Skip to main content

Metastatic Cancer to Bone

  • Chapter
Oncology

Abstract

Metastatic disease to bone is the most common malignancy of bone. The American Cancer Society estimated that in 2004 there will have been 1,368,030 new cases of cancer in the United States.1 Of these, they estimated that approximately 2,400 will be new cases of primary bone malignancy; that is, compared with over 230,000 new cases of prostate carcinoma, 217,000 cases of breast carcinoma, and 173,000 cases of lung carcinoma. Those three diagnoses, along with kidney cancer and thyroid carcinoma, represent 80% of metastases to the skeleton.2 Autopsy studies have shown that 50% to 70% of patients with prostate cancer develop metastases and 85% of patients with breast cancer develop skeletal metastases. The skeleton is surpassed only by the lungs and liver for incidence of metastatic disease. Any bone of the skeleton can be involved; however, the axial skeleton is most commonly involved. Involvement of the appendicular skeleton most commonly involves the proximal portion of the lower extremities. Within the spine, it is primarily the anterior and middle columns that are involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cancer Facts and Figures. Atlanta, GA: American Cancer Society, 2004:1–16.

    Google Scholar 

  2. Buckwalter JA, Brandser EA. Metastatic disease of the skeleton. Am Fam Physician 1997;55:1761–1768.

    PubMed  CAS  Google Scholar 

  3. Hage WD, Aboulafia AJ, Aboulafia DM. Incidence, location and diagnostic evaluation of metastatic bone disease. Orthop Clin N Am 2000;31:515–528.

    Article  CAS  Google Scholar 

  4. Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889;1:571.

    Article  Google Scholar 

  5. Mollabarsky A, Scarborough M. The mechanisms of metastasis. Orthop Clin N Am 2000;31:529–535.

    Article  Google Scholar 

  6. Clain A. Secondary malignant disease of bone. Br J Cancer 1965;19:15–29.

    PubMed  CAS  Google Scholar 

  7. Batson OV. The function of the vertebral veins and their role in the spread of metastases. Ann Surg 1940;112:138–149.

    Article  PubMed  CAS  Google Scholar 

  8. Mohammad K, Guise T. Mechanisms of osteoblastic metastases: role of endothelin. 1. Clin Orthop Relat Res 2003;415S:S67–S74.

    Article  Google Scholar 

  9. Roodman G. Mechanisms of bone metastasis. N Engl J Med 2004;350:1655–1664.

    Article  PubMed  CAS  Google Scholar 

  10. Mohla S, Weilbacher K, Cher M, et al. Third North American symposium on skeletal complications of malignancy. Cancer (Phila) 2003;97(suppl 3):719–725.

    Article  PubMed  Google Scholar 

  11. Aebi M. Spinal metastasis in the elderly. Eur Spine J 2003;12(suppl 2):S202–S213.

    Article  PubMed  Google Scholar 

  12. Kahn D, Weiner G, Ben-Haim S, et al. Positron emission tomographic measurement of bone marrow blood flow to the pelvis and lumbar vertebrae in young normal adults. Blood 1994;83:958–963.

    PubMed  CAS  Google Scholar 

  13. Orr F, Lee J, Duivenvoorden W, et al. Pathophysiologic interactions in skeletal metastasis. Cancer (Phila) 2000;88:2912–2918.

    Article  PubMed  CAS  Google Scholar 

  14. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 1998;95:3597–3602.

    Article  PubMed  CAS  Google Scholar 

  15. Powell G, Southby J, Danks J, et al. Localization of parathyroid hormone-related protein in breast cancer metastases: increased incidence in bone compared with other sites. Cancer Res 1991;51:3059–3061.

    PubMed  CAS  Google Scholar 

  16. Henderson M, Danks J, Moseley J, et al. Parathyroid hormone-related protein production by breast cancers, improved survival and reduced bone metastases. J Natl Cancer Inst 2001;93:234–237.

    Article  PubMed  CAS  Google Scholar 

  17. Brown J, Coleman R. Assessment of the effects of breast cancer on bone and the response to therapy. Breast 2002;11:375–385.

    Article  PubMed  Google Scholar 

  18. Coleman E. Skeletal complications of malignancy. Cancer (Phila) 1997;80:1588–1594.

    Article  PubMed  CAS  Google Scholar 

  19. Bjurholm A, Kreicbergs A, Brodin E, Schultzberg M. Substance P-and CGRP-immunoreactive nerves in bone. Peptides 1988;9:165–171.

    Article  PubMed  CAS  Google Scholar 

  20. Healey JH. The mechanism and treatment of bone pain. In: Arbit E (ed) Management of Cancer-Related Pain. Mount Kisco, NY: Futura, 1993:515.

    Google Scholar 

  21. Mundy GR. Mechanisms of bone metastasis. Cancer (Phila) 1997;80(suppl 8):1546–1556.

    Article  PubMed  CAS  Google Scholar 

  22. Edelstyn GA, Gillespie PJ, Grebbell FS. The radiological demonstration of osseous metastases: experimental observations. Clin Radiol 1967;18:158–162.

    Article  PubMed  CAS  Google Scholar 

  23. Fidler M. Incidence of fracture through metastases in long bones. Acta Orthop Scand 1981;52:623–627.

    PubMed  CAS  Google Scholar 

  24. de Santos LA, Libshitz HI. Adult bone. In: Libshitz HI (ed) Diagnostic Roentgenology of Radiotherapy Change. Baltimore: Williams & Wilkins, 1979:137–150.

