Skip to main content

The Search for Specific Keratin Functions

The Case of Keratin K10

  • Chapter
Intermediate Filaments

Abstract

The main function of the epidermis is to provide an essential barrier between the individual and the environment. This primarily stems from a finely regulated process of differentiation occurring in this stratified epithelium. Keratins are the most abundant proteins in this tissue and provide resistance against mechanical stress to the epidermal cells. Moreover, characteristic changes in the pattern of expression of this family of proteins takes place during the process of differentiation in epidermis. The K5/K14 pair, characteristic of basal proliferative cells, is switched off at the differentiation onset, and the expression of keratin pair K1/K10 concomitantly starts. In addition, under several pathological or physiological hyperproliferative situations K1/K10 pair expression is down-regulated. These facts have led to the assumption that specific functions can be exerted by each specific keratin polypeptide. Here we will summarize the recent and past effort to elucidate these particular roles. Collectively, the data have indicated particular roles for keratin K10, as a possible modulator of epidermal homeostasis contributing to the modulation of several signaling pathways in keratinocytes. The possibility that these functions are probably not unique among the large family of keratins will open new exciting and interesting scientific fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fuchs E, Byrne C. The epidermis: Rising to the surface. Curr Opin Genet Dev 1994; 4(5):725–736.

    Article  PubMed  CAS  Google Scholar 

  2. Fuchs E, Raghavan S. Getting under the skin of epidermal morphogenesis. Nat Rev Genet 2002; 3(3):199–209.

    Article  PubMed  CAS  Google Scholar 

  3. Byrne C, Tainsky M, Fuchs E. Programming gene expression in developing epidermis. Development 1994; 120(9):2369–2383.

    PubMed  CAS  Google Scholar 

  4. Kopan R, Fuchs E. A new look into an old problem: Keratins as tools to investigate determination, morphogenesis, and differentiation in skin. Genes Dev 1989; 3(1):1–15.

    Article  PubMed  CAS  Google Scholar 

  5. Fuchs E, Green H. Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 1980; 19(4):1033–1042.

    Article  PubMed  CAS  Google Scholar 

  6. Weiss RA, Eichner R, Sun TT. Monoclonal antibody analysis of keratin expression in epidermal diseases: A 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol 1984; 98(4):1397–1406.

    Article  PubMed  CAS  Google Scholar 

  7. Takahashi K, Coulombe PA. Defining a region of the human keratin 6a gene that confers inducible expression in stratified epithelia of transgenic mice. J Biol Chem 1997; 272(18):11979–11985.

    Article  PubMed  CAS  Google Scholar 

  8. Paladini RD, Takahashi K, Bravo NS et al. Onset of reepithelialization after skin injury correlates with a reorganization of keratin filaments in wound edge keratinocytes: Defining a potential role for keratin 16. J Cell Biol 1996; 132(3):381–397.

    Article  PubMed  CAS  Google Scholar 

  9. McGowan K, Coulombe PA. The wound repair-associated keratins 6, 16, and 17. Insights into the role of intermediate filaments in specifying keratinocyte cytoarchitecture. Subcell Biochem 1998; 31:173–204.

    PubMed  CAS  Google Scholar 

  10. Fuchs E, Coulombe PA. Of mice and men: Genetic skin diseases of keratin. Cell 1992; 69(6):899–902.

    Article  PubMed  CAS  Google Scholar 

  11. Takahashi K, Coulombe PA, Miyachi Y. Using transgenic models to study the pathogenesis of keratin-based inherited skin diseases. J Dermatol Sci 1999; 21(2):73–95.

    Article  PubMed  CAS  Google Scholar 

  12. Irvine AD, McLean WH. Human keratin diseases: The increasing spectrum of disease and subtlety of the phenotype-genotype correlation. Br J Dermatol 1999; 140(5):815–828.

    Article  PubMed  CAS  Google Scholar 

  13. McLean WH, Lane EB. Intermediate filaments in disease. Curr Opin Cell Biol 1995; 7(1):118–125.

    Article  PubMed  CAS  Google Scholar 

  14. Lane EB. Keratin diseases. Curr Opin Genet Dev 1994; 4(3):412–418.

    Article  PubMed  CAS  Google Scholar 

  15. Porter RM, Lane EB. Phenotypes, genotypes and their contribution to understanding keratin function. Trends Genet 2003; 19(5):278–285.

    Article  PubMed  CAS  Google Scholar 

  16. Coulombe PA, Omary MB. ‘Hard’ and’ soft’ principles defining the structure, function and regulation of keratin intermediate filaments. Curr Opin Cell Biol 2002; 14(1):110–122.

