Skip to main content

Correlations between Quantitative Measures of Genome Evolution, Expression and Function

  • Chapter
Discovering Biomolecular Mechanisms with Computational Biology

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

In addition to multiple, complete genome sequences, genome-wide data on biological properties of genes, such as knockout effect, expression levels, protein-protein interactions, and others, are rapidly accumulating. Numerous attempts were made by many groups to examine connections between these properties and quantitative measures of gene evolution. The questions addressed pertain to the most fundamental aspects of biology: what determines the effect of the knockout of a given gene on the phenotype (in particular, is it essential or not) and the rate of a gene’s evolution and how are the phenotypic properties and evolution connected? Many significant correlations were detected, e.g., positive correlation between the tendency of a gene to be lost during evolution and sequence evolution rate, and negative correlations between each of the above measures of evolutionary variability and expression level or the phenotypic effect of gene knockout. However, most of these correlations are relatively weak and explain a small fraction of the variation present in the data. We propose that the majority of the relationships between the phenotypic (“input”) and evolutionary (“output”) variables can be described with a single, composite variable, the genes “social status in the genomic community”, which reflects the biological role of the gene and its mode of evolution. “High-status” genes, involved in house-keeping processes, are more likely to be higher and broader expressed, to have more interaction partners, and to produce lethal or severely impaired knockout mutants. These genes also tend to evolve slower and are less prone to gene loss across various taxonomic groups. “Low-status” genes are expected to be weakly expressed, have fewer interaction partners, and exhibit narrower (and less coherent) phyletic distribution. On average, these genes evolve faster and are more often lost during evolution than high-status genes. The “gene status” notion may serve as a generator of null hypotheses regarding the connections between phenotypic and evolutionary parameters associated with genes. Any deviation from the expected pattern calls for attention—to the quality of the data, the nature of the analyzed relationship, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Steinmetz LM, Davis RW. High-density arrays and insights into genome function. Biotechnol Genet Eng Rev 2000; 17:109–146.

    PubMed  CAS  Google Scholar 

  2. Steinmetz LM, Davis RW. Maximizing the potential of functional genomics. Nat Rev Genet 2004; 5(3):190–201.

    Article  PubMed  CAS  Google Scholar 

  3. Hurst LD, Pal C, Lercher MJ. The evolutionary dynamics of eukaryotic gene order. Nat Rev Genet 2004; 5(4):299–310.

    Article  PubMed  CAS  Google Scholar 

  4. Wolfe KH, Li WH. Molecular evolution meets the genomics revolution. Nat Genet 2003; 33(Suppl):255–265.

    Article  PubMed  CAS  Google Scholar 

  5. Fraser HB, Hirsh AE, Steinmetz LM et al. Evolutionary rate in the protein interaction network. Science 2002; 296(5568):750–752.

    Article  PubMed  CAS  Google Scholar 

  6. Jordan IK, Wolf YI, Koonin EV. No simple dependence between protein evolution rate and the number of protein-protein interactions: Only the most prolific interactors tend to evolve slowly. BMC Evol Biol 2003; 3(1):1.

    Article  PubMed  Google Scholar 

  7. Fraser HB, Wall DP, Hirsh AE. A simple dependence between protein evolution rate and the number of protein-protein interactions. BMC Evol Biol 2003; 3(1):11.

    Article  PubMed  Google Scholar 

  8. Fraser HB, Hirsh AE. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level. BMC Evol Biol 2004; 4(1):13.

    Article  PubMed  Google Scholar 

  9. Bloom JD, Adami C. Apparent dependence of protein evolutionary rate on number of interactions is linked to biases in protein-protein interactions data sets. BMC Evol Biol 2003; 3(1):21.

    Article  PubMed  Google Scholar 

  10. Bloom JD, Adami C. Evolutionary rate depends on number of protein-protein interactions independently of gene expression level: Response. BMC Evol Biol 2004; 4(1):14.

    Article  PubMed  Google Scholar 

  11. Duret L, Mouchiroud D. Determinants of substitution rates in mammalian genes: Expression pattern affects selection intensity but not mutation rate. Mol Biol Evol 2000; 17(1):68–74.

    PubMed  CAS  Google Scholar 

  12. Pal C, Papp B, Hurst LD. Highly expressed genes in yeast evolve slowly. Genetics 2001; 158(2):927–931.

    PubMed  CAS  Google Scholar 

  13. Zhang P, Gu Z, Li WH. Different evolutionary patterns between young duplicate genes in the human genome. Genome Biol 2003; 4(9):R56.

    Article  PubMed  Google Scholar 

  14. Zhang L, Li WH. Mammalian housekeeping genes evolve more slowly than tissue-specific genes. Mol Biol Evol 2004; 21(2):236–239.

    Article  PubMed  Google Scholar 

  15. Krylov DM, Wolf YI, Rogozin IB et al. Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. Genome Res 2003; 13(10):2229–2235.

    Article  PubMed  CAS  Google Scholar 

  16. Jordan IK, Marino-Ramirez L, Wolf YI et al. Conservation and coevolution in the scale-free human gene coexpression network. Mol Biol Evol 2004; 21(11):2058–2070.

    Article  PubMed  CAS  Google Scholar 

  17. Novichkov PS, Omelchenko MV, Gelfand MS et al. Genome-wide molecular clock and horizontal gene transfer in bacterial evolution. J Bacteriol 2004; 186(19):6575–6585.

