Skip to main content

Transient Deficiencies of T-Cell-Mediated Immunity in the Neonate

  • Conference paper
Hot Topics in Infection and Immunity in Children III

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 582))

5. Conclusion

In summary, neonates demonstrate striking deficiencies in cell-mediated immunity to a number of pathogens. A number of carefully orchestrated cellular and molecular events must occur before a strong cell-mediated immune response can be mounted, and newborns are transiently deficient at a number of points along the way. Neonatal antigen presenting function is less efficient than that of adults, and, in particular neonatal dendritic cells secrete less IL-12. Neonatal CD4 cells are prevented from differentiating into Th1 cells due to decreased levels of STAT4 and epigenetic regulation of the IFN-γ promoter. They also express less CD154. Consequently, the normal positive feedback loops for driving cell-mediated immunity, in which IFN-γ and CD154 from T cells induce dendritic cells to produce more IL-12, are interrupted. A better understanding of these mechanisms will be important in the care of newborns as well as in vaccine development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, B. (1999). T-cell function in newborn mice and humans. Immunol. Today 20, 330–335.

    Article  PubMed  CAS  Google Scholar 

  • Adkins, B., Leclerc, C., and Marshall-Clarke, S. (2004). Neonatal adaptive immunity comes of age. Nat. Rev. Immunol. 4, 553–564.

    Article  PubMed  CAS  Google Scholar 

  • Ameratunga, R., Lederman, H.M., Sullivan, K.E., Ochs, H.D., Seyama, K., French, J.K. et al. (1997). Defective antigen-induced lymphocyte proliferation in the X-linked hyper-IgM syndrome. J. Pediatr. 131, 147–150.

    Article  PubMed  CAS  Google Scholar 

  • Bevan, M. (2004). Helping the CD8(+) T-cell response. Nat. Rev. Immunol. 4, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Brown, H.L., and Abernathy, M.P. (1998). Cytomegalovirus infection. Semin. Perinatol. 22, 260–266.

    Article  PubMed  CAS  Google Scholar 

  • Burchett, S.K., Corey, L., Mohan, K.M., Westall, J., Ashley, R., and Wilson, C.B. (1992). Diminished interferon-gamma and lymphocyte proliferation in neonatal and postpartum primary herpes simplex virus infection. J. Infect. Dis. 165, 813–818.

    PubMed  CAS  Google Scholar 

  • Chaplin, D.D. (2003). 1. Overview of the immune response. J. Allergy Clin. Immunol. 111, S442–459.

    Article  PubMed  CAS  Google Scholar 

  • Chen, L., Cohen, A.C., and Lewis, D.B. (2006). Impaired allogeneic activation and T helper 1 differentiation of human cord blood naive CD4 T cells. Biol. Blood Marrow Transplant. 12: 160–171.

    Article  PubMed  CAS  Google Scholar 

  • Chen, S.F., Tu, W.W., Sharp, M.A., Tongson, E.C., He, X.S., and Greenberg, H.B., et al. (2004). Antiviral CD8 T cells in the control of primary human cytomegalovirus infection in early childhood. J. Infect. Dis. 189, 1619–1627.

    Article  PubMed  Google Scholar 

  • Clerici, M., DePalma, L., Roilides, E., Baker, R., and Shearer, G.M. (1993). Analysis of T helper and antigen-presenting cell functions in cord blood and peripheral blood leukocytes from healthy children of different ages. J. Clin. Invest. 91, 2829–2836.

    PubMed  CAS  Google Scholar 

  • Cresswell, P., Ackerman, A.L., Giodini, A., Peaper, D.R., and Wearsch, P.A. (2005). Mechanisms of MHC class I-restricted antigen processing and cross-presentation. Immunol. Rev. 207, 145–157.

    Article  PubMed  CAS  Google Scholar 

  • Dabbagh, K., Dahl, M.E., Stepick-Biek, P., and Lewis, D.B. (2002). Toll-like receptor 4 is required for optimal development of Th2 immune responses: role of dendritic cells. J. Immunol. 168, 4524–4530.