    Article  PubMed  CAS  Google Scholar 

  17. Paramio JM, Jorcano JL. Beyond structure: Do intermediate filaments modulate cell signalling? Bioessays 2002; 24(9):836–844.

    Article  PubMed  CAS  Google Scholar 

  18. Kartasova T, Roop DR, Holbrook KA et al. Mouse differentiation-specific keratins 1 and 10 require a preexisting keratin scaffold to form a filament network. J Cell Biol 1993; 120(5):1251–1261.

    Article  PubMed  CAS  Google Scholar 

  19. Kartasova T, Roop DR, Yuspa SH. Relationship between the expression of differentiation-specific keratins 1 and 10 and cell proliferation in epidermal tumors. Mol Carcinog 1992; 6(1):18–25.

    Article  PubMed  CAS  Google Scholar 

  20. Kreis TE, Geiger B, Schmid E et al. De novo synthesis and specific assembly of keratin filaments in nonepithelial cells after microinjection of mRNA for epidermal keratin. Cell 1983; 32(4):1125–1137.

    Article  PubMed  CAS  Google Scholar 

  21. Hatzfeld M, Franke WW. Pair formation and promiscuity of cytokeratins: Formation in vitro of heterotypic complexes and intermediate-sized filaments by homologous and heterologous recombinations of purified polypeptides. J Cell Biol 1985; 101(5 Pt 1):1826–1841.

    Article  PubMed  CAS  Google Scholar 

  22. Blessing M, Jorcano JL, Franke WW. Enhancer elements directing cell-type-specific expression of cytokeratin genes and changes of the epithelial cytoskeleton by transfections of hybrid cytokeratin genes. EMBO J 1989; 8(1):117–126.

    PubMed  CAS  Google Scholar 

  23. Paramio JM, Jorcano JL. Assembly dynamics of epidermal keratins K1 and K10 in transfected cells. Exp Cell Res 1994; 215(2):319–331.

    Article  PubMed  CAS  Google Scholar 

  24. Kulesh DA, Oshima RG. Cloning of the human keratin 18 gene and its expression in nonepithelial mouse cells. Mol Cell Biol 1988; 8(4):1540–1550.

    PubMed  CAS  Google Scholar 

  25. Kulesh DA, Cecena G, Darmon YM et al. Posttranslational regulation of keratins: Degradation of mouse and human keratins 18 and 8. Mol Cell Biol 1989; 9(4):1553–1565.

    PubMed  CAS  Google Scholar 

  26. Peters B, Kirfel J, Bussow H et al. Complete cytolysis and neonatal lethality in keratin 5 knockout mice reveal its fundamental role in skin integrity and in epidermolysis bullosa simplex. Mol Biol Cell 2001; 12(6):1775–1789.

    PubMed  CAS  Google Scholar 

  27. Rugg EL, McLean WH, Lane EB et al. A functional “knockout” of human keratin 14. Genes Dev 1994; 8(21):2563–2573.

    Article  PubMed  CAS  Google Scholar 

  28. Chan Y, Anton-Lamprecht I, Yu QC et al. A human keratin 14 “knockout”: The absence of K14 leads to severe epidermolysis bullosa simplex and a function for an intermediate filament protein. Genes Dev 1994; 8(21):2574–2587.

    Article  PubMed  CAS  Google Scholar 

  29. Lu X, Quinlan RA, Steel JB et al. Network incorporation of intermediate filament molecules differs between preexisting and newly assembling filaments. Exp Cell Res 1993; 208(1):218–225.

    Article  PubMed  CAS  Google Scholar 

  30. Paramio JM, Casanova ML, Alonso A et al. Keratin intermediate filament dynamics in cell heterokaryons reveals diverse behaviour of different keratins. J Cell Sci 1997; 110 (Pt 9):1099–1111.

    PubMed  CAS  Google Scholar 

  31. Paramio JM. A role for phosphorylation in the dynamics of keratin intermediate filaments. Eur J Cell Biol 1999; 78(1):33–43.

    PubMed  CAS  Google Scholar 

  32. Paramio JM, Casanova ML, Segrelles C et al. Modulation of cell proliferation by cytokeratins K10 and K16. Mol Cell Biol 1999; 19(4):3086–3094.

    PubMed  CAS  Google Scholar 

  33. Balsitis SJ, Sage J, Duensing S et al. Recapitulation of the effects of the human papillomavirus Type 16 E7 oncogene on mouse epithelium by somatic Rb deletion and detection of pRb-independent effects of E7 in Vivo. Mol Cell Biol 2003; 23(24):9094–9103.

