Skip to main content

Keratin Intermediate Filaments and Diseases of the Skin

  • Chapter
Intermediate Filaments

Abstract

Aquestion that still challenges cell and tissue biologists is that of the driving forces that have selected for and conserved the numerous intermediate filament proteins in vertebrates. We are only beginning to understand the functions of this family of cyto-skeleton structures and we have very few experimental tools for testing comparative functions of these proteins in a satisfactory way. A major turning point came with the discoveries that mutations in keratin intermediate filament genes were responsible for a large number of inherited skin fragility disorders. These disease links showed unequivocally that intermediate filament proteins, at least in barrier epithelia like skin, provide essential stress resilience for cells in tissues. The keratin genes account for three quarters of all the intermediate filament genes identified in the human genome, and it seems highly likely that any function attributable these structural proteins will also be important for the nonkeratin intermediate filaments. Once the stress resistance function of intermediate filaments is taken as a fact, rather than a persistent speculation, this knowledge can guide further experimental analysis and design to allow us to at last move closer to understanding the biology of these enigmatic cytoskeleton filaments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonifas JM, Rothman AL, Epstein Jr EH. Epidermolysis bullosa simplex: Evidence in two families for keratin gene abnormalities. Science 1991; 254(5035):1202–1205.

    Article  PubMed  CAS  Google Scholar 

  2. Vassar R, Coulombe PA, Degenstein L et al Mutant keratin expression in transgenic mice causes marked abnormalities resembling a human genetic skin disease. Cell 1991; 64(2):365–380.

    Article  PubMed  CAS  Google Scholar 

  3. Lane EB, Rugg EL, Navsaria H et al. A mutation in the conserved helix termination peptide of keratin 5 in hereditary skin blistering. Nature 1992; 356(6366):244–246.

    Article  PubMed  CAS  Google Scholar 

  4. Rugg EL, McLean WH, Lane EB et al. A functional “knockout” of human keratin 14. Genes Dev 1994; 8(21):2563–2573.

    Article  PubMed  CAS  Google Scholar 

  5. Chan Y, Anton-Lamprecht I, Yu QC et al. A human keratin 14 “knockout”: The absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev 1994; 8(21):2574–2587.

    Article  PubMed  CAS  Google Scholar 

  6. Jonkman MF, Heeres K, Pas HH et al. Effects of keratin 14 ablation on the clinical and cellular phenotype in a kindred with recessive epidermolysis bullosa simplex. J Invest Dermatol 1996; 107(5):764–769.

    Article  PubMed  CAS  Google Scholar 

  7. Lloyd C, Yu QC, Cheng J et al. The basal keratin network of stratified squamous epithelia: Defining K15 function in the absence of K14. J Cell Biol 1995; 129(5):1329–1344.

    Article  PubMed  CAS  Google Scholar 

  8. Coulombe PA, Hutton ME, Letai A et al. Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: Genetic and functional analyses. Cell 1991; 66(6):1301–1311.

    Article  PubMed  CAS  Google Scholar 

  9. Letai A, Coulombe PA, McCormick MB et al. Disease severity correlates with position of keratin point mutations in patients with epidermolysis bullosa simplex. Proc Natl Acad Sci USA 1993; 90(8):3197–3201.

    Article  PubMed  CAS  Google Scholar 

  10. Rugg EL, Morley SM, Smith FJ et al. Missing links: Weber-Cockayne keratin mutations implicate the L12 linker domain in effective cytoskeleton function. Nat Genet 1993; 5(3):294–300.

    Article  PubMed  CAS  Google Scholar 

  11. Lane EB. Keratin diseases. Curr Opin Genet Dev 1994; 4(3):412–418.

    Article  PubMed  CAS  Google Scholar 

  12. Smith F. The molecular genetics of keratin disorders. Am J Clin Dermatol 2003; 4(5):347–364.

    Article  PubMed  Google Scholar 

  13. Lane EB, McLean WHI. Keratins and skin disorders. J Pathol 2004; 204(4):355–366.

    Article  PubMed  CAS  Google Scholar 

  14. Rothnagel JA, Fisher MP, Axtell SM et al. A mutational hot spot in keratin 10 (KRT 10) in patients with epidermolytic hyperkeratosis. Hum Mol Genet 1993; 2(12):2147–2150.

    Article  PubMed  CAS  Google Scholar 

  15. Kimonis V, DiGiovanna JJ, Yang JM et al. A mutation in the V1 end domain of keratin 1 in nonepidermolytic palmar-plantar keratoderma. J Invest Dermatol 1994; 103(6):764–769.