    PubMed  CAS  Google Scholar 

  • Ehlers, S., and Smith, K.A. (1991). Differentiation of T cell lymphokine gene expression: the in vitro acquisition of T cell memory. J. Exp. Med. 173, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Etzioni, A., and Ochs, H.D. (2004). The hyper IgM syndrome — an evolving story. Pediatr. Res. 56, 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Gandhi, M.K., and Khanna, R. (2004). Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect. Dis. 4, 725–738.

    Article  PubMed  CAS  Google Scholar 

  • Gasparoni, A., Ciardelli, L., Avanzini, A., Castellazzi, A.M., Carini, R., Rondini, G., and Chirico, G. (2003). Age-related changes in intracellular TH1/TH2 cytokine production, immunoproliferative T lymphocyte response and natural killer cell activity in newborns, children and adults. Biol. Neonate 84, 297–303.

    Article  PubMed  CAS  Google Scholar 

  • Goriely, S., Vincart, B., Stordeur, P., Vekemans, J., Willems, F., Goldman, M., and De Wit, D. (2001). Deficient IL-12(p35) gene expression by dendritic cells derived from neonatal monocytes. J. Immunol. 166, 2141–2146.

    PubMed  CAS  Google Scholar 

  • Guerina, N.G., Hsu, H.W., Meissner, H.C., Maguire, J.H., Lynfield, R., Stechenberg, B., Abroms, I., Pasternack, M.S., Hoff, R., and Eaton, R.B., et al. (1994). Neonatal serologic screening and early treatment for congenital Toxoplasma gondii infection. The New England Regional Toxoplasma Working Group. N. Engl. J. Med. 330, 1858–1863.

    Article  PubMed  CAS  Google Scholar 

  • Harari, A., Zimmerli, S.C., and Pantaleo, G. (2004). Cytomegalovirus (CMV)-specific cellular immune responses. Hum. Immunol. 65, 500–506.

    Article  PubMed  CAS  Google Scholar 

  • Herget, G.W., Riede, U.N., Schmitt-Graff, A., Lubbert, M., Neumann-Haefelin, D., and Kohler, G. (2005). Generalized herpes simplex virus infection in an immunocompromised patient-report of a case and review of the literature. Pathol. Res. Pract. 201, 123–129.

    Article  PubMed  Google Scholar 

  • Hermann, E., Truyens, C., Alonso-Vega, C., Even, J., Rodriguez, P., and Berthe, A., et al. (2002). Human fetuses are able to mount an adult-like CD8 T-cell response. Blood 100, 2153–2158.

    PubMed  CAS  Google Scholar 

  • Hunter, C.A. (2005). New IL-12 family members: IL-23 and IL-27, cytokines with divergent functions. Nat. Rev. Immunol. 5, 521–531.

    Article  PubMed  CAS  Google Scholar 

  • Jain, A., Atkinson, T.P., Lipsky, P.E., Slater, J.E., Nelson, D.L., and Strober, W. (1999). Defects of T-cell effector function and post-thymic maturation in X-linked hyper-IgM syndrome. J. Clin. Invest. 103, 1151–1158.

    PubMed  CAS  Google Scholar 

  • Jullien, P., Cron, R.Q., Dabbagh, K., Cleary, A., Chen, L., and Tran, P., et al. (2003). Decreased CD154 expression by neonatal CD4+ T cells is due to limitations in both proximal and distal events of T cell activation. Int. Immunol. 15, 1461–1472.

    Article  PubMed  CAS  Google Scholar 

  • Kimberlin, D.W. (2004). Neonatal herpes simplex infection. Clin. Microbiol. Rev. 17, 1–13.

    Article  PubMed  Google Scholar 

  • Langrish, C.L., Buddle, J.C., Thrasher, A.J., and Goldblatt, D. (2002). Neonatal dendritic cells are intrinsically biased against Th-1 immune responses. Clin. Exp. Immunol. 128, 118–123.