    Article  PubMed  CAS  Google Scholar 

  34. Ruiz S, Santos M, Segrelles C et al. Unique and overlapping functions of pRb and p107 in the control of proliferation and differentiation in epidermis. Development 2004; 131(11):2737–2748.

    Article  PubMed  CAS  Google Scholar 

  35. Quintanilla M, Brown K, Ramsden M et al. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature 1986; 322(6074):78–80.

    Article  PubMed  CAS  Google Scholar 

  36. Lee KY, Ladha MH, McMahon C et al. The retinoblastoma protein is linked to the activation of Ras. Mol Cell Biol 1999; 19(11):7724–7732.

    PubMed  CAS  Google Scholar 

  37. Mittnacht S, Paterson H, Olson MF et al. Ras signalling is required for inactivation of the tumour suppressor pRb cell-cycle control protein. Curr Biol 1997; 7(3):219–221.

    Article  PubMed  CAS  Google Scholar 

  38. Paramio JM, Segrelles C, Ruiz S et al. Inhibition of protein kinase B (PKB) and PKCzeta mediates keratin K10-induced cell cycle arrest. Mol Cell Biol 2001; 21(21):7449–7459.

    Article  PubMed  CAS  Google Scholar 

  39. Diehl JA, Cheng M, Roussel MF et al. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev 1998; 12(22):3499–3511.

    PubMed  CAS  Google Scholar 

  40. Basso AD, Solit DB, Munster PN et al. Ansamycin antibiotics inhibit Akt activation and cyclin D expression in breast cancer cells that overexpress HER2. Oncogene 2002; 21(8):1159–1166.

    Article  PubMed  CAS  Google Scholar 

  41. Leis H, Segrelles C, Ruiz S et al. Expression, localization, and activity of glycogen synthase kinase 3beta during mouse skin tumorigenesis. Mol Carcinog 2002; 35(4):180–185.

    Article  PubMed  CAS  Google Scholar 

  42. Roop DR, Krieg TM, Mehrel T et al. Transcriptional control of high molecular weight keratin gene expression in multistage mouse skin carcinogenesis. Cancer Res 1988; 48(11):3245–3252.

    PubMed  CAS  Google Scholar 

  43. Blessing M, Schirmacher P, Kaiser S. Overexpression of bone morphogenetic protein-6 (BMP-6) in the epidermis of transgenic mice: Inhibition or stimulation of proliferation depending on the pattern of transgene expression and formation of psoriatic lesions. J Cell Biol 1996; 135(1):227–239.

    Article  PubMed  CAS  Google Scholar 

  44. Bailleul B, Surani MA, White S et al. Skin hyperkeratosis and papilloma formation in transgenic mice expressing a ras oncogene from a suprabasal keratin promoter. Cell 1990; 62(4):697–708.

    Article  PubMed  CAS  Google Scholar 

  45. Fuchs E, Esteves RA, Coulombe PA. Transgenic mice expressing a mutant keratin 10 gene reveal the likely genetic basis for epidermolytic hyperkeratosis. Proc Natl Acad Sci USA 1992; 89(15):6906–6910.

    Article  PubMed  CAS  Google Scholar 

  46. Cheng J, Syder AJ, Yu QC et al. The genetic basis of epidermolytic hyperkeratosis: A disorder of differentiation-specific epidermal keratin genes. Cell 1992; 70(5):811–819.

    Article  PubMed  CAS  Google Scholar 

  47. Bickenbach JR, Longley MA, Bundman DS et al. A transgenic mouse model that recapitulates the clinical features of both neonatal and adult forms of the skin disease epidermolytic hyperkeratosis. Differentiation 1996; 61(2):129–139.

    Article  PubMed  CAS  Google Scholar 

  48. Rothnagel JA, Fisher MP, Axtell SM et al. A mutational hot spot in keratin 10 (KRT 10) in patients with epidermolytic hyperkeratosis. Hum Mol Genet 1993; 2(12):2147–2150.

    Article  PubMed  CAS  Google Scholar 

  49. Rothnagel JA, Greenhalgh DA, Wang XJ et al. Transgenic models of skin diseases. Arch Dermatol 1993; 129(11):1430–1436.

    Article  PubMed  CAS  Google Scholar 

  50. Rothnagel JA, Dominey AM, Dempsey LD et al. Mutations in the rod domains of keratins 1 and 10 in epidermolytic hyperkeratosis. Science 1992; 257(5073):1128–1130.