    Google Scholar 

  25. Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer (Phila) 1997;80:1595–1607.

    Article  PubMed  CAS  Google Scholar 

  26. Vande Streek PR. Nuclear medicine approaches to musculoskeletal disease. Radiol Clin N Am 1994;32:243–253.

    Google Scholar 

  27. Corcoran RJ, Thrall JH, Kyle RW, et al. Solitary abnormality in bone scans of patients with extraosseous malignancies. Radiology 1976;121:663–667.

    PubMed  CAS  Google Scholar 

  28. Zoeller G, Sandrock D, Munz DL, et al. Bone marrow immunoscintigraphy versus conventional bone scintigraphy in the diagnosis of skeletal metastases in urogenital malignancies. Eur Urol 1994;26:141–144.

    PubMed  CAS  Google Scholar 

  29. Castillo LA, Yeh SDJ, Leeper RD, et al. Bone scans in bone metastases from functioning thyroid carcinoma. Clin Nucl Med 1980;5:200–209.

    Article  PubMed  CAS  Google Scholar 

  30. Shreve PD, Grossman HB, Gross MD, et al. Metastatic prostate cancer: initial findings of PET with 2-deoxy2-[F-18]fluoro-D-glucose. Radiology 1996;199:751–756.

    PubMed  CAS  Google Scholar 

  31. Ryan PJ, Fogelman I. The bone scan: where are we now? Semin Nucl Med 1995;25:76–91.

    Article  PubMed  CAS  Google Scholar 

  32. Dedashti F, Siegel BA, Griffeth LK, et al. Benign versus malignant intraosseous lesions: discrimination by means of PET with 2[F-18]fluoro-2-deoxy-D-glucose. Radiology 1996;200:243–247.

    Google Scholar 

  33. Pagani JJ, Libshitz HI. Imaging bone metastases. In: Radiologic Clinics of North America. Philadelphia: Saunders, 1982:545–560.

    Google Scholar 

  34. Ciray I, Astrom G, Andreasson I, et al. Evaluation of new sclerotic bone metastases in breast cancer patients during treatment. Acta Radiol 2000;41:178–182.

    Article  PubMed  CAS  Google Scholar 

  35. Braunstein EM, Kuhns LR. Computed tomographic demonstration of spinal metastases. Spine 1983;8:912–915.

    Article  PubMed  CAS  Google Scholar 

  36. Redmond J III, Spring DB, Munderloh SH, et al. Spinal computed tomography scanning in the evaluation of metastatic disease. Cancer (Phila) 1984;54:253–258.

    Article  PubMed  Google Scholar 

  37. Helms CA, Cann CE, Brunelle FO, et al. Detection of bone marrow metastases using quantitative computed tomography. Radiology 1981;140:745–750.

    PubMed  CAS  Google Scholar 

  38. Kang M, Gupta S, Khandelwal S, et al. CT-guided fine needle aspiration biopsy of spinal lesions. Acta Radiol 1999;40:474–478.

    PubMed  CAS  Google Scholar 

  39. Kornblum MB, Wesolowski DP, Fischgrund JS, et al. Computed tomography-guided biopsy of the spine: a review of 103 patients. Spine 1998;23:81–85.

    Article  PubMed  CAS  Google Scholar 

  40. Philips J, Waugh R, Ng AB. Radiologically-guided percutaneous fine needle aspiration biopsies of abdominal and osseous lesions. Aust N Z J Med 1984;14:260–263.

    PubMed  CAS  Google Scholar 

  41. Murphy WA, Destouet JM, Gilula LA. Percutaneous skeletal biopsy 1981: a procedure for radiologists. Results, review and recommendations. Radiology 1981;139:545–549.

    PubMed  CAS  Google Scholar 

  42. Stoker DJ, Kissin CM. Percutaneous vertebral biopsy: a review of 135 cases. Clin Radiol 1985;36:569–577.

    Article  PubMed  CAS  Google Scholar 

  43. Kattapuram SV, Rosenthal DI. Percuatneous biopsy of skeletal lesions. AJR 1991;157:935–942.

    PubMed  CAS  Google Scholar 

  44. Ciray I, Astrom G, Sundstrom C. Assessment of suspected bone metastases: CT with and without clinical information compared to CT-guided bone biopsy. Acta Radiol 1997;38:890–895.

    Article  PubMed  CAS  Google Scholar 

  45. Gangi A, Kastler B, Klinkert A, et al. Injection of alcohol into bone metastases under CT guidance. J Comput Assist Tomogr 1994;18:932–935.

    PubMed  CAS  Google Scholar 

  46. Zimmer WD, Berquist TH, McLeod RA, et al. Bone tumors: magnetic resonance imaging versus computed tomography. Radiology 1985;155:709–718.

    PubMed  CAS  Google Scholar 

  47. Smoker WRK, Godersky JC, Knutzon RK, et al. The role of MR imaging in evaluating metastatic spinal disease. AJR 1987;149:1241–1248.

    PubMed  CAS  Google Scholar 

  48. Lien HH, Blomlie V, Heimdal K. Magnetic resonance imaging of malignant extradural tumors with acute spinal cord compression. Acta Radiol 1990;31:187–190.

    PubMed  CAS  Google Scholar 

  49. Frank JA, Ling A, Patronas NJ, et al. Detection of malignant bone tumors: MR imaging versus scintigraphy. AJR 1990;155:1043–1048.

