Skip to main content

How the Hedgehog Outfoxed the Crab

Interference with HEDGEHOG-GLI Signaling as Anti-Cancer Therapy?

  • Chapter
Hedgehog-Gli Signaling in Human Disease

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ruiz i Altaba A, Stecca B, Sanchez P. Hedgehog-Gli signaling in brain tumors: Stem cells and paradevelopmental programs in cancer. Cancet Lett 2004; 204:145–57.

    Article  CAS  Google Scholar 

  2. Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10:789–99.

    Article  PubMed  CAS  Google Scholar 

  3. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature 1980; 287:795–801.

    Article  PubMed  CAS  Google Scholar 

  4. Mohler J, Vani K. Molecular organization and embryonic expression of the hedgehog gene involved in cell-cell communication in segmental patterning of Drosophila. Development 1992; 115:957–71.

    PubMed  CAS  Google Scholar 

  5. Lee JJ, von Kessler DP, Parks S et al. Secretion and localized transcription suggest a role in positional signaling for products of the segmentation gene hedgehog. Cell 1992; 71:33–50.

    Article  PubMed  CAS  Google Scholar 

  6. Tabata T, Eaton S, Kornberg TB. The Drosophila hedgehog gene is expressed specifically in posterior compartment cells and is a target of engrailed regulation. Genes Dev 1992; 6:2635–45.

    Article  PubMed  CAS  Google Scholar 

  7. Riddle RD, Johnson RL, Laufer E et al. Sonic hedgehog mediates the polarizing activity of the ZPA. Cell 1993; 75:1401–16.

    Article  PubMed  CAS  Google Scholar 

  8. Krauss S, Concordet JP, Ingham PW. A functionally conserved homolog of the Drosophila segment polarity gene hh is expressed in tissues with polarizing activity in zebrafish embryos. Cell 1993; 75:1431–44.

    Article  PubMed  CAS  Google Scholar 

  9. Echelard Y, Epstein DJ, St-Jacques B et al. Sonic hedgehog, a member of a family of putative signaling molecules, is implicated in the regulation of CNS polarity. Cell 1993; 75:1417–30.

    Article  PubMed  CAS  Google Scholar 

  10. Roelink H, Augsburger A, Heemskerk J et al. Floor plate and motor neuron induction by vhh-1, a vertebrate homolog of hedgehog expressed by the notochord. Cell 1994; 76:761–75.

    Article  PubMed  CAS  Google Scholar 

  11. Jessell TM. Neuronal specification in the spinal cord: Inductive signals and transcriptional codes. Nat Rev Genet 2000; 1:20–29.

    Article  PubMed  CAS  Google Scholar 

  12. Ingham PW, McMahon AP. Hedgehog signaling in animal development: Paradigms and principles. Genes Dev 2001; 15:3059–3087.

    Article  PubMed  CAS  Google Scholar 

  13. Ruiz i Altaba A, Nguyen V, Palma V. The emergent design of the neural tube: Prepattern, SHH morphogen and GLI code. Curr Opin Genet Dev 2003; 13:513–521.

    Article  PubMed  CAS  Google Scholar 

  14. Lum L, Beachy PA. The Hedgehog response network: Sensors, switches, and routers. Science 2004; 304:1755–9.

    Article  PubMed  CAS  Google Scholar 

  15. Hahn H, Wicking C, Zaphiropoulous PG et al. Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 1996; 85:841–851.

    Article  PubMed  CAS  Google Scholar 

  16. Johnson RL, Rothman AL, Xie J et al. Human homolog of patched, a candidate gene for the basal cell nevus syndrome. Science 1996; 272:1668–1671.

    Article  PubMed  CAS  Google Scholar 

  17. Gorlin RJ. Nevoid basal cell carcinoma (Gorlin) syndrome. Genet Med 2004; 6:530–9.

    Article  PubMed  Google Scholar 

  18. Dahmane N, Lee J, Robins P et al. Activation of the transcription factor Gli1 and the Sonic hedgehog signalling pathway in skin tumours. Nature 1997; 389:876–881.

    Article  PubMed  CAS  Google Scholar 

  19. Lee J, Platt KA, Censullo P et al. Gli1 is a target of Sonic hedgehog that induces ventral neural tube development. Development 1997; 124:2537–2352.

    PubMed  CAS  Google Scholar 

  20. Goodrich LV, Johnson RL, Milenkovic L et al. Conservation of the hedgehog/patched signaling pathway from flies to mice: Induction of a mouse patched gene by Hedgehog. Genes Dev 1996; 10:301–12.

    Article  PubMed  CAS  Google Scholar 

  21. Gailani MR, Stahle-Backdahl M, Leffell DJ et al. The role of the human homologue of Drosophila patched in sporadic basal cell carcinomas. Nat Genet 1996; 14:78–81.

    Article  PubMed  CAS  Google Scholar 

  22. Unden AB, Zaphiropoulos PG, Bruce K et al. Human patched (PTCH) mRNA is overexpressed consistently in tumor cells of both familial and sporadic basal cell carcinoma. Cancer Res 1997; 57:2336–40.

    PubMed  CAS  Google Scholar 

  23. Green J, Leigh IM, Poulsom R et al. Basal cell carcinoma development is associated with induction of the expression of the transcription factor Gli-1. Br J Dermatol 1998; 139:911–5.

    Article  PubMed  CAS  Google Scholar 

  24. Zedan W, Robinson PA, Markham AF et al. Expression of the Sonic Hedgehog receptor “PATCHED” in basal cell carcinomas and odontogenic keratocysts. J Pathol 2001; 194:473–7.

    Article  PubMed  CAS  Google Scholar 

  25. Tojo M, Kiyosawa H, Iwatsuki K et al. Expression of the GLI2 oncogene and its isoforms in human basal cell carcinoma. Br J Dermatol 2003; 148:892–7.

    Article  PubMed  CAS  Google Scholar 

  26. Kinzler KW, Bigner SH, Bigner DD et al. Identification of an amplified, highly expressed gene in a human glioma. Science 1987; 236:70–73.

    Article  PubMed  CAS  Google Scholar 

  27. Ruppert JM, Vogelstein B, Arheden K et al. GLI3 encodes a 190-kilodalton protein with multiple regions of GLI similarity. Mol Cell Biol 1990; 10:5408–15.

    PubMed  CAS  Google Scholar 

  28. Orenic TV, Slusarski DC, Kroll KL et al. Cloning and characterization of the segment polarity gene cubitus interruptus Dominant of Drosophila. Genes Dev 1990; 4:1053–67.