    Article  PubMed  CAS  Google Scholar 

  51. Blessing M, Ruther U, Franke WW. Ectopic synthesis of epidermal cytokeratins in pancreatic islet cells of transgenic mice interferes with cytoskeletal order and insulin production. J Cell Biol 1993; 120(3):743–755.

    Article  PubMed  CAS  Google Scholar 

  52. Santos M, Ballestin C, Garcia-Martin R et al. Delays in malignant tumor development in transgenic mice by forced epidermal keratin 10 expression in mouse skin carcinomas. Mol Carcinog 1997; 20(1):3–9.

    Article  PubMed  CAS  Google Scholar 

  53. Ramirez A, Vidal M, Bravo A et al. Analysis of sequences controlling tissue-specific and hyperproliferation-related keratin 6 gene expression in transgenic mice. DNA Cell Biol 1998; 17(2):177–185.

    PubMed  Google Scholar 

  54. Ramirez A, Vidal M, Bravo A et al. A 5′-upstream region of a bovine keratin 6 gene confers tissue-specific expression and hyperproliferation-related induction in transgenic mice. Proc Natl Acad Sci USA 1995; 92(11):4783–4787.

    Article  PubMed  CAS  Google Scholar 

  55. Ramirez A, Bravo A, Jorcano JL et al. Sequences 5′ of the bovine keratin 5 gene direct tissue-and cell-type-specific expression of a lacZ gene in the adult and during development. Differentiation 1994; 58(1):53–64.

    PubMed  CAS  Google Scholar 

  56. Ramirez A, Milot E, Ponsa I et al. Sequence and chromosomal context effects on variegated expression of keratin 5/lacZ constructs in stratified epithelia of transgenic mice. Genetics 2001; 158(1):341–350.

    PubMed  CAS  Google Scholar 

  57. Santos M, Paramio JM, Bravo A et al. The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem 2002; 277(21):19122–19130.

    Article  PubMed  CAS  Google Scholar 

  58. Segrelles C, Ruiz S, Perez P et al. Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene 2002; 21(1):53–64.

    Article  PubMed  CAS  Google Scholar 

  59. Porter RM, Leitgeb S, Melton DW et al. Gene targeting at the mouse cytokeratin 10 locus: Severe skin fragility and changes of cytokeratin expression in the epidermis. J Cell Biol 1996; 132(5):925–936.

    Article  PubMed  CAS  Google Scholar 

  60. Reichelt J, Bauer C, Porter R et al. Out of balance: Consequences of a partial keratin 10 knockout. J Cell Sci 1997; 110 (Pt 18):2175–2186.

    PubMed  CAS  Google Scholar 

  61. Reichelt J, Bussow H, Grund C et al. Formation of a normal epidermis supported by increased stability of keratins 5 and 14 in keratin 10 null mice. Mol Biol Cell 2001; 12(6):1557–1568.

    PubMed  CAS  Google Scholar 

  62. Reichelt J, Magin TM. Hyperproliferation, induction of c-Myc and 14-3-3sigma, but no cell fragility in keratin-10-null mice. J Cell Sci 2002; 115 (Pt 13):2639–2650.

    PubMed  CAS  Google Scholar 

  63. Rodriguez-Puebla ML, LaCava M, Conti CJ. Cyclin D1 overexpression in mouse epidermis increases cyclin-dependent kinase activity and cell proliferation in vivo but does not affect skin tumor development. Cell Growth Differ 1999; 10(7):467–472.

    PubMed  CAS  Google Scholar 

  64. Pelengaris S, Littlewood T, Khan M et al. Reversible activation of c-Myc in skin: Induction of a complex neoplastic phenotype by a single oncogenic lesion. Mol Cell 1999; 3(5):565–577.

    Article  PubMed  CAS  Google Scholar 

  65. Schmidt-Ullrich R, Aebischer T, Hulsken J et al. Requirement of NF-kappaB/Rel for the development of hair follicles and other epidermal appendices. Development 2001; 128(19):3843–3853.

    PubMed  CAS  Google Scholar 

  66. Courtois G, Israel A. NF-kappa B defects in humans: The NEMO/incontinentia pigmenti connection. Sci STKE 2000; 2000(58):E1.

    Article  Google Scholar 

  67. Hu Y, Baud V, Oga T et al. IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 2001; 410(6829):710–714.

    Article  PubMed  CAS  Google Scholar 

  68. Takeda K, Takeuchi O, Tsujimura T et al. Limb and skin abnormalities in mice lacking IKKalpha. Science 1999; 284(5412):313–316.