    PubMed  CAS  Google Scholar 

  50. Algra PR, Bloem JL, Tissing H, et al. Detection of vertebral metastases: comparison between MR imaging and bone scintigraphy. Radiographics 1991;11:219–232.

    PubMed  CAS  Google Scholar 

  51. Traill ZC, Talbot D, Golding S, et al. Magnetic resonance imaging versus radionuclide scintigraphy in screening for bone metastases. Clin Radiol 1999;54:448–451.

    Article  PubMed  CAS  Google Scholar 

  52. Walker R, Kessar P, Blanchard R, et al. Turbo STIR magnetic resonance imaging as a whole-body screening tool for metastases in patients with breast carcinoma: preliminary clinical experience. J Magn Reson Imaging 2000;11:343–350.

    Article  PubMed  CAS  Google Scholar 

  53. Schweitzer ME, Levine C, Mitchell DG, et al. Bull’s eyes and halos: useful discriminators of osseous metastases. Radiology 1993;188:249–252.

    PubMed  CAS  Google Scholar 

  54. Jung HS, Jee WH, McCauley TR, et al. Discrimination of metastatic from acute osteoporotic compression fractures with MR imaging. Radiographics 2003;23:179–187.

    Article  PubMed  Google Scholar 

  55. Baker LL, Goodman SB, Perkash I, et al. Benign versus pathologic compression fractures of vertebral bodies: assessment with conventional spin-echo, chemical-shift, and STIR MR imaging. Radiology 1990;174:495–502.

    PubMed  CAS  Google Scholar 

  56. Hage W, Aboulafin A, Aboulafin D. Incidence, location and evaluation of metastatic bone disease. Orthop Clin N Am 2000;31:515–528.

    Article  CAS  Google Scholar 

  57. Simon MA, Finn HA. Diagnostic strategy for bone and soft-tissue tumors. J Bone Joint Surg Am 1993;75:622–631.

    PubMed  CAS  Google Scholar 

  58. Bates SE. Clinical applications of serum tumor markers. Ann Intern Med 1991;115:623–638.

    PubMed  CAS  Google Scholar 

  59. Aboulafia AJ. Biopsy. Instr Course Lect 1999;48:587–590.

    PubMed  CAS  Google Scholar 

  60. Mankin HJ, Lange TA, Spanier SS. The hazards of biopsy in patients with malignant primary bone and soft-tissue tumors. J Bone Joint Surg Am 1982;64:1121–1127.

    PubMed  CAS  Google Scholar 

  61. Mankin HJ, Mankin CJ, Simon MA. The hazards of biopsy, revisited. Members of the Musculoskeletal Tumor Society. J Bone Joint Surg Am 1996;78:656–663.

    PubMed  CAS  Google Scholar 

  62. Rougraff BT, Kneisl JS, Simon MA. Skeletal metastases of unknown origin: a prospective study of a diagnostic strategy. J Bone Joint Surg Am 1993;75:1276–1281.

    PubMed  CAS  Google Scholar 

  63. ASCO Ad Hoc Committee on Cancer Pain. Cancer pain assessment and treatment curriculum guidelines. J Clin Oncol 1992;10:1976–1982.

    Google Scholar 

  64. Niewald M, Tkocz H, Abel U, et al. Rapid course radiation therapy vs. more standard treatment: a randomized trial for bone metastases. Int J Radiat Oncol Biol Phys 1996;36:1085–1089.

    Article  PubMed  CAS  Google Scholar 

  65. Rasmusson B, Vejborg I, Jensen A, et al. Irradiation of bone metastases in breast cancer patients: a randomized study with 1 year follow-up. Radiother Oncol 1995;34:179–184.

    Article  PubMed  CAS  Google Scholar 

  66. Okawa T, Kita M, Goto M, et al. Randomized prospective clinical study of small, large and twice-a-day fraction radiotherapy for painful bone metastases. Radiother Oncol 1988;13:99–104.

    Article  PubMed  CAS  Google Scholar 

  67. Madsen E. Painful bone metastasis: efficacy of radiotherapy assessed by the patients: a randomized trial comparing 4Gy × 6 versus 10Gy × 2. Int J Radiat Oncol Biol Phys 1983;9:1775–1779.

    PubMed  CAS  Google Scholar 

  68. Blitzer P. Reanalysis of the RTOG study of the palliation of symptomatic osseous metastasis. Cancer (Phila) 1985;55:1468–1472.

    Article  PubMed  CAS  Google Scholar 

  69. Tong D, Gillick L, Hendrickson F. The palliation of symptomatic osseous metastases: final results of the Study by the Radiation Therapy Oncology Group. Cancer (Phila) 1982;50:893–899.

    Article  PubMed  CAS  Google Scholar 

  70. Cole D. A randomized trial of a single treatment versus conventional fractionation in the palliative radiotherapy of painful bone metastases. Clin Oncol (R Coll Radiol) 1989;1:59–62.

    Article  CAS  Google Scholar 

  71. Steenland E, Leer J, van Houwelingen H, et al. The effect of a single fraction compared to multiple fractions on painful bone metastases: a global analysis of the Dutch Bone Metastasis Study. Radiother Oncol 1999;52:101–109.

    Article  PubMed  CAS  Google Scholar 

  72. Nielsen O, Bentzen S, Sandberg E, et al. Randomized trial of single dose versus fractionated palliative radiotherapy of bone metastases. Radiother Oncol 1998;47:233–240.