    Article  PubMed  CAS  Google Scholar 

  29. Eaton S, Kornberg TB. Repression of ci-D in posterior compartments of Drosophila by engrailed. Genes Dev 1990; 4:1068–77.

    Article  PubMed  CAS  Google Scholar 

  30. Salgaller M, Pearl D, Stephens R. In situ hybridization with single-stranded RNA probes to demonstrate infrequently elevated gli mRNA and no increased ras mRNA levels in meningiomas and astrocytomas. Cancer Lett 1991; 57:243–53.

    Article  PubMed  CAS  Google Scholar 

  31. Xiao H, Goldthwait DA, Mapstone T. A search for gli expression in tumors of the central nervous system. Pediatr Neurosurg 1994; 20:178–82.

    Article  PubMed  CAS  Google Scholar 

  32. Vortkamp A, Gessler M, Grzeschik KH. GLI3 zinc-finger gene interrupted by translocations in Greig syndrome families. Nature 1991; 352:539–40.

    Article  PubMed  CAS  Google Scholar 

  33. Schimmang T, Lemaistre M, Vortkamp A et al. Expression of the zinc finger gene Gli3 is affected in the morphogenetic mouse mutant extra-toes (Xt). Development 1992; 116:799–804.

    PubMed  CAS  Google Scholar 

  34. Hui CC, Joyner AL. A mouse model of greig cephalopolysyndactyly syndrome: The extra-toesJ mutation contains an intragenic deletion of the Gli3 gene. Nat Genet 1993; 3:241–6.

    Article  PubMed  CAS  Google Scholar 

  35. Kang S, Graham Jr JM, Olney AH et al. GLI3 frameshift mutations cause autosomal dominant Pallister-Hall syndrome. Nat Genet 1997; 15:266–8.

    Article  PubMed  CAS  Google Scholar 

  36. Radhakrishna U, Wild A, Grzeschik KH et al. Mutation in GLI3 in postaxial polydactyly type A. Nat Genet 1997; 17:269–71.

    Article  PubMed  CAS  Google Scholar 

  37. Ruiz i Altaba A. Gli proteins encode context-dependent positive and negative functions: Implications for development and disease. Development 1999; 126:3205–3216.

    PubMed  Google Scholar 

  38. Shin SH, Kogerman P, Lindstrom E et al. GLI3 mutations in human disorders mimic Drosophila cubitus interruptus protein functions and localization. Proc Natl Acad Sci USA 1999; 96:2880–4.

    Article  PubMed  CAS  Google Scholar 

  39. Sasaki H, Hui C, Nakafuku M et al. A binding site for Gli proteins is essential for HNF-3beta floor plate enhancer activity in transgenics and can respond to Shh in vitro. Development 1997; 124:1313–22.

    PubMed  CAS  Google Scholar 

  40. Wang B, Fallon JF, Beachy PA. Hedgehog-regulated processing of Gli3 produces an anterior/posterior repressor gradient in the developing vertebrate limb. Cell 2000; 100:423–34.

    Article  PubMed  CAS  Google Scholar 

  41. Aza-Blanc P, Lin HY, Ruiz i Altaba A et al. Expression of the vertebrate Gli proteins in Drosophila reveals a distribution of activator and repressor activities. Development 2000; 127:4293–4301.

    PubMed  Google Scholar 

  42. Aza-Blanc P, Ramirez-Weber FA, Laget MP et al. Proteolysis that is inhibited by hedgehog targets Cubitus interruptus protein to the nucleus and converts it to a repressor. Cell 1997; 89:1043–53.

    Article  PubMed  CAS  Google Scholar 

  43. Radhakrishna U, Bornholdt D, Scott HS et al. The phenotypic spectrum of GLI3 morphopathies includes autosomal dominant preaxial polydactyly type-IV and postaxial polydactyly type-A/B; No phenotype prediction from the position of GLI3 mutations. Am J Hum Genet 1999; 65:645–55.

    Article  PubMed  CAS  Google Scholar 

  44. Kalff-Suske M, Wild A, Topp J et al. Point mutations throughout the GLI3 gene cause Greig cephalopolysyndactyly syndrome. Hum Mol Genet 1999; 8:1769–77.

    Article  PubMed  CAS  Google Scholar 

  45. Killoran CE, Abbott M, McKusick VA et al. Overlap of PIV syndrome, VACTERL and Pallister-Hall syndrome: Clinical and molecular analysis. Clin Genet 2000; 58:28–30.

    Article  PubMed  CAS  Google Scholar 

  46. Kim J, Kim P, Hui CC. The VACTERL association: Lessons from the Sonic hedgehog pathway. Clin Genet 2001; 59:306–15.

    Article  PubMed  CAS  Google Scholar 

  47. Walterhouse D, Ahmed M, Slusarski D et al. Gli, a zinc finger transcription factor and oncogene, is expressed during normal mouse development. Dev Dyn 1993; 196:91–102.

    PubMed  CAS  Google Scholar 

  48. Hui CC, Slusarski D, Platt KA et al. Expression of three mouse homologs of the Drosophila segment polarity gene cubitus interruptus, Gli, Gli-2, and Gli-3, in ectoderm-and mesoderm-derived tissues suggests multiple roles during postimplantation development. Dev Biol 1994; 162:402–13.

    Article  PubMed  CAS  Google Scholar 

  49. Hughes DC, Allen J, Morley G et al. Cloning and sequencing of the mouse Gli2 gene: Localization to the Dominant hemimelia critical region. Genomics 1997; 39:205–15.

    Article  PubMed  CAS  Google Scholar 

  50. Marigo V, Johnson RL, Vortkamp A et al. Sonic hedgehog differentially regulates expression of GLI and GLI3 during limb development. Dev Biol 1996; 180:273–83.

    Article  PubMed  CAS  Google Scholar 

  51. Marine JC, Bellefroid EJ, Pendeville H et al. A role for Xenopus Gli-type zinc finger proteins in the early embryonic patterning of mesoderm and neuroectoderm. Mech Dev 1997; 63:211–25.

    Article  PubMed  Google Scholar 

  52. Karlstrom RO, Talbot WS, Schier AF. Comparative synteny cloning of zebrafish you-too: Mutations in the Hedgehog target gli2 affect ventral forebrain patterning. Genes Dev 1999; 13:388–93.

    PubMed  CAS  Google Scholar 

  53. Karlstrom RO, Tyurina OV, Kawakami A et al. Genetic analysis of zebrafish gli1 and gli2 reveals divergent requirements for gli genes in vertebrate development. Development 2003; 130:1549–64.