    Article  PubMed  CAS  Google Scholar 

  69. Bell S, Degitz K, Quirling M et al. Involvement of NF-kappaB signalling in skin physiology and disease. Cell Signal 2003; 15(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  70. Kaufman CK, Fuchs E. It’s got you covered. NF-kappaB in the epidermis. J Cell Biol 2000; 149(5):999–1004.

    Article  PubMed  CAS  Google Scholar 

  71. Santos M, Perez P, Segrelles C et al. Impaired NF-kappa B activation and increased production of tumor necrosis factor alpha in transgenic mice expressing keratin K10 in the basal layer of the epidermis. J Biol Chem 2003; 278(15):13422–13430.

    Article  PubMed  CAS  Google Scholar 

  72. Santos M, Bravo A, Lopez C et al. Severe abnormalities in the oral mucosa induced by suprabasal expression of epidermal keratin K10 in transgenic mice. J Biol Chem 2002; 277(38):35371–35377.

    Article  PubMed  CAS  Google Scholar 

  73. Komine M, Rao LS, Freedberg IM et al. Interleukin-1 induces transcription of keratin K6 in human epidermal keratinocytes. J Invest Dermatol 2001; 116(2):330–338.

    Article  PubMed  CAS  Google Scholar 

  74. Cheng J, Turksen K, Yu QC et al. Cachexia and graft-vs.-host-disease-type skin changes in keratin promoter-driven TNF alpha transgenic mice. Genes Dev 1992; 6(8):1444–1456.

    Article  PubMed  CAS  Google Scholar 

  75. Pasparakis M, Courtois G, Hafner M et al. TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 2002; 417(6891):861–866.

    Article  PubMed  CAS  Google Scholar 

  76. Turksen K, Kupper T, Degenstein L et al. Interleukin 6: Insights to its function in skin by overexpression in transgenic mice. Proc Natl Acad Sci USA 1992; 89(11):5068–5072.

    Article  PubMed  CAS  Google Scholar 

  77. Basile JR, Zacny V, Munger K. The cytokines tumor necrosis factor-alpha (TNF-alpha ) and TNF-related apoptosis-inducing ligand differentially modulate proliferation and apoptotic pathways in human keratinocytes expressing the human papillomavirus-16 E7 oncoprotein. J Biol Chem 2001; 276(25):22522–22528.

    Article  PubMed  CAS  Google Scholar 

  78. Basile JR, Eichten A, Zacny V et al. NF-kappaB-mediated induction of p21(Cipl/Wafl) by tumor necrosis factor alpha induces growth arrest and cytoprotection in normal human keratinocytes. Mol Cancer Res 2003; 1(4):262–270.

    PubMed  CAS  Google Scholar 

  79. Nicolas M, Wolfer A, Raj K et al. Notchl functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33(3):416–421.

    Article  PubMed  CAS  Google Scholar 

  80. Yamamoto N, Tanigaki K, Han H et al. Notch/RBP-J signaling regulates epidermis/hair fate determination of hair follicular stem cells. Curr Biol 2003; 13(4):333–338.

    Article  PubMed  CAS  Google Scholar 

  81. Okuyama R, Nguyen BC, Talora C et al. High commitment of embryonic keratinocytes to terminal differentiation through a Notch 1-caspase 3 regulatory mechanism. Dev Cell 2004; 6(4):551–562.

    Article  PubMed  CAS  Google Scholar 

  82. Thelu J, Rossio P, Favier B. Notch signalling is linked to epidermal cell differentiation level in basal cell carcinoma, psoriasis and wound healing. BMC Dermatol 2002; 2(1):7.

    Article  PubMed  Google Scholar 

  83. Nickoloff BJ, Qin JZ, Chaturvedi V et al. Jagged-1 mediated activation of notch signaling induces complete maturation of human keratinocytes through NF-kappaB and PPARgamma. Cell Death Differ 2002; 9(8):842–855.

    Article  PubMed  CAS  Google Scholar 

  84. Rangarajan A, Talora C, Okuyama R et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20(13):3427–3436.

    Article  PubMed  CAS  Google Scholar 

  85. Lefort K, Dotto GP. Notch signaling in the integrated control of keratinocyte growth/differentiation and tumor suppression. Semin Cancer Biol 2004; 14(5):374–386.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Santos, M., Segrelles, C., Ruiz, S., Fernanda Lara, M., Paramio, J.M. (2006). The Search for Specific Keratin Functions. In: Intermediate Filaments. Springer, Boston, MA. https://doi.org/10.1007/0-387-33781-4_10

Download citation

Publish with us

Policies and ethics