    Article  PubMed  CAS  Google Scholar 

  73. Bone Pain Trial Working Party. 8 Gy single fraction radiotherapy for the treatment of metastatic skeletal pain: randomized comparison with a multifraction schedule over 12 months of patient follow-up. Radiother Oncol 1999;52:111–121.

    Article  Google Scholar 

  74. Price P, Hoskin P, Easton D, et al. Prospective randomized trial of single and multifraction radiotherapy schedules in the treatment of painful boney metastases. Radiother Oncol 1986;6:247–255.

    Article  PubMed  CAS  Google Scholar 

  75. Gaze M, Kelly C, Kerr G, et al. Pain relief and quality of life following radiotherapy for bone metastases: a randomised trial of two fractionation schedules. Radiother Oncol 1997;45:109–116.

    Article  PubMed  CAS  Google Scholar 

  76. Jeremic B, Shibamoto Y Acimovic L, et al. A randomized trial of three single-dose radiation therapy regimens in the treatment of metastatic bone pain. Int J Radiat Oncol Biol Phys 1998;42:161–167.

    Article  PubMed  CAS  Google Scholar 

  77. Hoskin P, Price P, Easton D, et al. a prospective randomized trial of 4 Gy or 8 Gy single doses in the treatment of metastatic bone pain. Radiother Oncol 1992;23:74–78.

    Article  PubMed  CAS  Google Scholar 

  78. Falkmer U, Järhult J, Wersäll P, et al. A systematic overview of radiation therapy effects in skeletal metastases. Acta Oncol 2003;42:620–633.

    Article  PubMed  Google Scholar 

  79. Sze W, Shelley M, Held I, et al. Palliation of metastatic bone pain: single fraction versus multifraction radiotherapy. A systematic review of randomized trials. Clin Oncol 2003;15:345–352.

    Article  CAS  Google Scholar 

  80. The Breast Specialty Group of the British Association of Surgical Oncology. The management of metastatic bone disease in the United Kingdom. Eur J Surg Oncol 1999;25:3–23.

    Article  Google Scholar 

  81. McQuay HJ, Collins SL, Moore RA. Radiotherapy for the palliation of painful bone metastasis (Cochrane Review). In: The Cochrane Library, vol 2. Chichester, UK: Wiley, 2004.

    Google Scholar 

  82. International Bone Metastases Consensus on endpoint measurements for future clinical trials. Proceedings of the first survey and meeting (work in progress) International Bone Metastases Consensus Working Party. Clin Oncol 2001;13:82–84.

    Google Scholar 

  83. Ackery D, Yardley J. Radionuclide-targeted therapy for the management of metastatic bone pain. Semin Oncol 1993;20(suppl 2):27–31.

    PubMed  CAS  Google Scholar 

  84. Silberstein EB. The treatment of painful osseous metastases with phosphorus-32-labeled phosphates. Sem Oncol 1993;20(suppl 2):10–21.

    CAS  Google Scholar 

  85. Papatheofanis F. Variation in oncologic opinion regarding management of metastatic bone pain with systemic radionuclide therapy. J Nucl Med 1999;40:1420–1423.

    PubMed  CAS  Google Scholar 

  86. Dickinson C, Hendrix N. Strontium-89 therapy in painful bony metastases. J Nucl Med Technol 1993;21:133–137.

    Google Scholar 

  87. Robinson R. Strontium-89: precursor targeted therapy for pain relief of blastic metastatic disease. Cancer (Phila) 1993;72:3433–3435.

    Article  PubMed  CAS  Google Scholar 

  88. Nair N. Relative efficacy of 32P and 89Sr in palliation in skeletal metastases. J Nucl Med 1999;40:256–262.

    PubMed  CAS  Google Scholar 

  89. Buchali K, Correns HJ, Schuerer M, et al. Results of a double blind study of 89-strontium therapy of skeletal metastases of prostatic carcinoma. Eur J Nucl Med 1988;44:349–351.

    Google Scholar 

  90. Porter AT, McEwan AJB. Strontium-89 as an adjuvant to external beam radiation improves pain relief and delays disease progression in advanced protate cancer: results of a randomized controlled trial. Semin Oncol 1993;20(suppl 2):38–43.

    PubMed  CAS  Google Scholar 

  91. Lewington VJ, McEwan AJ, Ackery DM, et al. A prospective randomised double-blind crossover study to examine the efficacy of strontium-89 in pain palliation in patients with advanced prostate cancer metastatic to bone. Eur J Cancer 1991;27:954–958.

    PubMed  CAS  Google Scholar 

  92. Serafini AN, Houston SJ, Resche I, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 1998;16:1574–1581.

    PubMed  CAS  Google Scholar 

  93. Roqué M, Martinez M, Alonso-Coello P, et al. Radioisotopes for metastatic bone pain (Cochrane Review). In: The Cochrane Library, issue 1. Chichester, UK: Wiley, 2004.

    Google Scholar 

  94. Serafini A. Systemic metabolic radiotherapy with samarium-153 EDTMP for the treatment of painful bone metastasis. Q J Nucl Med 2001;45:91–99.

    PubMed  CAS  Google Scholar 

  95. Fitton A, McTavish D. Pamidronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease. Drugs 1991;41:289–318.

    Article  PubMed  CAS  Google Scholar 

  96. Benford HL, Frith JC, Auriola S, et al. Farnesol and geranyl-geraniol prevent activation of caspases by aminiobisphosphonates: evidence for two distinct pharmacological classes of bisphosphonate drugs. Mol Pharmacol 1999;56:131–140.