    Article  PubMed  CAS  Google Scholar 

  16. Sprecher E, Ishida-Yamamoto A, Becker OM et al. Evidence for novel functions of the keratin tail emerging from a mutation causing ichthyosis hystrix. J Invest Dermatol 2001; 116(4):511–519.

    Article  PubMed  CAS  Google Scholar 

  17. Bonifas JM, Matsumura K, Chen MA et al. Mutations of keratin 9 in two families with palmoplantar epidermolytic hyperkeratosis. J Invest Dermatol 1994; 103(4)4740–477.

    Article  Google Scholar 

  18. Navsaria HA, Swensson O, Ratnavel RC et al. Ultrastructural changes resulting from keratin-9 gene mutations in two families with epidermolytic palmoplantar keratoderma. J Invest Dermatol 1995; 104(3):425–429.

    Article  PubMed  CAS  Google Scholar 

  19. Rothnagel JA, Wojcik S, Liefer KM et al. Mutations in the 1A domain of keratin 9 in patients with epidermolytic palmoplantar keratoderma. J Invest Dermatol 1995; 104(3):430–433.

    Article  PubMed  CAS  Google Scholar 

  20. Kremer H, Zeeuwen P, McLean WH et al. Ichthyosis bullosa of Siemens is caused by mutations in the keratin 2e gene. J Invest Dermatol 1994; 103(3):286–289.

    Article  PubMed  CAS  Google Scholar 

  21. Rothnagel JA, Traupe H, Wojcik S et al. Mutations in the rod domain of keratin 2e in patients with ichthyosis bullosa of Siemens. Nat Genet 1994; 7(4):485–490.

    Article  PubMed  CAS  Google Scholar 

  22. Arin MJ, Longley MA, Epstein Jr EH et al. A novel mutation in the 1A domain of keratin 2e in ichthyosis bullosa of Siemens. J Invest Dermatol 1999; 112(3):380–382.

    Article  PubMed  CAS  Google Scholar 

  23. Collin C, Moll R, Kubicka S et al. Characterization of human cytokeratin 2, an epidermal cytoskeletal protein synthesized late during differentiation. Exp Cell Res 1992; 202(1):132–141.

    Article  PubMed  CAS  Google Scholar 

  24. Rugg EL, McLean WH, Allison WE et al. A mutation in the mucosal keratin K4 is associated with oral white sponge nevus. Nat Genet 1995; 11(4):450–452.

    Article  PubMed  CAS  Google Scholar 

  25. Richard G, DeLaurenzi V, Didona B et al. Keratin-13 point mutation underlies the hereditary mucosal epithelia disorder white sponge nevus. Nature Genet 1995; 11(4):453–455.

    Article  PubMed  CAS  Google Scholar 

  26. Terrinoni A, Rugg EL, Lane EB et al. A novel mutation in the keratin 13 gene causing oral white sponge nevus. J Dent Res 2001; 80(3):919–923.

    PubMed  CAS  Google Scholar 

  27. Shibuya Y, Zhang J, Yokoo S et al. Constitutional mutation of keratin 13 gene in familial white sponge nevus. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003; 96(5):561–565.

    PubMed  Google Scholar 

  28. Corden LD, Swensson O, Swensson B et al. Molecular genetics of Meesmann’s corneal dystrophy: Ancestral and novel mutations in keratin 12 (K12) and complete sequence of the human KRT 12 gene. Exp Eye Res 2000; 70(1):41–49.

    Article  PubMed  CAS  Google Scholar 

  29. McLean WH, Rugg EL, Lunny DP et al. Keratin 16 and keratin 17 mutations cause pachyonychia congenita. Nat Genet 1995; 9(3):273–278.

    Article  PubMed  CAS  Google Scholar 

  30. Bowden PE, Haley JL, Kansky A et al. Mutation of a type II keratin gene (K6a) in pachyonychia congenita. Nat Genet 1995; 10(3):363–365.

    Article  PubMed  CAS  Google Scholar 

  31. Smith FJ, Corden LD, Rugg EL et al. Missense mutations in keratin 17 cause either pachyonychia congenita type 2 or a phenotype resembling steatocystoma multiplex. J Invest Dermatol 1997; 108(2):220–223.

    Article  PubMed  CAS  Google Scholar 

  32. Smith FJ, Jonkman MF, van Goor H et al. A mutation in human keratin K6b produces a phenocopy of the K17 disorder pachyonychia congenita type 2. Hum Mol Genet 1998; 7(7):1143–1148.