    Article  PubMed  CAS  Google Scholar 

  54. Hynes M, Stone DM, Dowd M et al. Control of cell pattern in the neural tube by the zinc finger transcription factor and oncogene Gli-1. Neuron 1997; 19:15–26.

    Article  PubMed  CAS  Google Scholar 

  55. Dahmane N, Sanchez P, Gitton Y et al. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development 2001; 128:5201–5212.

    PubMed  CAS  Google Scholar 

  56. Unden AB, Holmberg E, Lundh-Rozell B et al. Mutations in the human homologue of Drosophila patched (PTCH) in basal cell carcinomas and the Gorlin syndrome: Different in vivo mechanisms of PTCH inactivation. Cancer Res 1996; 56:4562–5.

    PubMed  CAS  Google Scholar 

  57. Raffel C, Jenkins RB, Frederick L et al. Sporadic medulloblastomas contain PTCH mutations. Cancer Res 1997; 57:842–5.

    PubMed  CAS  Google Scholar 

  58. Pietsch T, Waha A, Koch A et al. Medulloblastomas of the desmoplastic variant carry mutations of the human homologue of Drosophila patched. Cancer Res 1997; 57:2085–8.

    PubMed  CAS  Google Scholar 

  59. Vorechovsky I, Tingby O, Hartman M et al. Toftgard R Somatic mutations in the human homologue of Drosophila patched in primitive neuroectodermal tumours. Oncogene 1997; 15:361–6.

    Article  PubMed  CAS  Google Scholar 

  60. Wolter M, Reifenberger J, Sommer C et al. Mutations in the human homologue of the Drosophila segment polarity gene patched (PTCH) in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 1997; 57:2581–5.

    PubMed  CAS  Google Scholar 

  61. Xie J, Johnson RL, Zhang X et al. Mutations of the PATCHED gene in several types of sporadic extracutaneous tumors. Cancer Res 1997; 57:2369–72.

    PubMed  CAS  Google Scholar 

  62. Xie J, Murone M, Luoh SM et al. Activating Smoothened mutations in sporadic basal-cell carcinoma. Nature 1998; 391:90–2.

    Article  PubMed  CAS  Google Scholar 

  63. Maesawa C, Tamura G, Iwaya T et al. Mutations in the human homologue of the Drosophila patched gene in esophageal squamous cell carcinoma. Genes Chromosomes Cancer 1998; 21:276–9.

    Article  PubMed  CAS  Google Scholar 

  64. Reifenberger J, Wolter M, Weber RG et al. Missense mutations in SMOH in sporadic basal cell carcinomas of the skin and primitive neuroectodermal tumors of the central nervous system. Cancer Res 58:1798–803.

    Google Scholar 

  65. Gemmill RM, West JD, Boldog F et al. The hereditary renal cell carcinoma 3;8 translocation fuses FHIT to a patched-related gene, TRC8. Proc Natl Acad Sci USA 1998; 95:9572–7.

    Article  PubMed  CAS  Google Scholar 

  66. McGarvey TW, Maruta Y, Tomaszewski JE et al. PTCH gene mutations in invasive transitional cell carcinoma of the bladder. Oncogene 1998; 17:1167–72.

    Article  PubMed  CAS  Google Scholar 

  67. Aboulkassim TO, LaRue H, Lemieux P et al. Alteration of the PATCHED locus in superficial bladder cancer. Oncogene 2003; 22:2967–71.

    Article  PubMed  CAS  Google Scholar 

  68. Taylor MD, Liu L, Raffel C et al. Mutations in SUFU predispose to medulloblastoma. Nat Genet 2002; 31:306–10.

    Article  PubMed  CAS  Google Scholar 

  69. Koch A, Waha A, Hartmann W et al. No evidence for mutations or altered expression of the Suppressor of Fused gene (SUFU) in primitive neuroectodermal tumours. Neuropathol Appl Neurobiol 2004; 30:532–9.

    Article  PubMed  CAS  Google Scholar 

  70. Ding Q, Fukami S, Meng X et al. Mouse suppressor of fused is a negative regulator of sonic hedgehog signaling and alters the subcellular distribution of Gli1. Curr Biol 1999; 9:1119–22.

    Article  PubMed  CAS  Google Scholar 

  71. Pearse IInd RV, Collier LS, Scott MP et al. Vertebrate homologs of Drosophila suppressor of fused interact with the gli family of transcriptional regulators. Dev Biol 1999; 212:323–36.

    Article  PubMed  CAS  Google Scholar 

  72. Stone DM, Murone M, Luoh S et al. Characterization of the human suppressor of fused, a negative regulator of the zinc-finger transcription factor Gli. J Cell Sci 1999; 112:4437–48.

    PubMed  CAS  Google Scholar 

  73. Dahlen A, Fletcher CD, Mertens F et al. Activation of the GLI oncogene through fusion with the beta-actin gene (ACTB) in a group of distinctive pericytic neoplasms: Pericytoma with t(7;12). Am J Pathol 2004; 164:1645–53.

    PubMed  CAS  Google Scholar 

  74. Oro AE, Higgins KM, Hu Z et al. Basal cell carcinomas in mice overexpressing sonic hedgehog. Science 1997; 276:817–21.

    Article  PubMed  CAS  Google Scholar 

  75. Nilsson M, Unden AB, Krause D et al. Induction of basal cell carcinomas and trichoepitheliomas in mice overexpressing GLI-1. Proc Natl Acad Sci USA 2000; 97:3438–3443.

    Article  PubMed  CAS  Google Scholar 

  76. Oro AE, Higgins K. Hair cycle regulation of Hedgehog signal reception. Dev Biol 2003; 255:238–48.

    Article  PubMed  CAS  Google Scholar 

  77. Grachtchouk V, Grachtchouk M, Lowe L et al. The magnitude of hedgehog signaling activity defines skin tumor phenotype. EMBO J 2003; 22:2741–51.

    Article  PubMed  CAS  Google Scholar 

  78. Aszterbaum M, Epstein J, Oro A et al. Ultraviolet and ionizing radiation enhance the growth of BCCs and trichoblastomas in patched heterozygous knockout mice. Nat Med 1999; 5:1285–1291.

    Article  PubMed  CAS  Google Scholar 

  79. Grachtchouk M, Mo R, Yu S et al. Basal cell carcinomas in mice overexpressing Gli2 in skin. Nat Genet 2000; 24:216–217.

    Article  PubMed  CAS  Google Scholar 

  80. Sheng H, Goich S, Wang A et al. Dissecting the oncogenic potential of Gli2: Deletion of an NH(2)-terminal fragment alters skin tumor phenotype. Cancer Res 2002; 62:5308–16.