    PubMed  CAS  Google Scholar 

  97. Derenne S, Amiot M, Barill S, et al. Zoledronate is a potent inhibitor of myeloma cell growth and secretion of IL-6 and MMP-1 by the tumoral environment. J Bone Miner Res 1999;14:2048–2056.

    Article  PubMed  CAS  Google Scholar 

  98. Boissier S, Magnetto S, Frappart L, et al. Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrix. Cancer Res 1997:57:3890–3894.

    PubMed  CAS  Google Scholar 

  99. Senaratne SG, Pirianov G, Mansi JL, et al. Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 2000;82:1459–1468.

    PubMed  CAS  Google Scholar 

  100. Ross JR, Saunders Y, Edmonds PM, et al. A systemic review of the role of bisphosphonates in metastatic disease. Health Technol Assess 2004;8:1–176.

    PubMed  CAS  Google Scholar 

  101. Østenstad B, Andersen OK. Disodium pamidronate versus mithramycin in the management of tumour-associated hypercalcemia. Acta Oncol 1992;31:861–864.

    Article  PubMed  Google Scholar 

  102. Hasling C, Charles P, Mosekilde L. Etidronate disodium for treating hypercalcaemia of malignancy: a double blind, placebo-controlled study. Eur J Clin Invest 1986;16:433–437.

    PubMed  CAS  Google Scholar 

  103. Rotstein, S, Glas U, Eriksson M, et al. Intravenous clodronate for the treatment of hypercalcaemia in breast cancer patients with bone metastases: a prospective randomized placebo-controlled multicenter study. Eur J Cancer 1992;28A:890–893.

    Article  PubMed  CAS  Google Scholar 

  104. Gucalp R, Theriault R, Gill I, et al. Treatment of cancer-associated hypercalcemia: double-blind comparison of rapid and slow intravenous infusion regimens of pamidronate disodium and saline alone. Arch Intern Med 1994;154:1935–1944.

    Article  PubMed  CAS  Google Scholar 

  105. Syrigos KN, Michalaki V, Mitromaras A, et al. Safety and efficacy of the new bisphosphonate ibandronate in the management of bone metastasis following rapid infusion. In Vivo 2002;16:361–364.

    PubMed  CAS  Google Scholar 

  106. Warrell RP, Murphy WK, Schulman P, et al. A randomized double-blind study of gallium nitrate compared with etidronate for acute control of cancer-related hypercalcemia. J Clin Oncol 1991;9:1467–1475.

    PubMed  Google Scholar 

  107. Gucalp R, Ritch P, Wiernik P, et al. Comparative study of pamidronate disodium and etidronate disodium in the treatment of cancer-related hypercalcemia. J Clin Oncol 1992;10:134–142.

    PubMed  CAS  Google Scholar 

  108. Purohit OP, Radstone CR, Anthony C, et al. A randomized double-blind comparison of intravenous pamidronate and clodronate in the hypercalcaemia of malignancy. Br J Cancer 1995;72:1289–1293.

    PubMed  CAS  Google Scholar 

  109. Ralston SH, Gallacher SJ, Patel U, et al. Comparison of three intravenous bisphosphonates in cancer-associated hypercalcaemia. Lancet 1989;ii:1180–1182.

    Article  Google Scholar 

  110. Vinholes J, Guo CY, Purohit OP, et al. Evaluation of new bone resorption markers in a randomized comparison of pamidronate or clodronate for hypercalcemia of malignancy. J Clin Oncol 1997;15:131–138.

    PubMed  CAS  Google Scholar 

  111. Rizzoli R, Buchs B, Bonjour JP. Effect of a single infusion of alendronate in malignant hypercalcaemia: dose dependency and comparison with clodronate. Int J Cancer 1992;50:706–712.

    Article  PubMed  CAS  Google Scholar 

  112. Major P, Lortholary A, Hon J, et al. Zoledronic acid is superior to pamidronate in the treatment of hypercalcemia of malignancy: a pooled analysis of two randomized, controlled clinical trials. J Clin Oncol 2001;19:558–567.

    PubMed  CAS  Google Scholar 

  113. Nussbaum SR, Younger J, Vandepol CJ, et al. Single-dose intravenous therapy with pamidronate for the treatment of hypercalcemia of malignancy: comparison of 30-, 60-, and 90-mg dosages. Am J Med 1993;95:297–304.

    Article  PubMed  CAS  Google Scholar 

  114. Hultborn R, Gundersen S, Ryden S, et al. Efficacy of pamidronate in breast cancer with bone metastases: a randomized double-blind placebo controlled multicenter study. Acta Oncol 1996;35(S5):73–74.

    Article  PubMed  Google Scholar 

  115. van Holten-Verzantvoort A, Zwinderman A, Aaronson N, et al. The effect of supportive pamidronate treatment on aspects of quality of life of patients with advanced breast cancer. Eur J Cancer 1991;27:544–549.

    Article  PubMed  Google Scholar 

  116. Cleton FJ, van Holten-Verzantvoort A, Bijvoet O. Effect of long-term bisphosphonate treatment on morbidity due to bone metastases in breast cancer patients. Recent Results Cancer Res 1989;116:73–78.

