 2), 746–756, 2003.

    Google Scholar 

  115. Jaeschke, H., and Lemasters, J.J., “Apoptosis Versus Oncotic Necrosis in Hepatic Ischemia/Reperfusion Injury”, Gastroenterology, 125(4), 1246–1257, 2003.

    Google Scholar 

  116. Jurisicova, A., Varmuza, S., and Casper, R.F., “Involvement of Programmed Cell Death in Preimplantation Embryo Demise”, Hum. Reprod. Update, 1(6), 558–566, 1995.

    Google Scholar 

  117. Borderie, V.M., and Laroche, L., “Ultrastructure of Cultured and Cryopreserved Human Corneal Keratocytes”, Cornea, 18(5), 589–594, 1999.

    Google Scholar 

  118. Schmidt-Mende, J., Hellstrom-Lindberg, E., Joseph, B., and Zhivotovsky, B., “Freezing Induces Artificial Cleavage of Apoptosis-Related Proteins in Human Bone Marrow Cells”, J. Immunol. Methods, 245(1–2), 91–94, 2000.

    Google Scholar 

  119. Villalba, R., Pena, J., Luque, E., Villalba, J.M., and Gomez-Villagran, J.L., “Keratocyte Injury in Human Corneas Cryopreserved Under Standard Conditions”, Cell Tissue Bank, 5(4), 201–204, 2004.

    Google Scholar 

  120. Paasch, U., Sharma, R.K., Gupta, A.K., et al., “Cryopreservation and Thawing is Associated With Varying Extent of Activation of Apoptotic Machinery in Subsets of Ejaculated Human Spermatozoa”, Biol. Reprod., 71(6), 1828–1837, 2004.

    Google Scholar 

  121. Men, H., Monson, R.L., Parrish, J.J., and Rutledge, J.J., “Degeneration of Cryopreserved Bovine Oocytes via Apoptosis During subsequent Culture”, Cryobiology, 47(1), 73–81, 2003.

    Google Scholar 

  122. Sarkar, S. Kalia, V., and Montelaro, R.C., “Caspase-Mediated Apoptosis and Cell Death of Rhesus Macaque CD4+ T-Cells Due to Cryopreservation of Peripheral Blood Mononuclear Cells Can Be Rescued by Cytokine Treatment After Thawing”, Cryobiology, 47(1), 44–58, 2003.

    Google Scholar 

  123. Riccio, E.K., Neves, I., Banic, D.M., et al., “Cryopreservation of Peripheral Blood Mononuclear Cells Does Not Significantly Affect the Levels of Spontaneous Apoptosis After 24-h Culture”, Cryobiology, 45(2), 127–134, 2002.

    Google Scholar 

  124. Baust, J.M., Cosentino, M., Meeks, E., Baer, J., Van Buskirk, R.G., and Baust, J.G., “Apoptotic Cell Ceath Contributes Significantly to Peripheral Blood Mononuclear Cells Cryopreservation Failure”, Cryobiology, 51(3), 354–355, 2005.

    Google Scholar 

  125. Duru, N.K., Morshedi, M.S., Schuffner, A., and Oehninger, S., “Cryopreservation-Thawing of Fractionated Human Spermatozoa is Associated with Membrane Phosphatidylserine Externalization and Not DNA Fragmentation”, J. Androl., 22(4), 646–651, 2001.

    Google Scholar 

  126. Schuurhuis, G.J., Muijen, M.M., Oberink, J.W., de Boer, F., Ossenkoppele, G.J., and Broxterman, H.J., “Large Populations of Non-Clonogenic Early Apoptotic CD34-Positive Cells Are Present in Frozen-Thawed Peripheral Blood Stem Cell Transplants”, Bone Marrow Transplant, 27(5), 487–498, 2001.

    Google Scholar 

  127. Lund, P.K., Westvik, A.B., Joo, G.B., Ovstebo, R., Haug, K.B., and Kierulf, P., “Flow Cytometric Evaluation of Apoptosis, Necrosis and Recovery When Culturing Monocytes”, J. Immunol. Method, 252(1–2), 45–55, 2001.

    Google Scholar 

  128. Van Buskirk, R.G. “Viability and Functional Assays Used to Assess Preservation Efficacy: The Multiple Endpoint/Tier Approach”, Biopreservation, Baust, J.G., and Baust, J.M., eds, T&F Informa, Boca Raton, FL, 2006, in press.

    Google Scholar 

  129. Vogel, M.J., Baust, J.M., Van Buskirk, R.G., and Baust, J.G., “Apoptotic Cascades Are Activated Following Cryopreservation”, Cryobiology, 41(4), 390, 2000.

    Google Scholar 

  130. Vogel, M.J., Baust, J.M., Van Buskirk, R.G., and Baust, J.G., “Proteomic Profiling Following Cryopreservation: Evidence of a Complex Set of Biomolecular Events Influencing Survival”, Cryobiology, 47(3), 259, 2003.

    Google Scholar 

  131. Baust, J.M., “Properties of Cells & Tissues Influencing Preservation Outcome: Molecular Basis of Preservation Induced Cell Death”, Advances in Biopreservation, Baust, J.G., and Baust, J.M., eds. T&F Informa, Boca Raton, FL, 2006, in press.