    PubMed  CAS  Google Scholar 

  81. Hutchin ME, Kariapper MS, Grachtchouk M et al. Sustained Hedgehog signaling is required for basal cell carcinoma proliferation and survival: Conditional skin tumorigenesis recapitulates the hair growth cycle. Genes Dev 2004; [Epub ahead of print].

    Google Scholar 

  82. Goodrich LV, Milenkovic L, Higgins KM et al. Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277:1109–1113.

    Article  PubMed  CAS  Google Scholar 

  83. Hahn H, Wojnowski L, Zimmer AM et al. Rhabdomyosarcomas and radiation hypersensitivity in a mouse model of Gorlin syndrome. Nat Med 1998; 4:619–622.

    Article  PubMed  CAS  Google Scholar 

  84. St-Jacques B, Dassule HR, Karavanova I et al. Sonic hedgehog signaling is essential for hair development. Curr Biol 1998; 8:1058–68.

    Article  PubMed  CAS  Google Scholar 

  85. Chiang C, Swan RZ, Grachtchouk M et al. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev Biol 1999; 205:1–9.

    Article  PubMed  CAS  Google Scholar 

  86. Dahmane N, Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999; 126:3089–3100.

    PubMed  Google Scholar 

  87. Wallace VA. Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999; 9:445–448.

    Article  PubMed  CAS  Google Scholar 

  88. Wechsler-Reya RJ, Scott MP. Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22:103–114.

    Article  PubMed  CAS  Google Scholar 

  89. Palma V, Ruiz i Altaba A. Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex. Development 2004; 131:337–345.

    Article  PubMed  CAS  Google Scholar 

  90. Lai K, Kaspar BK, Gage FH et al. Sonic hedgehog regulates adult neural progenitor proliferation in vitro and in vivo. Nat Neurosci 2003; 6:21–27.

    Article  PubMed  CAS  Google Scholar 

  91. Machold R, Hayashi S, Rutlin M et al. Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches. Neuron 2003; 39:937–950.

    Article  PubMed  CAS  Google Scholar 

  92. Palma V, Lim DA, Dahmane N et al. Sonic hedgehog controls stem cell behavior in the postnatal and adult brain. Development 2005; 132:335–344.

    Article  PubMed  CAS  Google Scholar 

  93. Rowitch DH, S-Jacques B, Lee SM et al. Sonic hedgehog regulates proliferation and inhibits differentiation of CNS precursor cells. J Neurosci 1999; 19:8954–65.

    PubMed  CAS  Google Scholar 

  94. Ramalho-Santos M, Melton DA, McMahon AP. Hedgehog signals regulate multiple aspects of gastrointestinal development. Development 2000; 127:2763–72.

    PubMed  CAS  Google Scholar 

  95. van den Brink GR, Hardwick JC, Tytgat GN et al. Sonic hedgehog regulates gastric gland morphogenesis in man and mouse. Gastroenterology 2001; 121:317–28.

    Article  PubMed  Google Scholar 

  96. Wang LC, Nassir F, Liu ZY et al. Disruption of hedgehog signaling reveals a novel role in intestinal morphogenesis and intestinal-specific lipid metabolism in mice. Gastroenterology 2002; 122:469–82.

    Article  PubMed  CAS  Google Scholar 

  97. Niemann C, Unden AB, Lyle S et al. Indian hedgehog and beta-catenin signaling: Role in the sebaceous lineage of normal and neoplastic mammalian epidermis. Proc Natl Acad Sci USA 2003; 100(Suppl 1):11873–80.

    Article  PubMed  CAS  Google Scholar 

  98. Lapidot T, Sirard C, Vormoor J et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 1994; 367:645–8.

    Article  PubMed  CAS  Google Scholar 

  99. Dick JE. Stem cells: Self-renewal writ in blood. Nature 2003; 423:231–3.

    Article  PubMed  CAS  Google Scholar 

  100. Reya T, Morrison SJ, Clarke MF et al. Stem cells, cancer, and cancer stem cells. Nature 2001; 414:105–111.

    Article  PubMed  CAS  Google Scholar 

  101. Mintz B, Illmensee K. Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc Natl Acad Sci USA 1975; 72:3585–9.

    Article  PubMed  CAS  Google Scholar 

  102. Papaioannou VE, McBurney MW, Gardner RL et al. Fate of teratocarcinoma cells injected into early mouse embryos. Nature 1975; 258:70–73.

    Article  PubMed  CAS  Google Scholar 

  103. Illmensee K, Mintz B. Totipotency and normal differentiation of single teratocarcinoma cells cloned by injection into blastocysts. Proc Natl Acad Sci USA 1976; 73:549–53.

    Article  PubMed  CAS  Google Scholar 

  104. Ignatova TN, Kukekov VG, Laywell ED et al. Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro. Glia 2002; 39:193–206.

    Article  PubMed  Google Scholar 

  105. Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100:3983–8.

    Article  PubMed  CAS  Google Scholar 

  106. Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63:5821–8.

    PubMed  CAS  Google Scholar 

  107. Singh SK, Hawkins C, Clarke ID et al. Identification of human brain tumor initiating cells. Nature 2004; 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  108. Hemmati HD, Nakano I, Lazareff JA et al. Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 2003; 100:15178–83.

    Article  PubMed  CAS  Google Scholar 

  109. Kondo T, Setoguchi T, Taga T. Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line. Proc Natl Acad Sci USA 2004; 101:781–6.

    Article  PubMed  CAS  Google Scholar 

  110. Galli R, Binda E, Orfanelli U et al. Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma. Cancer Res 2004; 64:7011–21.

    Article  PubMed  CAS  Google Scholar 

  111. Williams JA, Guicherit OM, Zaharian BI et al. Identification of a small molecule inhibitor of the hedgehog signaling pathway: Effects on basal cell carcinoma-like lesions. Proc Natl Acad Sci USA 2003; 100:4616–21.

    Article  PubMed  CAS  Google Scholar 

  112. Berman DM, Karhadkar SS, Hallahan AR et al. Medulloblastoma growth inhibition by hedgehog pathway blockade. Science 2002; 297:1559–1561.

    Article  PubMed  CAS  Google Scholar 

  113. Thayer SP, di Magliano MP, Heiser PW et al. Hedgehog is an early and late mediator of pancreatic cancer tumorigenesis. Nature 2003; 425:851–856.

    Article  PubMed  CAS  Google Scholar 

  114. Kayed H, Kleeff J, Keleg S et al. Indian hedgehog signaling pathway: Expression and regulation in pancreatic cancer. Int J Cancer 2004; 110:668–76.

    Article  PubMed  CAS  Google Scholar 

  115. Watkins DN, Berman DM, Burkholder SG et al. Hedgehog signalling within airway epithelial progenitors and in small-cell lung cancer. Nature 2003; 422:313–317.

    Article  PubMed  CAS  Google Scholar 

  116. Berman DM, Karhadkar SS, Maitra A et al. Widespread requirement for Hedgehog ligand stimulation in growth of digestive tract tumours. Nature 2003; 425:846–851.

    Article  PubMed  CAS  Google Scholar 

  117. Sanchez P, Hernandez AM, Stecca B et al. Inhibition of prostate cancer proliferation by interference with SONIC HEDGEHOG-GLI1 signaling. Proc Natl Acad Sci USA 2004; 101:12561–12566.

    Article  PubMed  CAS  Google Scholar 

  118. Karhadkar SS, Steven Bova G, Abdallah N et al. Hedgehog signalling in prostate regeneration, neoplasia and metastasis. Nature 2004; 431:707–712.

    Article  PubMed  CAS  Google Scholar 

  119. Sheng T, Li C, Zhang X et al. Activation of the hedgehog pathway in advanced prostate cancer. Mol Cancer 2004; 3:29.

    Article  PubMed  CAS  Google Scholar 

  120. Fan I, Pepicelli CV, Dibble CC et al. Hedgehog signaling promotes prostate xenograft tumor growth. Endocrinology 145:3961–3970.

    Google Scholar 

  121. Kubo M, Nakamura M, Tasaki A et al. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res 2004; 64:6071–4.

    Article  PubMed  CAS  Google Scholar 

  122. Stein U, Eder C, Karsten U et al. GLI gene expression in bone and soft tissue sarcomas of adult patients correlates with tumor grade. Cancer Res 1999; 59:1890–5.

    PubMed  CAS  Google Scholar 

  123. Kumamoto H, Ohki K, Ooya K. Expression of Sonic hedgehog (SHH) signaling molecules in ameloblastomas. J Oral Pathol Med 2004; 33:185–90.

    Article  PubMed  CAS  Google Scholar 

  124. Katayam M, Yoshida K, Ishimori H et al. Patched and smoothened mRNA expression in human astrocytic tumors inversely correlates with histological malignancy. J Neurooncol 2002; 59:107–15.

    Article  PubMed  Google Scholar 

  125. Nishimaki H, Kasai K, Kosaki K-C et al. A role of activated Sonic hedgehog signaling for the cellular proliferation of oral squamous cell carcinoma cell line. Biochem & Biophys Res Com 2004; 314:313–320.

    Article  CAS  Google Scholar 

  126. Wuyts W, Van Hul W, Wauters J et al. Positional cloning of a gene involved in hereditary multiple exostoses. Hum Mol Genet 1996; 5:1547–57.

    Article  PubMed  CAS  Google Scholar 

  127. Levy P, Vidaud D, Leroy K et al. Molecular profiling of malignant peripheral nerve sheath tumors associated with neurofibromatosis type 1, based on large-scale real-time RT-PCR. Mol Cancer 2004; 3:20.

    Article  PubMed  CAS  Google Scholar 

  128. Hamed S, LaRue H, Hovington H et al. Accelerated induction of bladder cancer in patched heterozygous mutant mice. Cancer Res 2004; 64:1938–42.

    Article  PubMed  CAS  Google Scholar 

  129. Qualtrough D, Buda A, Gaffield W et al. Hedgehog signalling in colorectal tumour cells: Induction of apoptosis with cyclopamine treatment. Int J Cancer 2004; 110:831–7.

    Article  PubMed  CAS  Google Scholar 

  130. Oniscu A, James RM, Morris RG et al. Expression of Sonic hedgehog pathway genes is altered in colonic neoplasia. J Pathol 2004; 203:909–17.

    Article  PubMed  CAS  Google Scholar 

  131. van den Brink GR, Bleuming SA, Hardwick JC et al. Indian Hedgehog is an antagonist of Wnt signaling in colonic epithelial cell differentiation. Nat Genet 2004; 36:277–82.

    Article  PubMed  CAS  Google Scholar 

  132. Zhu Y, James RM, Peter A et al. Functional Smoothened is required for expression of GLI3 in colorectal carcinoma cells. Cancer Lett 2004; 207:205–14.

    Article  PubMed  CAS  Google Scholar 

  133. Ohki K, Kumamoto H, Ichinohasama R et al. PTC gene mutations and expression of SHH, PTC, SMO, and GLI-1 in odontogenic keratocysts. Int J Oral Maxillofac Surg 2004; 33:584–92.

    Article  PubMed  CAS  Google Scholar 

  134. Olsen CL, Hsu PP, Glienke J et al. Hedgehog-interacting protein is highly expressed in endothelial cells but down-regulated during angiogenesis and in several human tumors. BMC Cancer 2004; 4:43.

    Article  PubMed  CAS  Google Scholar 

  135. Chuang PT, McMahon AP. Vertebrate Hedgehog signalling modulated by induction of a Hedgehog-binding protein. Nature 1999; 397:617–21.

    Article  PubMed  CAS  Google Scholar 

  136. Taipale J, Chen JK, Cooper MK et al. Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature 2000; 406:1005–9.

    Article  PubMed  CAS  Google Scholar 

  137. Park HL, Bai C, Platt KA et al. Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation. Development 2000; 127:1593–1605.

    PubMed  CAS  Google Scholar 

  138. Weiner HL, Bakst R, Hurlbert MS et al. Induction of medulloblastomas in mice by sonic hedgehog, independent of Gli1. Cancer Res 2002; 62:6385–9.

    PubMed  CAS  Google Scholar 

  139. Chin L, Tam A, Pomerantz J et al. Essential role for oncognic Ras in tumour maintenance. Nature 1999; 400:468–72.

    Article  PubMed  CAS  Google Scholar 

  140. Wong AK, Chin L. An inducible melanoma model implicates a role for RAS in tumor maintenance and angiogenesis. Cancer Metastasis Rev 2000; 19:121–9.

    Article  PubMed  CAS  Google Scholar 

  141. Fisher GH, Wellen SL, Klimstra D et al. Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. Genes Dev 2001; 15:3249–62.

    Article  PubMed  CAS  Google Scholar 

  142. Keeler RF, Binns W. Teratogenic compounds of Veratrum californicum (Durand). V. Comparison of cyclopian effects of steroidal alkaloids from the plant and structurally related compounds from other sources. Teratology 1968; 1:5–10.

    Article  PubMed  CAS  Google Scholar 

  143. Keeler RF. Comparison of the teratogenicity in rats of certain potato-type alkaloids and the veratrum teratogen cyclopamine. Lancet 1973; 1:1187–8.

    Article  PubMed  CAS  Google Scholar 

  144. Keeler RF. Teratogenic effects of cyclopamine and jervine in rats, mice and hamsters. Proc Soc Exp Biol Med 1975; 149:302–6.

    PubMed  CAS  Google Scholar 

  145. Keeler RF. Cyclopamine and related steroidal alkaloid teratogens: Their occurrence, structural relationship, and biologic effects. Lipids 1978; 13:708–15.

    Article  PubMed  CAS  Google Scholar 

  146. Keeler RF. Teratogenic compounds of Veratrum californicum (Durand) X. Cyclopia in rabbits produced by cyclopamine. Teratology 1970; 3:175–80.

    Article  PubMed  CAS  Google Scholar 

  147. Keeler RF, Baker DC. Oral, osmotic minipump, and intramuscular administration to sheep of the Veratrum alkaloid cyclopamine. Proc Soc Exp Biol Med 1989; 192:153–6.

    PubMed  CAS  Google Scholar 

  148. Chiang C, Litingtung Y, Lee E et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996; 383:407–13.

    Article  PubMed  CAS  Google Scholar 

  149. Belloni E, Muenke M, Roessler E et al. Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nat Genet 1996; 14:353–356.

    Article  PubMed  CAS  Google Scholar 

  150. Roessler E, Belloni E, Gaudenz K et al. Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. Nat Genet 1996; 14:357–360.

    Article  PubMed  CAS  Google Scholar 

  151. Incardona JP, Gaffield W, Kapur RP et al. The teratogenic Veratrum alkaloid cyclopamine inhibits sonic hedgehog signal transduction. Development 1998; 125:3553–3562.

    PubMed  CAS  Google Scholar 

  152. Cooper MK, Porter JA, Young KE et al. Teratogen-mediated inhibition of target tissue response to Shh signaling. Science 1998; 280:1603–1607.

    Article  PubMed  CAS  Google Scholar 

  153. Chen JK, Taipale J, Cooper MK et al. Inhibition of Hedgehog signal by direct binding of cyclopamine to Smoothened. Genes Dev 2002; 16:2743–2748.

    Article  PubMed  CAS  Google Scholar 

  154. Chen JK, Taipale J, Young KE et al. Small molecule modulation of Smoothened activity. Proc Natl Acad Sci USA 2002; 99:14071–6.

    Article  PubMed  CAS  Google Scholar 

  155. Frank-Kamenetsky M, Zhang XM, Bottega S et al. Small-molecule modulators of Hedgehog signaling: Identification and characterization of Smoothened agonists and antagonists. J Biol 2002; 1:10.

    Article  PubMed  Google Scholar 

  156. Ericson J, Morton S, Kawakami A et al. Two critical periods of Sonic Hedgehog signaling required for the specification of motor neuron identity. Cell 1996; 87:661–73.

    Article  PubMed  CAS  Google Scholar 

  157. Vogt A, Chuang PT, Hebert J et al. Immunoprevention of basal cell carcinomas with recombinant hedgehog-interacting protein. J Exp Med 2004; 199:753–61.

    Article  PubMed  CAS  Google Scholar 

  158. Voskoglou-Nomikos T, Pater JL, Seymour L. Clinical predictive value of the in vitro cell line, human xenograft, and mouse allograft preclinical cancer models. Clin Cancer Res 2003; 9:4227–39.

    PubMed  Google Scholar 

  159. Kelland LR. Of mice and men: Values and liabilities of the athymic nude mouse model in anticancer drug development. Eur J Cancer 2004; 40:827–36.

    Article  PubMed  CAS  Google Scholar 

  160. Wetmore C, Eberhart DE, Curran T. Loss of p53 but not ARF accelerates medulloblastoma in mice heterozygous for patched. Cancer Res 2001; 61:513–6.

    PubMed  CAS  Google Scholar 

  161. Romer JT, Kimura H, Magdaleno S et al. Suppression of the Shh pathway using a small molecule inhibitor eliminates medulloblastoma in Ptc1(+/-)p53(-/-) mice. Cancer Cell 2004; 6:229–240.

    Article  PubMed  CAS  Google Scholar 

  162. Sanchez P, Ruiz i Altaba A. In vivo inhibition of endogenous brain tumors through systemic interference of Hedgehog signaling in mice. Mech Dev 2005; 122:223–230.

    Article  PubMed  CAS  Google Scholar 

  163. Bellemeyer A, Krase J, Lindgren J et al. The protooncogene c-Myc is an essential regulator of neural crest formation in Xenopus. Dev Cell 2003; 4:827–839.

    Article  Google Scholar 

  164. Cano A, Perez-Moreno MA, Rodrigo I et al. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2000; 2:76–83.

    Article  PubMed  CAS  Google Scholar 

  165. Kenney AM, Widlund HR, Rowitch DH. Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 2004; 131:217–28.

    Article  PubMed  CAS  Google Scholar 

  166. Kenney AM, Cole MD, Rowitch DH. Nmyc upregulation by sonic hedgehog signaling promotes proliferation in developing cerebellar granule neuron precursors. Development 2003; 130:15–28.

    Article  PubMed  CAS  Google Scholar 

  167. Louro ID, Bailey EC, Li X et al. Comparative gene expression profile analysis of GLI and c-MYC in an epithelial model of malignant transformation. Cancer Res 2002; 62:5867–73.

    PubMed  CAS  Google Scholar 

  168. Tabs S, Avci O. Induction of the differentiation and apoptosis of tumor cells in vivo with efficiency and selectivity. Eur J Dermatol 2004; 14:96–102.

    PubMed  Google Scholar 

  169. Tas S, Avci O. Rapid clearance of psoriatic skin lesions induced by topical cyclopamine. A preliminary proof of concept study. Dermatology 2004; 209:126–131.

    Article  PubMed  CAS  Google Scholar 

  170. Brewster R, Mullor JL, Ruiz i Altaba A. Gli2 functions in FGF signaling during antero-posterior patterning. Development 2000; 127:4395–405.

    PubMed  Google Scholar 

  171. Ruiz i Altaba A. Catching a Gli-mpse of Hedgehog. Cell 1997; 90:193–6.

    Article  PubMed  Google Scholar 

  172. Ruiz i Altaba A. Combinatorial Gli gene function in floor plate and neuronal inductions by Sonic hedgehog. Development 1998; 125:2203–12.

    PubMed  Google Scholar 

  173. Hammerschmidt M, Bitgood MJ, McMahon AP. Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes Dev 1996; 10:647–58.

    Article  PubMed  CAS  Google Scholar 

  174. Chen Y, Gallaher N, Goodman RH et al. Protein kinase A directly regulates the activity and proteolysis of cubitus interruptus. Proc Natl Acad Sci USA 1998; 95:2349–54.

    Article  PubMed  CAS  Google Scholar 

  175. Ohlmeyer JT, Kalderon D. Hedgehog stimulates maturation of Cubitus interruptus into a labile transcriptional activator. Nature 1998; 396:749–53.

    Article  PubMed  CAS  Google Scholar 

  176. Wang G, Wang B, Jiang J. Protein kinase A antagonizes Hedgehog signaling by regulating both the activator and repressor forms of Cubitus interruptus. Genes Dev 1999; 13:2828–37.

    Article  PubMed  CAS  Google Scholar 

  177. Jia J, Amanai K, Wang G et al. Shaggy/GSK3 antagonizes Hedgehog signalling by regulating Cubitus interruptus. Nature 2002; 416:548–52.

    Article  PubMed  CAS  Google Scholar 

  178. Jia J, Tong C, Wang B et al. Hedgehog signalling activity of Smoothened requires phosphorylation by protein kinase A and casein kinase I. Nature 2004; 432:1045–50.

    Article  PubMed  CAS  Google Scholar 

  179. Price MA, Kalderon D. Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein kinase A. Development 1999; 126:4331–9.

    PubMed  CAS  Google Scholar 

  180. Price MA, Kalderon D. Proteolysis of the Hedgehog signaling effector Cubitus interruptus requires phosphorylation by Glycogen Synthase Kinase 3 and Casein Kinase 1. Cell 2002; 108:823–35.

    Article  PubMed  CAS  Google Scholar 

  181. Apionishev S, Katanayeva NM, Marks SA et al. Drosophila Smoothened phosphorylation sites essential for Hedgehog signal transduction. Nat Cell Biol 2004; [Epub ahead of print].

    Google Scholar 

  182. Chen W, Ren XR, Nelson CD et al. Activity-dependent internalization of smoothened mediated by beta-arrestin 2 and GRK2. Science 2004; 306:2257–60.

    Article  PubMed  CAS  Google Scholar 

  183. Ogden SK, Ascano Jr M, Stegman MA et al. Regulation of Hedgehog signaling: A complex story. Biochem Pharmacol 2004; 67:805–14.

    Article  PubMed  CAS  Google Scholar 

  184. Mao J, Maye P, Kogerman P et al. Regulation of Gli1 transcriptional activity in the nucleus by Dyrk1. J Biol Chem 2002; 277:35156–61.

    Article  PubMed  CAS  Google Scholar 

  185. Huangfu D, Liu A, Rakeman AS et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003; 426:83–7.

    Article  PubMed  CAS  Google Scholar 

  186. Brewster R, Lee J, Ruiz i Altaba A. Gli/Zic factors pattern the neural plate by defining domains of cell differentiation. Nature 1998; 393:579–83.

    Article  PubMed  CAS  Google Scholar 

  187. Koyabu Y, Nakata K, Mizugishi K et al. Physical and functional interactions between Zic and Gli proteins. J Biol Chem 2001; 276:6889–92.

    Article  PubMed  CAS  Google Scholar 

  188. Di Marcotullio L, Ferretti E, De Smaele E et al. REN(KCTD11) is a suppressor of Hedgehog signaling and is deleted in human medulloblastoma. Proc Natl Acad Sci USA 2004; 101:10833–8.

    Article  PubMed  Google Scholar 

  189. Wolff C, Roy S, Lewis KE et al. Iguana encodes a novel zinc-finger protein with coiled-coil domains essential for Hedgehog signal transduction in the zebrafish embryo. Genes Dev 2004; 18:1565–76.

    Article  PubMed  CAS  Google Scholar 

  190. Sekimizu K, Nishioka N, Sasaki H et al. The zebrafish iguana locus encodes Dzip1, a novel zinc-finger protein required for proper regulation of Hedgehog signaling. Development 2004; 131:2521–32.

    Article  PubMed  CAS  Google Scholar 

  191. Eggenschwiler JT, Espinoza E, Anderson KV. Rab23 is an essential negative regulator of the mouse Sonic hedgehog signalling pathway. Nature 2001; 412:194–8.

    Article  PubMed  CAS  Google Scholar 

  192. Bulgakov OV, Eggenschwiler JT, Hong DH et al. FKBP8 is a negative regulator of mouse sonic hedgehog signaling in neural tissues. Development 2004; 131:2149–59.

    Article  PubMed  CAS  Google Scholar 

  193. Cheng SY, Bishop JM. Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA 2002; 99:5442–7.

    Article  PubMed  CAS  Google Scholar 

  194. Merchant M, Vajdos FF, Ultsch M et al. Suppressor of fused regulates Gli activity through a dual binding mechanism. Mol Cell Biol 2004; 24:8627–41.

    Article  PubMed  CAS  Google Scholar 

  195. Pomeroy SL, Tamayo P, Gaasenbeek M et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 2002; 415:436–42.

    Article  PubMed  CAS  Google Scholar 

  196. Mullor JL, Dahmane N, Sun T et al. Wnt signals are targets and mediators of Gli function. Curr Biol 2001; 11:769–73.

    Article  PubMed  CAS  Google Scholar 

  197. Nicolas M, Wolfer A, Raj K et al. Notch1 functions as a tumor suppressor in mouse skin. Nat Genet 2003; 33:416–21.

    Article  PubMed  CAS  Google Scholar 

  198. Ke Z, Emelyanov A, Lim SE et al. Expression of a novel zebrafish zinc finger gene, gli2b, is affected in Hedgehog and Notch signaling related mutants during embryonic development. Dev Dyn 2004; [Epub ahead of print].

    Google Scholar 

  199. Okamoto M. Simultaneous demonstration of lens regeneration from dorsal iris and tumour production from ventral iris in the same newt eye after carcinogen administration. Differentiation 1997; 61:285–92.

    Article  PubMed  CAS  Google Scholar 

  200. Zuñiga A, Zeller R. Gli3 (Xt) and formin (ld) participate in the positioning of the polarising region and control of posterior limb-bud identity. Development 1999; 126:13–21.

    PubMed  Google Scholar 

  201. Zakany J, Kmita M, Duboule D. A dual role for Hox genes in limb anterior-posterior asymmetry. Science 2004; 304:1669–72.