    Article  PubMed  CAS  Google Scholar 

  18. Hirsh AE, Fraser HB. Protein dispensability and rate of evolution. Nature 2001; 411(6841):1046–1049.

    Article  PubMed  CAS  Google Scholar 

  19. Jordan IK, Rogozin IB, Wolf YI et al. Essential genes are more evolutionarily conserved than are nonessential genes in bacteria. Genome Res 2002; 12(6):962–968.

    Article  PubMed  CAS  Google Scholar 

  20. Yang J, Gu Z, Li WH. Rate of protein evolution versus fitness effect of gene deletion. Mol Biol Evol 2003; 20(5):772–774.

    Article  PubMed  Google Scholar 

  21. Fisher RA. The possible modification of the response of the wild type to recurrent mutations. Am Nat 1928; 62:115–126.

    Article  Google Scholar 

  22. Haldane JBS. The part played by recurrent mutation in evolution. Am Nat 1933; 67:5–19.

    Article  Google Scholar 

  23. Ohno S. Evolution by gene duplication. Berlin-Heidelberg-New York: Springer-Verlag, 1970.

    Google Scholar 

  24. Lynch M, Force A. The probability of duplicate gene preservation by subfunctionalization. Genetics 2000; 154(1):459–473.

    PubMed  CAS  Google Scholar 

  25. Kondrashov FA, Rogozin IB, Wolf YI et al. Selection in the evolution of gene duplications. Genome Biol 2002; 3(2):RESEARCH0008.

    Article  PubMed  Google Scholar 

  26. Rodin SN, Riggs AD. Epigenetic silencing may aid evolution by gene duplication. J Mol Evol 2003; 56(6):718–729.

    Article  PubMed  CAS  Google Scholar 

  27. Moore RC, Purugganan MD. The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 2003; 100(26):15682–15687.

    Article  PubMed  CAS  Google Scholar 

  28. Albert VA, Oppenheimer DG, Lindqvist C. Pleiotropy, redundancy and the evolution of flowers. Trends Plant Sci 2002; 7(7):297–301.

    Article  PubMed  CAS  Google Scholar 

  29. Lynch M, Conery JS. The evolutionary fate and consequences of duplicate genes. Science 2000; 290(5494):1151–1155.

    Article  PubMed  CAS  Google Scholar 

  30. Nembaware V, Crum K, Kelso J et al. Impact of the presence of paralogs on sequence divergence in a set of mouse-human orthologs. Genome Res 2002; 12(9):1370–1376.

    Article  PubMed  CAS  Google Scholar 

  31. Jordan IK, Wolf YI, Koonin EV. Duplicated genes evolve slower than singletons despite the initial rate increase. BMC Evol Biol 2004; 4(1):22.

    Article  PubMed  Google Scholar 

  32. Conant GC, Wagner A. Asymmetric sequence divergence of duplicate genes. Genome Res 2003; 13(9):2052–2058.

    Article  PubMed  CAS  Google Scholar 

  33. Kellis M, Birren BW, Lander ES. Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 2004; 428(6983):617–624.

    Article  PubMed  CAS  Google Scholar 

  34. Wagner A. Asymmetric functional divergence of duplicate genes in yeast. Mol Biol Evol 2002; 19(10):1760–1768.

    PubMed  CAS  Google Scholar 

  35. Davis JC, Petrov DA. Preferential duplication of conserved proteins in eukaryotic genomes. PLoS Biol 2004; 2(3):E55.

    Article  PubMed  Google Scholar 

  36. Gu Z, Steinmetz LM, Gu X et al. Role of duplicate genes in genetic robustness against null mutations. Nature 2003; 421(6918):63–66.

    Article  PubMed  CAS  Google Scholar 

  37. Hahn MW, Conant GC, Wagner A. Molecular evolution in large genetic networks: Does connectivity equal constraint? J Mol Evol 2004; 58(2):203–211.

    Article  PubMed  CAS  Google Scholar 

  38. Rocha EP, Danchin A. An analysis of determinants of amino acids substitution rates in bacterial proteins. Mol Biol Evol 2004; 21(1):108–116.

    Article  PubMed  CAS  Google Scholar 

  39. Kimura M. The neutral theory of molecular evolution. Cambridge: Cambridge University Press, 1983.

    Google Scholar 

  40. Cover TM, Thomas JA. Elements of information theory. Boston: Wiley-Interscience, 1991.

    Google Scholar 

  41. Kamath RS, Fraser AG, Dong Y et al. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421(6920):231–237.

    Article  PubMed  CAS  Google Scholar 

  42. Giaever G, Chu AM, Ni L et al. Functional profiling of the Saccharomyces cerevisiae genome. Nature 2002; 418(6896):387–391.

    Article  PubMed  CAS  Google Scholar 

  43. Koonin EV, Fedorova ND, Jackson JD et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. Genome Biol 2004; 5(2):R7.

    Article  PubMed  Google Scholar 

  44. Duda RO, Hart PE, Stork DG. Pattern classification. Boston: Wiley-Interscience, 2000.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Wolf, Y.I., Carmel, L., Koonin, E.V. (2006). Correlations between Quantitative Measures of Genome Evolution, Expression and Function. In: Discovering Biomolecular Mechanisms with Computational Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-36747-0_12

Download citation

Publish with us

Policies and ethics