Skip to main content

Scaling Laws in the Functional Content of Genomes

Fundamental Constants of Evolution?

  • Chapter
Power Laws, Scale-Free Networks and Genome Biology

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huynen M, van Nimwegen E. The frequency distribution of gene family sizes in complete genomes. Mol Biol Evol 1998; 15:583–589.

    Google Scholar 

  2. Gerstein M. A structural census of genomes: Comparing bacterial, eukaryotic, and archael genomes in terms of protein structure. J Mol Biol 1997; 274:562–576.

    Article  Google Scholar 

  3. Luscombe NM, Qian J, Zhang Z et al. The dominance of the population by a selected few: Power-law behavior applies to a wide variety of genomic properties. Genome Biol 2002; 3(8).

    Google Scholar 

  4. Koonin EV, Wolf YI, Karev GP. The structure of the protein universe and genome evolution. Nature 2002; 420:218–222.

    Article  ADS  Google Scholar 

  5. Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 2000; 403:623–627.

    Article  ADS  Google Scholar 

  6. Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactions. PNAS USA 2001; 98:4569–4574.

    Article  ADS  Google Scholar 

  7. Maslov S, Sneppen K. Specificity and stability in topology of protein networks. Science 2002; 296:910–913.

    Article  ADS  Google Scholar 

  8. Stuart JM, Segal E, Koller D et al. A gene-coexpression network for global discovery of conserved genetic modules. Science 2003; 302:249–255.

    Article  ADS  Google Scholar 

  9. Guelzim N, Bottani S, Bourgine P et al. Topological and causal structure of the yeast transcriptional regulatory network. Nat Genet 2002; 31:60–63.

    Article  Google Scholar 

  10. Milo R, Shen-Orr S, Itzkovitz S et al. Network motifs: Simple building blocks of complex networks. Science 2002; 298:824–827.

    Article  ADS  Google Scholar 

  11. Jeong H, Tombor B, Albert R et al. The large-scale organization of metabolic networks. Nature 2000; 407:651–654.

    Article  ADS  Google Scholar 

  12. Wagner A, Fell D. The small world inside large metabolic networks. Proc Roy Soc London Series B 2001; 268:1803–1810.

    Article  Google Scholar 

  13. van Nimwegen E. Scaling laws in the functional content of genomes. Trends in Genet. 2003; 19:479–484.

    Article  Google Scholar 

  14. The gene ontology consortium. Gene ontology: Tool for the unification of biology. Nat Genet 2000; 25:25–29.

    Article  Google Scholar 

  15. Croft LJ, Lercher MJ, Gagen MJ et al. Is prokaryotic complexity limited by accelerated growth in regulatory overhead. Genome Biology 2003; 5:P2.

    Article  Google Scholar 

  16. Cherry JL. Genome size and operon content. J theor Biol 2003; 221:401–410.

    Article  Google Scholar 

  17. Joliffe IT. Principle component analysis. New York: Springer-Verlag, 1986.

    Google Scholar 

  18. Apweiler R, Attwood TK, Bairoch A et al. The interpro database, an integrated documentation resource for protein families, domains and functional sites. Nucl Acids Res 2001; 29:37–40.

    Article  Google Scholar 

  19. Apweiler R, Biswas M, Fleischmann W et al. Proteome analysis database: Online application of interpro and clustr for the functional classification of proteins in whole genomes. Nucl Acids Res 2001; 29:44–48.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

van Nimwegen, E. (2006). Scaling Laws in the Functional Content of Genomes. In: Power Laws, Scale-Free Networks and Genome Biology. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33916-7_14

Download citation

Publish with us

Policies and ethics