    Google Scholar 

  132. Li, A.P., Gorycki, P.D., Hengstler, J.G., et al., “Present Status of the Application of Cryopreserved Hepatocytes in the Evaluation of Xenobiotics: Consensus of an International Expert Panel”, Chem. Biol. Interact., 121(1), 117–123, 1999.

    Google Scholar 

  133. Guillouzo, A., Rialland, L., Fautrel, A., and Guyomard, C., “Survival and Function of Isolated Hepatocytes After Cryopreservation”, Chem. Biol. Interact., 121(1), 7–16, 1999.

    Google Scholar 

  134. Rajotte, R.V., “Cryopreservation of Pancreatic Islets”, Transplant Proc., 26(2), 395–396, 1994.

    Google Scholar 

  135. Yokomuro, H., Mickle, D.A., Weisel, R.D., and Li, R.K., “Optimal Conditions for Heart Cell Cryopreservation for Transplantation”, Mol. Cell. Biochem., 242(1–2), 109–114, 2003.

    Google Scholar 

  136. Dannie, E. “Peripheral Blood Stem Cell Transplantation, Part 1”, Nurs. Stand., 11(10), 43–45, 1996.

    Google Scholar 

  137. Hubel, A., “Parameters of Cell Freezing: Implications for the Cryopreservation of Stem Cells”, Transfus. Med. Rev., 11(3), 224–233, 1997.

    Google Scholar 

  138. Anzar, M., He, L., Buhr, M.M., Kroetsch, T.G., and Pauls, K.P., “Sperm Apoptosis in Fresh and Cryopreserved Bull Semen Detected by Flow Cytometry and Its Relationship With Fertility”, Biol. Reprod., 66(2), 354–360, 2002.

    Google Scholar 

  139. Duru, N.K., Morshedi, M., Schuffner, A., and Oehninger, S., “Semen Treatment with Progesterone and/or Acetyl-l-Carnitine Does Not Improve Sperm Motility or Membrane Damage After Cryopreservation-Thawing”, Fertil. Steril., 74(4), 715–720, 2000.

    Google Scholar 

  140. Sosef, M.N., Baust, J.M., Sugimachi, K., Fowler, A., Tompkins, R.G., and Toner, M., “Cryopreservation of Isolated Primary Rat Hepatocytes: Enhanced Survival and Long-Term Hepatospecific Function”, Ann. Surg., 241(1), 125–133, 2005.

    Google Scholar 

  141. Mathew, A.J., Baust, J.M., Van Buskirk, R.G., and Baust, J.G., “Cell Preservation in Reparative and Regenerative Medicine: Evolution of Individualized Solution Composition”, Tissue Eng., 10(11–12), 1662–1671, 2004.

    Google Scholar 

  142. Taylor, M.J., Bailes, J.E., Elrifai, A.M., et al., “A New Solution For Life Without Blood. Asanguineous Low-Flow Perfusion of a Whole-Body Perfusate During 3 Hours of Cardiac Arrest and Profound Hypothermia”, Circulation, 91(2), 431–444, 1995.

    Google Scholar 

  143. Sugimachi, K., Sosef, M.N., Baust, J.M., Fowler, A., Tompkins, R.G., and Toner, M., “Long-Term Function of Cryopreserved Rat Hepatocytes in a Coculture System”, Cell Transplant, 13(2), 187–195, 2004.

    Google Scholar 

  144. Van Buskirk. R.G., Snyder, K.K., Baust, J.G., Mathew, A.J., and Baust, J.M., “Cryopreservation: It's Not Just About Cell Yield”, Bioprocess International, 3(4), 64–74, 2005.

    Google Scholar 

  145. Mathew, A., Van Buskirk, R.G., and Baust, J.G., “Improved Hypothermic Preservation of Human Renal Cells Through Suppression of Both Apoptosis and Necrosis”, Cell Preservation Technology, 1(4), 239–253, 2003.

    Google Scholar 

  146. Baicu, S.C., and Taylor, M.J., “Acid-Base Buffering in Organ Preservation Solutions as a Function of Temperature: New Parameters for Comparing Buffer Capacity and Efficiency”, Cryobiology, 45(1), 33–48, 2002.

    Google Scholar 

  147. Stylianou, J., Vowels, M., and Hadfield, K., “CryoStor Significantly Improves Cryopreservation of Haematopoetic Stem Cells”, HSC, 7, 117, 2005.

    Google Scholar 

  148. Snyder, K.K., Baust, J.M., Van Buskirk, R.G., and Baust, J.G., “Improved Cryopreservation of Vascular Tissue”, Cryobiology, 51(3), 357–358, 2005.

    Google Scholar 

  149. Baust, J.M., Van Buskirk, R., and Baust, J.G., “Modulation of the Cryopreservation Cap: Elevated Survival With Reduced Dimethyl Sulfoxide Concentration”, Cryobiology, 45(2), 97–108, 2002.

    Google Scholar 

  150. Robilotto, A.T., Baust, J.M., Van Buskirk, R., and Baust, J.G., “Calpain Activation Influences Cryopreservation Outcome”, Cell Preservation Technology, 2006, in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Baust, J., Baust, J. (2007). A Paradigm Shift in Cryopreservation: Molecular-Based Advances to Improve Outcome. In: Timmerhaus, K.D., Reed, R.P. (eds) Cryogenic Engineering. International Cryogenics Monograph Series. Springer, New York, NY. https://doi.org/10.1007/0-387-46896-X_14

Download citation

Publish with us

Policies and ethics