    PubMed  CAS  Google Scholar 

  117. Hortobagyi GN, Theriault RL, Lipton A, et al. Long-term prevention of skeletal complications of metastatic breast cancer with pamidronate. J Clin Oncol 1998;16:2038–2044.

    PubMed  CAS  Google Scholar 

  118. Hortobagyi GN, Theriault RL, Porter L, et al. Efficacy of pamidronate in reducing skeletal complications in patients with breast cancer and lytic bone metastasis. N Engl J Med 1996;335:1785–1791.

    Article  PubMed  CAS  Google Scholar 

  119. Theriault RL, Lipton A, Hortobagyi GN, et al. Pamidronate reduces skeletal morbidity in women with advanced breast cancer and lytic bone lesions: a randomized, placebo-controlled trial. J Clin Oncol 1999;17:846–854.

    PubMed  CAS  Google Scholar 

  120. Kristensen B, Ejlertsen B, Groenvold M, et al. Oral clodronate in breast cancer patients with bone metastasis: a randomized study. Ann Intern Med 1999;246:67–74.

    CAS  Google Scholar 

  121. Paterson AHG, Powles TJ, Kanis JA, et al. Double-blind controlled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 1993;11:59–65.

    PubMed  CAS  Google Scholar 

  122. Tubiana-Hulin M, Beuzeboc P, Mauriac L, et al. [Double-blinded controlled study comparing clodronate versus placebo in patients with breast cancer bone metastases]. Bull Cancer 2001;88:701–707.

    PubMed  CAS  Google Scholar 

  123. van Holten-Verzantvoort ATM, Kroon HM, Bijvoet OLM, et al. Palliative pamidronate treatment in patients with bone metastases from breast cancer. J Clin Oncol 1993;11:491–498.

    PubMed  Google Scholar 

  124. van Holten-Verzantvoort AT, Bijvoet OLM, Cleton FJ, et al. Reduced morbidity from skeletal metastases in breast cancer patients during long-term bisphosphonate (ADP) treatment. Lancet 1987;2(8566):983–985.

    Article  PubMed  Google Scholar 

  125. Saad F, Gleason DM, Murray R, et al. Long-term efficacy of zoledronic acid for the prevention of skeletal complications in patients with metastatic hormone-refractory prostate cancer. J Natl Cancer Inst 2004;96:879–882.

    Article  PubMed  CAS  Google Scholar 

  126. Rosen LS, Gordon D, Tchekmedyian S, et al. Zoledronic acid versus placebo in the treatment of skeletal metastases in patients with lung cancer and other solid tumors: a phase III, double-blind, randomized trial. The zoledronic acid lung cancer and other solid tumors study group. J Clin Oncol 2003;21:3150–3157.

    Article  PubMed  CAS  Google Scholar 

  127. Rosen LS, Gordon D, Kaminski M, et al. Zoledronic acid versus pamidronate in the treatment of skeletal metastases in patients with breast cancer or osteolytic lesions of multiple myeloma: a phase III, double-blind, comparative trial. Cancer J 2001;7:377–387.

    PubMed  CAS  Google Scholar 

  128. Berenson JR, Rosen LS, Howell A, et al. Zoledronic acid reduces skeletal-related events in patients with osteolytic metastasis: a double-blind, randomized dose-response study. Cancer (Phila) 2001;91:1191–1200.

    Article  PubMed  CAS  Google Scholar 

  129. Theriault R. Pamidronate in the treatment of osteolytic bone metastases in breast cancer patients. Br J Clin Pract 1996;87(suppl):8–12.

    CAS  Google Scholar 

  130. Hultborn R, Gundersen S, Ryden S, et al. Efficacy of pamidronate in breast cancer with bone metastasis: a randomized, double-blind placebo-controlled multicenter study. Anticancer Res 1999;19:3383–3392.

    PubMed  CAS  Google Scholar 

  131. Glover D, Lipton A, Keller A, et al. Intravenous pamidronate disodium treatment of bone metastases in patients with breast cancer. Cancer (Phila) 1994;74:2949–2955.

    Article  PubMed  CAS  Google Scholar 

  132. Robertson AG, Reed NS, Ralston SH. Effect of oral clodronate on metastatic bone pain: a double-blind, placebo-controlled study. J Clin Oncol 1995;13:2427–2430.

    PubMed  CAS  Google Scholar 

  133. Saad F, Gleason DM, Murray R, et al. A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 2002;94:1458–1468.

    PubMed  CAS  Google Scholar 

  134. Conte PF, Giannessi PG, Latreille J, et al. Delayed progression of bone metastases with pamidronate therapy in breast cancer patients: a randomized, multicenter phase III trial. Ann Oncol 1994;5(S7):S41–S44.

    PubMed  Google Scholar 

  135. Conte PF, Latreille J, Mauriac L, et al. Delay in progression of bone metastases in breast cancer patients treated with intravenous pamidronate: results from a multinational randomized controlled trial. J Clin Oncol 1996;14:2552–2559.

    PubMed  CAS  Google Scholar 

  136. Hillner BE, Ingle JN, Chlebowski RT, et al. American Society of Clinical Oncology 2003 update on the role of bisphosphonates and bone health issues in women with breast cancer. J Clin Oncol 2003;21:4042–4057.

    Article  PubMed  CAS  Google Scholar 

  137. Tobinick EL. Targeted etanercept for treatment-refractory pain due to bone metastasis: two case reports. Clin Ther 2003;25:2279–2288.