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y.J. (2001). Dendritic cell subsets and lineages, and their functions in innate and adaptive immunity. Cell 106, 259–262.

    Article  PubMed  CAS  Google Scholar 

  • Lucin, P., Pavic, I., Polic, S., Jonjic, S., and Kosinowski, U.H. (1992). Gamma-interferon-dependent clearance of cytomegalovirus infection in salivary glands. J. Virol. 66, 1977–1984.

    PubMed  CAS  Google Scholar 

  • Marchant, A., Appay, V., Van Der Sande, M., Dulphy, N., Liesnard, C., and Kidd, M., et al. (2003). Mature CD8(+) T lymphocyte response to viral infection during fetal life. J. Clin. Invest. 111, 1747–1755.

    Article  PubMed  CAS  Google Scholar 

  • Mellman, I., and Steinman, R.M. (2001). Dendritic cells: specialized and regulated antigen processing machines. Cell 106, 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Melvin, A.J., McGurn, M.E., Bort, S.J., Gibson, C., and Lewis, D.B. (1995). Hypomethylation of the interferon-gamma gene correlates with its expression by primary T-lineage cells. Eur. J. Immunol. 25, 426–430.

    PubMed  CAS  Google Scholar 

  • Montoya, J.G., and Liesenfeld, O. (2004). Toxoplasmosis. Lancet 363, 1965–1976.

    Article  PubMed  CAS  Google Scholar 

  • Nonoyama, S., Penix, L.A., Edwards, C.P., Lewis, D.B., Ito, S., and Aruffo, A., et al. (1995). Diminished expression of CD40 ligand by activated neonatal T cells. J. Clin. Invest. 95, 66–75.

    Article  PubMed  CAS  Google Scholar 

  • O’Sullivan, B., and Thomas, R. (2003). CD40 and dendritic cell function. Crit. Rev. Immunol. 23, 83–107.

    Article  PubMed  CAS  Google Scholar 

  • Peggs, K.S., Verfuerth, S., Pizzey, A., Khan, N., Moss, P., and Goldstone, A.H., et al. (2003). Reconstitution of T-cell repertoire after autologous stem cell transplantation: influence of CD34 selection and cytomegalovirus infection. Biol. Blood Marrow Transplant. 9, 198–205.

    Article  PubMed  CAS  Google Scholar 

  • Picard, C., and Casanova, J.L. (2004) Inherited disorders of cytokines. Curr. Opin. Pediatr. 16, 648–658.

    Article  PubMed  Google Scholar 

  • Polic, B., Hengel, H., Krmpotic, A., Trgovcich, J., Pavic, P., and Luccaronin, P., et al. (1998) Hierarchical and redundant lymphocyte subset control precludes cytomegalovirus replication during latent infection. J. Exp. Med. 188, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Pirenne-Ansart, H., Paillard, F., De Groote, D., Eljaafari, A., Le Gac, S., Blot, P., Franchimont, P., Vaquero, C., and Sterkers, G. (1995). Defective cytokine expression but adult-type T-cell receptor, CD8, and p56lck modulation in CD3-or CD2-activated T cells from neonates. Pediatr. Res. 37, 64–69.

    PubMed  CAS  Google Scholar 

  • Quezada, S.A., Jarvinen, L.Z., Lind, E.F., and Noelle, R.J. (2004). CD40/CD154 interactions at the interface of tolerance and immunity. Annu. Rev. Immunol. 22, 307–328.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, R.H. (2005). Natural regulatory T cells and self-tolerance. Nat. Immunol. 6, 327–330.

    Article  PubMed  CAS  Google Scholar 

  • Smith, S., Jacobs, R.F., and Wilson, C.B. (1997). Immunobiology of childhood tuberculosis: a window on the ontogeny of cellular immunity. J. Pediatr. 131, 16–26.

    Article  PubMed  CAS  Google Scholar 

  • Stagno, S., Pass, R.F., Dworsky, M.E., and Alford, C.A. (1983). Congenital and perinatal cytomegalovirus infections. Semin. Perinatol. 7, 31–42.

    PubMed  CAS  Google Scholar 

  • Subauste, C.S., Wessendarp, M., Sorensen, R.U., and Leiva, L.E. (1999). CD40-CD40 ligand interaction is central to cell-mediated immunity against Toxoplasma gondii: patients with hyper IgM syndrome have a defective type 1 immune response that can be restored by soluble CD40 ligand trimer. J. Immunol. 162, 6690–6700.

    PubMed  CAS  Google Scholar 

  • Sullender, W.M., Miller, J.L., Yasukawa, L.L., Bradley, J.S., Black, S.B., Yeager, A.S., and Arvin, A.M. (1987). Humoral and cell-mediated immunity in neonates with herpes simplex virus infection. J. Infect. Dis. 155, 28–37.

    PubMed  CAS  Google Scholar 

  • Takeda, K., and Akira, S. (2005). Toll-like receptors and innate immunity. Int. Immunol. 17, 1–14.

    Article  PubMed  CAS  Google Scholar 

  • Trivedi, H.N., HayGlass, K.T., Gangur, V., Allardice, J.G., Embree, J.E., and Plummer, F.A. (1997). Analysis of neonatal T cell and antigen presenting cell functions. Hum. Immunol. 57, 69–79.

    Article  PubMed  CAS  Google Scholar 

  • Tu, W., Chen, S., Sharp, M., Dekker, C., Manganello, A.M., and Tongson, E.C., et al. (2004). Persistent and selective deficiency of CD4+ T cell immunity to cytomegalovirus in immunocompetent young children. J. Immunol. 172, 3260–3267.

    PubMed  CAS  Google Scholar 

  • Upham, J.W., Lee, P.T., Holt, B.J., Heaton, T., Prescott, S.L., and Sharp, M.J., et al. (2002). Development of interleukin-12-producing capacity throughout childhood. Infect. Immun. 70, 6583–6588.

    Article  PubMed  CAS  Google Scholar 

  • Walter, E.A., Greenberg, P.D., Gilbert, M.J., Finch, R.J., Watanabe, K.S., Thomas, E.D., and Riddell, S.R. (1995). Reconstitution of cellular immunity against cytomegalovirus in recipients of allogeneic bone marrow by transfer of T-cell clones from the donor. N. Engl. J. Med. 333, 1038–1044.

    Article  PubMed  CAS  Google Scholar 

  • Watts, C. (2004). The exogenous pathway for antigen presentation on major histocompatibility complex class II and CD1 molecules. Nat. Immunol. 5, 685–692.

    Article  PubMed  CAS  Google Scholar 

  • White, G.P., Watt, P.M., Holt, B.J., and Holt, P.G. (2002). Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO-T cells. J. Immunol. 168, 2820–2827.

    PubMed  CAS  Google Scholar 

  • Wilson, C.B., Remington, J.S., Stagno, S., and Reynolds, D.W. (1980). Development of adverse sequelae in children born with subclinical congenital Toxoplasma infection. Pediatrics 66, 767–774.

    PubMed  CAS  Google Scholar 

  • Wu, C.Y., Demeure, C., Kiniwa, M., Gately, M., and Delespesse, G. (1993). IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells. J. Immunol. 151, 1938–1949.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, LLC

About this paper

Cite this paper

Randolph, D.A., Lewis, D.B. (2006). Transient Deficiencies of T-Cell-Mediated Immunity in the Neonate. In: Pollard, A.J., Finn, A. (eds) Hot Topics in Infection and Immunity in Children III. Advances in Experimental Medicine and Biology, vol 582. Springer, Boston, MA . https://doi.org/10.1007/0-387-33026-7_6

Download citation

Publish with us

Policies and ethics