    Article  PubMed  CAS  Google Scholar 

  202. Chen Y, Knezevic V, Ervin V et al. Direct interaction with Hoxd proteins reverses Gli3-repressor function to promote digit formation downstream of Shh. Development 2004; 131:2339–47.

    Article  PubMed  CAS  Google Scholar 

  203. Joulia L, Bourbon H-M, Cribbs DL. Homeotic proboscipedia function modulates hedgehog-mediated organizer activity to pattern adult Drosophila mouthparts. Dev Biol 2005; 278:496–505.

    Article  PubMed  CAS  Google Scholar 

  204. Ruiz i Altaba A, Melton DA. Interaction between peptide growth factors and homoeobox genes in the establishment of antero-posterior polarity in frog embryos. Nature 1989; 341:33–8.

    Article  PubMed  CAS  Google Scholar 

  205. Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering. Science 2003; 301:331–3.

    Article  PubMed  CAS  Google Scholar 

  206. Gaufo GO, Flodby P, Capecchi MR. Hoxb1 controls effectors of sonic hedgehog and Mash1 signaling pathways. Development 2000; 127:5343–54.

    PubMed  CAS  Google Scholar 

  207. Amsellem S, Pflumio F, Bardinet D et al. Ex vivo expansion of human hematopoietic stem cells by direct delivery of the HOXB4 homeoprotein. Nat Med 2003; 9:1423–7.

    Article  PubMed  CAS  Google Scholar 

  208. Krosl J, Austin P, Beslu N et al. In vitro expansion of hematopoietic stem cells by recombinant TAT-HOXB4 protein. Nat Med 2003; 9:1428–32.

    Article  PubMed  CAS  Google Scholar 

  209. Zhang Y, Zhao X, Hu Y et al. Msx1 is required for the induction of Patched by Sonic hedgehog in the mammalian tooth germ. Dev Dyn 1999; 215:45–53.

    Article  PubMed  CAS  Google Scholar 

  210. Cillo C, Cantile M, Faiella A et al. Homeobox genes in normal and malignant cells. J Cell Physiol 2001; 188:161–9.

    Article  PubMed  CAS  Google Scholar 

  211. Abate-Shen C. Homeobox genes and cancer: New OCTaves for an old tune. Cancer Cell 2003; 4:329–30.

    Article  PubMed  CAS  Google Scholar 

  212. Galis F. Why do almost all mammals have seven cervical vertebrae? Developmental constraints, Hox genes, and cancer. J Exp Zool 1999; 285:19–26.

    Article  PubMed  CAS  Google Scholar 

  213. Franco PG, Paganelli AR, Lopez SL et al. Functional association of retinoic acid and hedgehog signaling in Xenopus primary neurogenesis. Development 1999; 126:4257–65.

    PubMed  CAS  Google Scholar 

  214. McKay RD. Stem cell biology and neurodegenerative disease. Philos Trans R Soc Lonon B Biol Sci 2004; 359:851–856.

    Article  CAS  Google Scholar 

  215. Miao N, Wang M, Ott JA et al. Sonic hedgehog promotes the survival of specific CNS neuron populations and protects these cells from toxic insult in vitro. J Neurosci 1997; 17:5891–9.

    PubMed  CAS  Google Scholar 

  216. Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V et al. Differentiation and transcription factor gene therapy in experimental parkinson’s disease: Sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration. Mol Ther 2004:507–24.

    Google Scholar 

  217. Suwelack D, Hurtado-Lorenzo A, Millan E et al. Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson’s disease. Gene Ther 2004; 11:1742–52.

    Article  PubMed  CAS  Google Scholar 

  218. Mancuso M, Pazzaglia S, Tanori M et al. Basal cell carcinoma and its development: Insights from radiation-induced tumors in Ptch1-deficient mice. Cancer Res 2004; 64:934–941.

    Article  PubMed  CAS  Google Scholar 

  219. Pazzaglia S, Mancuso M, Atkinson MJ et al. High incidence of medulloblastoma following X-Ray-irradiation of newborn Ptc1 heterozygous mice. Oncogene 2002; 21:7580–7584.

    Article  PubMed  CAS  Google Scholar 

  220. Regl G, Kasper M, Schnidar H et al. Activation of the Bcl2 promoter in response to Hedgehog/GLI signal transduction is predominantly mediated by Gli2. Cancer Res 2004; 64:7724–7731.

    Article  PubMed  CAS  Google Scholar 

  221. Rao G, Pedone CA, Coffin CM et al. c-Myc enhances sonic hedgehog-induced medulloblastoma formation from nestin-expressing neural progenitors in mice. Neoplasia 2003; 5:198–204.

    PubMed  CAS  Google Scholar 

  222. Rao G, Pedone CA, Valle LD et al. Sonic hedgehog and insulin-like growth factor signaling synergize to induce medulloblastoma formation from nestin-expressing neural progenitors in mice. Oncogene 2004; 23:6156–62.

    Article  PubMed  CAS  Google Scholar 

  223. Callahan CA, Ofstad T, Horng L et al. MIM/BEG4, a Sonic hedgehog-responsive gene that potentiates Gli-dependent transcription. Genes Dev 2004; 18(22):2724–9.

    Article  PubMed  CAS  Google Scholar 

  224. Athar M, Li C, Tang X et al. Inhibition of smoothened signaling prevents ultraviolet B-induced basal cell carcinomas through regulation of Fas expression and apoptosis. Cancer Res 2004; 64(20):7545–52.

    Article  PubMed  CAS  Google Scholar 

  225. Pu Y, Huang L, Prins GS. Sonic hedgehog-patched Gli signaling in the developing rat prostate gland: lobe-specific suppression by neonatal estrogens reduces ductal growth and branching. Dev Biol 2004; 273(2):257–75.

    Article  PubMed  CAS  Google Scholar 

  226. Alberi L, Sgado P, Simon HH. Engrailed genes are cell-autonomously required to prevent apoptosis in mesencephalic dopaminergic neurons. Development 2004; 131(13):3229–36.

    Article  PubMed  CAS  Google Scholar 

  227. Prochiantz A. Protein transduction: from physiology to technology and vice versa. Adv Drug Deliv Rev 2005; 57(4):491–3.

    Article  PubMed  CAS  Google Scholar 

  228. Johnston JJ, Olivos-Glander I, Killoran C et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister-Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005; 76(4):609–22.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Ruiz i Altaba, A. (2006). How the Hedgehog Outfoxed the Crab. In: Hedgehog-Gli Signaling in Human Disease. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-33777-6_1

Download citation

Publish with us

Policies and ethics