    Article  PubMed  Google Scholar 

  138. Saikali Z, Singh G. Doxycycline and other tetracyclines in the treatment of bone metastasis. Anti-Cancer Drugs 2003;14:773–778.

    Article  PubMed  CAS  Google Scholar 

  139. Martinez MJ, Roqué M, Alonso-Coello P, et al. Calcitonin for metastatic bone pain (Cochrane Review). In: The Cochrane Library, issue 1. Chichester, UK: Wiley, 2004.

    Google Scholar 

  140. Koeneman KS, Kao C, Ko SC, et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J Urol 2000;18:102–110.

    Article  PubMed  CAS  Google Scholar 

  141. CAL-03. Humanized monoclonal antibody to parathyroid hormone related protein. Chugai Pharma USA, LLC, 2002.

    Google Scholar 

  142. Cleeland CS, Gonin R, Hatfield AK, et al. Pain and its treatment in outpatients with metastatic cancer. N Engl J Med 1994;330:592–596.

    Article  PubMed  CAS  Google Scholar 

  143. McGahan JP, Dodd GD. Radiofrequency ablation of the liver: current status. AJR 2001;176:3–16.

    Google Scholar 

  144. Solbiati L, Goldberg SN, Ierace T, et al. Hepatic metastases: percutaneous radio-frequency ablation with cooled-tip electrodes. Radiology 1997;205:367–373.

    PubMed  CAS  Google Scholar 

  145. Rosenthal DI, Alexander A, Rosenberg AE, et al. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 1992;183:29–33.

    PubMed  CAS  Google Scholar 

  146. Rosenthal DI, Springfield DS, Gebhardt MC, et al. Osteoid osteoma: percutaneous radiofrequency ablation. Radiology 1995;197:451–454.

    PubMed  CAS  Google Scholar 

  147. Rosenthal DI, Hornicek FJ, Wolfe MW, et al. Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am 1998;80:815–821.

    PubMed  CAS  Google Scholar 

  148. Callstrom MR, Charboneau WJ, Goetz MP, et al. Painful metastases involving bone: feasibility of percutaneous CT-and USguided radio-frequency ablation. Radiology 2002;224:87–97.

    Article  PubMed  Google Scholar 

  149. Gronemeyer DHW, Schirp S, Gevargez A. Image-guided radiofrequency ablation of spinal tumors: preliminary experience with an expandable array electrode. Cancer J 2002;8:33–39.

    PubMed  Google Scholar 

  150. Levine SA, Perin LA, Hayes D, et al. An evidence-based evaluation of percutaneous vertebroplasty. Manag Care 2000;9:56–60, 63.

    PubMed  CAS  Google Scholar 

  151. Weill A, Chiras J, Simon J, et al. Spinal metastases: indications for and results of percutaneous injection of acrylic surgical cement. Radiology 1996;199:241–247.

    PubMed  CAS  Google Scholar 

  152. Fourney DR, Schomer DF, Nader R, et al. Percutaneous vertebroplasty and kyphyoplasty for painful vertebral body fractures in cancer patients. J Neurosurg 2003;98:21–30.

    PubMed  Google Scholar 

  153. Kaufmann TJ, Jensen ME, Schweickert PA, et al. Age of fracture and clinical outcomes of percutaneous vertebroplasty. Am J Neuroradiol 2001;22:1860–1863.

    PubMed  CAS  Google Scholar 

  154. Schaefer O, Lohrmann C, Herling M, et al. Combined radiofrequency thermal ablation and percutaneous cementoplasty treatment of a pathologic fracture. J Vasc Intervent Radiol 2002;13:1047–1050.

    Article  Google Scholar 

  155. Rougraff B. Indications for operative treatment. Orthop Clin N Am 2000;31:567–575.

    Article  CAS  Google Scholar 

  156. Burstein AH, Currey J, Frankel VH, et al: Bone strength: the effect of screw holes. J Bone Joint Surg 1972;54:1143–1156.

    PubMed  CAS  Google Scholar 

  157. Frankel BH, Burstein AH. Orthopaedic Biomechanics. Malvern, PA: Lea & Febiger, 1970.

    Google Scholar 

  158. Parrish FF, Murray JA. Surgical treatment for secondary neoplastic fractures: a retrospective study of ninety-six patients. J Bone Joint Surg 1970;52:665–686.

    PubMed  CAS  Google Scholar 

  159. Hipp JA, Springfield DS, Hayes WC. Predicting pathologic fracture risk in the management of metastatic bone defects. Clin Orthop 1995;312:120–135.

    PubMed  Google Scholar 

  160. Keene JS, Sellinger DS, McBeath AA, et al: Metastatic breast cancer in the femur: a search for the lesion at risk of fracture. Clin Orthop 1986;203:282–288.

    PubMed  Google Scholar 

  161. Zickel RG, Mouradian WH. Intramedullary fixation of pathologic fractures and lesions of the subtrochanteric region of the femur. J Bone Joint Surg 1976;58:1061–1066.

    PubMed  CAS  Google Scholar 

  162. Harrington KD. Orthopaedic management of extremity and pelvic lesions. Clin Orthop 1995;312:136–147.

    PubMed  Google Scholar 

  163. Mirels H. Metastatic disease in long bones: a proposed scoring system for diagnosing impending pathologic fractures. Clin Orthop 1989;249:256–264.