    Article  PubMed  CAS  Google Scholar 

  33. Covello SP, Smith FJ, Sillevis Smitt JH et al. Keratin 17 mutations cause either steatocystoma multiplex or pachyonychia congenita type 2. Br J Dermatol 1998; 139(3):4750–480.

    Article  Google Scholar 

  34. Winter H, Rogers MA, Gebhardt M et al. A new mutation in the type II hair cortex keratin hHb1 involved in the inherited hair disorder monilethrix. Hum Genet 1997; 101(2):165–169.

    Article  PubMed  CAS  Google Scholar 

  35. Winter H, Labreze C, Chapalain V et al. A variable monilethrix phenotype associated with a novel mutation, Glu402Lys, in the helix termination motif of the type II hair keratin hHb1. J Invest Dermatol 1998; 111(1):169–172.

    Article  PubMed  CAS  Google Scholar 

  36. Winter H, Vabres P, Larregue M et al. A novel missense mutation, A118E, in the helix initiation motif of the type II hair cortex keratin hHb6, causing monilethrix. Hum Hered 2000; 50(5):322–324.

    Article  PubMed  CAS  Google Scholar 

  37. Baribault H, Price J, Miyai K et al. Mid-gestational lethality in mice lacking keratin 8. Genes Dev 1993; 7(7A):1191–1202.

    Article  PubMed  CAS  Google Scholar 

  38. Ku NO, Wright TL, Terrault NA et al. Mutation of human keratin 18 in association with cryptogenic cirrhosis. J Clin Invest 1997; 99(1):19–23.

    Article  PubMed  CAS  Google Scholar 

  39. Cavestro GM, Frulloni L, Nouvenne A et al. Association of keratin 8 gene mutation with chronic pancreatitis. Dig Liver Dis 2003; 35(6):416–420.

    Article  PubMed  CAS  Google Scholar 

  40. Owens DW, Wilson NJ, Hill AJ et al. Human keratin 8 mutations that disturb filament assembly observed in inflammatory bowel disease patients. J Cell Sci 2004; 117 (Pt 10):1989–1999.

    Article  PubMed  CAS  Google Scholar 

  41. Yoon KH, Yoon M, Moir RD et al. Insights into the dynamic properties of keratin intermediate filaments in living epithelial cells. J Cell Biol 2001; 153(3):503–516.

    Article  PubMed  CAS  Google Scholar 

  42. Vikstrom KL, Lim SS, Goldman RD et al. Steady state dynamics of intermediate filament net works. J Cell Biol 1992; 118(1):121–129.

    Article  PubMed  CAS  Google Scholar 

  43. Helfand BT, Chang L, Goldman RD. The dynamic and motile properties of intermediate filaments. Annu Rev Cell Dev Biol 2003; 19:445–467.

    Article  PubMed  CAS  Google Scholar 

  44. Prahlad V, Yoon M, Moir RD et al. Rapid movements of vimentin on microtubule tracks: Kinesin-dependent assembly of intermediate filament networks. J Cell Biol 1998; 143(1):159–170.

    Article  PubMed  CAS  Google Scholar 

  45. Liovic M, Mogensen MM, Prescott AR et al. Observation of keratin particles showing fast bidirectional movement colocalized with microtubules. J Cell Sci 2003; 116 (Pt 8):1417–1427.

    Article  PubMed  CAS  Google Scholar 

  46. Horwitz B, Kupfer H, Eshhar Z et al. Reorganization of arrays of prekeratin filaments during mitosis. Immunofluorescence microscopy with multiclonal and monoclonal prekeratin antibodies. Exp Cell Res 1981; 134(2):281–290.

    Article  PubMed  CAS  Google Scholar 

  47. Lane EB, Goodman SL, Trejdosiewicz LK. Disruption of the keratin filament network during epithelial cell division. EMBO J 1982; 1(11):1365–1372.

    PubMed  CAS  Google Scholar 

  48. Klymkowsky MW, Miller RH, Lane EB. Morphology, behavior, and interaction of cultured epithelial cells after the antibody-induced disruption of keratin filament organization. J Cell Biol 1983; 96(2):494–509.

    Article  PubMed  CAS  Google Scholar 

  49. Tolle HG, Weber K, Osborn M. Microinjection of monoclonal antibodies specific for one inter mediate filament protein in cells containing multiple keratins allow insight into the composition of particular 10 nm filaments. Eur J Cell Biol 1985; 38(2):234–244.

    PubMed  CAS  Google Scholar 

  50. Waseem A, Karsten U, Leigh IM et al. Conformational changes in the rod domain of human keratin 8 following heterotypic association with keratin 18 and its implication for filament stability. Biochemistry 2004; 43(5):1283–1295.

    Article  PubMed  CAS  Google Scholar 

  51. Ishida-Yamamoto A, McGrath JA, Chapman SJ et al. Epidermolysis bullosa simplex (Dowling-Meara type) is a genetic disease characterized by an abnormal keratin-filament network involving keratins K5 and K14. J Invest Dermatol 1991; 97(6):959–968.

    Article  PubMed  CAS  Google Scholar 

  52. Stumptner C, Omary MB, Fickert P et al. Hepatocyte cytokeratins are hyperphosphorylated at multiple sites in human alcoholic hepatitis and in a mallory body mouse model. Am J Pathol 2000; 156(1):77–90.

    PubMed  CAS  Google Scholar 

  53. Chou CF, Omary MB. Mitotic arrest with anti-microtubule agents or okadaic acid is associated with increased glycoprotein terminal GlcNAc’s. J Cell Sci 1994; 107 (Pt 7):1833–1843.

    PubMed  CAS  Google Scholar 

  54. Blankson H, Holen I, Seglen PO. Disruption of the cytokeratin cytoskeleton and inhibition of hepatocytic autophagy by okadaic acid. Exp Cell Res 1995; 218(2):522–530.

    Article  PubMed  CAS  Google Scholar 

  55. Strnad P, WindofFer R, Leube RE. Induction of rapid and reversible cytokeratin filament network remodeling by inhibition of tyrosine phosphatases. J Cell Sci 2002; 115 (Pt 21):4133–4148.

    Article  PubMed  CAS  Google Scholar 

  56. Ando S, Tanabe K, Gonda Y et al. Domain-and sequence-specific phosphorylation of vimentin induces disassembly of the filament structure. Biochemistry 1989; 28(7):2974–2979.

    Article  PubMed  CAS  Google Scholar 

  57. Inagaki M, Gonda Y, Matsuyama M et al. Intermediate filament reconstitution in vitro. The role of phosphorylation on the assembly-disassembly of desmin. J Biol Chem 1988; 263(12):5970–5978.

    PubMed  CAS  Google Scholar 

  58. Liao J, Ku NO, Omary MB. Stress, apoptosis, and mitosis induce phosphorylation of human keratin 8 at Ser-73 in tissues and cultured cells. J Biol Chem 1997; 272(28):17565–17573.

    Article  PubMed  CAS  Google Scholar 

  59. Owens DW, Lane EB. The quest for the function of simple epithelial keratins. Bioessays 2003; 25(8):748–758.

    Article  PubMed  CAS  Google Scholar 

  60. Russell D, Andrews PD, James J et al. Mechanical stress induces profound remodelling of keratin filaments and cell junctions in epidermolysis bullosa simplex keratinocytes. J Cell Sci 2004; 117 (Pt 22):5233–5243.

    Article  PubMed  CAS  Google Scholar 

  61. Fawcett DW. The Cell. 2nd ed. WB. Saunders, 1981.

    Google Scholar 

  62. Lane EB, Klymkowsky MW. Epithelial tonofilaments: Investigating their form and function using monoclonal antibodies. Cold Spring Harb Symp Quant Biol 1982; 46 (Pt 1):387–402.

    PubMed  Google Scholar 

  63. D’Alessandro M, Russell D, Morley SM et al. Keratin mutations of epidermolysis bullosa simplex alter the kinetics of stress response to osmotic shock. J Cell Sci 2002; 115 (Pt 22):4341–4351.

    Article  CAS  Google Scholar 

  64. Helmke BP, Goldman RD, Davies PF. Rapid displacement of vimentin intermediate filaments in living endothelial cells exposed to flow. Circ Res 2000; 86(7):745–752.

    PubMed  CAS  Google Scholar 

  65. Helmke BP, Thakker DB, Goldman RD et al. Spatiotemporal analysis of flow-induced intermediate filament displacement in living endothelial cells. Biophys J 2001; 80(1):184–194.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Birgitte Lane, E. (2006). Keratin Intermediate Filaments and Diseases of the Skin. In: Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/0-387-33781-4_5

Download citation

Publish with us

Policies and ethics