    PubMed  Google Scholar 

  164. Nierman E, Zakrzewski K. Recognition and management of preoperative risk. Rheum Dis Clin N Am 1999;25:585–622.

    Article  CAS  Google Scholar 

  165. Kopec IC, Groeger JS. Life-threatening fluid and electrolyte abnormalities associated with cancer. Crit Care Clin 1988;4:81–105.

    PubMed  CAS  Google Scholar 

  166. Sun S, Lang EV. Bone metastases from renal cell carcinoma: preoperative embolization. J Vasc Intervent Radiol 1998;9:263–269.

    Article  CAS  Google Scholar 

  167. Gellad FE, Sadato N, Numaguchi Y, et al. Vascular metastatic lesions of the spine: preoperative embolization. Radiology 1990;176:683–686.

    PubMed  CAS  Google Scholar 

  168. Keller FS, Rosch J, Bird CB. Percutaneous embolization of bony pelvic neoplasms with tissue adhesive. Radiology 1983;147:21–27.

    PubMed  CAS  Google Scholar 

  169. Layalle I, Flandroy P, Trotteur G, et al. Arterial embolization of bone metastases: is it worthwhile? J Belg Radiol 1998;81:223–225.

    PubMed  CAS  Google Scholar 

  170. Barton PP, Waneck RE, Karnel FJ, et al. Embolization of bone metastases. J Vasc Intervent Radiol 1996;7:81–88.

    CAS  Google Scholar 

  171. Breslau J, Eskridge JM. Preoperative embolization of spinal tumors. J Vasc Intervent Radiol 1995;6:871–875.

    CAS  Google Scholar 

  172. Chuang VP, Wallace S, Swanson D, et al. Arterial occlusion in the management of pain from metastatic renal carcinoma. Radiology 1979;133:611–614.

    PubMed  CAS  Google Scholar 

  173. Varma J, Huben RP, Wajsman Z, et al. Therapeutic embolization of pelvic metastases of renal cell carcinoma. J Urol 1984;131:647–649.

    PubMed  CAS  Google Scholar 

  174. Schneiderbauer MM, Von Knoch M, Schleck CD, et al. Patient survival after hip arthroplasty for metastatic disease of the hip. J Bone Joint Surg Am 2004;86:1684–1689.

    PubMed  Google Scholar 

  175. Wong DA, Fornasier VL, MacNab I. Spinal metastases: the obvious, the occult, and the impostors. Spine 1990;15:1–4.

    Article  PubMed  CAS  Google Scholar 

  176. Weinstein JN. Differential diagnosis and surgical treatment of pathologic spine fractures. Instr Course Lect 1992;41:301–315.

    PubMed  CAS  Google Scholar 

  177. Harrington KD. Anterior cord decompression and spinal stabilization for patients with metastatic lesions of the spine. J Neurosurg 1984;61:107–117.

    Article  PubMed  CAS  Google Scholar 

  178. Harrington KD. Metastatic disease of the spine. J Bone Joint Surg Am 1986;68:1110–1115.

    PubMed  CAS  Google Scholar 

  179. Siegal T, Tiqva P, Siegal T. Vertebral body resection for epidural compression by malignant tumors. J Bone Joint Surg Am 1985;67:375–382.

    PubMed  CAS  Google Scholar 

  180. Weinstein JN. Spine neoplasms. In: Weinstein SL (ed) The Pediatric Spine: Principles and Practice. New York: Raven Press, 1994:887.

    Google Scholar 

  181. Weinstein JN, McLain RF. Tumors of the spine. In: Rothman RA, Simeone FA (eds) The Spine, 3rd ed. Philadelphia: Saunders, 1992:1279.

    Google Scholar 

  182. Patterson FR, Peabody TD. Operative management of metastases to the pelvis and acetabulum. Orthop Clin N Am 2000;31:623–631.

    Article  CAS  Google Scholar 

  183. Harrington KD. The management of acetabular deficiency secondary to metastatic malignant disease. J Bone Joint Surg Am 1981;63:653–664.

    PubMed  CAS  Google Scholar 

  184. Ward WG, Spang J, Howe D. Metastatic disease of the femur: surgical management. Orthop Clin N Am 2000;31:633–645.

    Article  CAS  Google Scholar 

  185. Lane JM, Sculco TP, Zolan SG. Treatment of pathological fractures of the hip by endoprosthetic replacement. J Bone Joint Surg Am 1980;62:954–959.

    PubMed  CAS  Google Scholar 

  186. Ward WG, Dorey F, Eckardt JJ. Total femoral endoprosthetic reconstruction. Clin Orthop 1995;316:195–206.

    PubMed  Google Scholar 

  187. Ward WG, Eckardt JJ. Endoprosthetic reconstruction of the femur following massive bone resections. J Bone Orthop Assoc 1994;3:108.

    Google Scholar 

  188. Townsend PW, Rosenthal HG, Smalley SR, et al. Impact of post-operative radiation therapy and other perioperative factors on outcome after orthopedic stabilization of impending or pathologic fractures due to metastatic disease. J Clin Oncol 1994;12:2345–2350.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Getty, P.J., Nielsen, J.L., Huff, T., Robbin, M.R., Overmoyer, B.A. (2006). Metastatic Cancer to Bone. In: Chang, A.E., et al. Oncology. Springer, New York, NY. https://doi.org/10.1007/0-387-31056-8_95

Download citation

  • DOI: https://doi.org/10.1007/0-387-31056-8_95

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24291-0

  • Online ISBN: 978-0-387-31056-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics