Skip to main content

Viral Carcinogenesis

  • Chapter
Oncology

Abstract

Important causes of human tumors are biologic and environmental agents, mostly of a chemical and physical nature, that act by genotoxic mechanisms which induce alterations in the cell genome such as chromosomal deletions, rearrangements, and mutations. In the complex multifactorial pathogenesis of cancer, viruses often participate as biologic cofactors that cooperate with chemical and physical agents in both the initiation and progression of tumors. Thus, the detection of a tumor virus in a given tumor does not establish causation. Moreover, the genetic background of an individual and his/her immune status at the time of infection or during viral latency may influence susceptibility to various carcinogens, especially viral carcinogens. Often, it appears that oncogenic viruses act at the beginning of tumor development, inducing in the host cell a number of genetic alterations and immortalizations that can lead to tumor growth. Viruses at other times can be oncogenic only upon infection of cells that already contain genetic alterations. For example, BKV can transform human mesothelial cells that overexpress Notch-1 and which express telomerase activity, whereas in the absence of these alterations, mesothelial cells were not transformed. Oncogenic viruses may act directly, as the combined effects of viral sequences or gene products within the target cell lead to transformation. In other circumstances, the role of viruses may be more subtle, that is, predominantly indirect. Examples of this condition are liver cancer, arising during hepatocyte regeneration that follows hepatitis B and C virus infection, and acquired immunodeficiency syndrome (AIDS)-associated neoplasms, favored by loss of antitumor immune surveillance as a result of human immunodeficiency virus (HIV) infection of the immune system and consequent immunosuppression. HIV-induced immunosuppression allows the emergence of oncogenic viruses such as Epstein-Barr virus (EBV), which causes B-cell lymphomas in AIDS patients. Thus, in AIDS, two viruses cooperate independently to cause human cancer. It is also argued that the regenerative process associated with liver cirrhosis, which is caused by hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, and the release of cytokines by the inflammatory infiltrate in the regenerating liver favor tumor development. In this latter scenario, the role of HBV and HCV in causing hepatocellular carcinoma would be indirect yet critical.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. zur Hausen H. Viral oncogenesis. In: Parsonnet J (ed). Microbes and Mal. New York: Oxford Press, 1999:107–130.

    Google Scholar 

  2. zur Hausen H. Viruses in human cancers. Science 1991; 254:1167–1173.

    Article  PubMed  Google Scholar 

  3. Barbanti-Brodano G, Martini F, De Mattei M, et al. BK and JC human polyomaviruses and simian virus 40: natural history of infection in humans, experimental oncogenicity, and association with human tumors. Adv Virus Res 1998;50:69–99.

    PubMed  CAS  Google Scholar 

  4. Tognon M, Corallini A, Martini F, et al. Oncogenic transformation by BK virus and association with human tumors. Oncogene 2003;22:5192–5200.

    Article  PubMed  CAS  Google Scholar 

  5. Rickinson AB, Kieff E. Epstein-Barr virus. In: Knipe DM, Howley PM (eds). Fields Virology. Philadelphia: Lippincott Williams & Wilkins, 2001:2575–2627.

    Google Scholar 

  6. Knecht H, Berger C, al-Homsi AS, et al. Epstein-Barr virus oncogenesis. Crit Rev Oncol Hematol 1997;26:117–135.

    Article  PubMed  CAS  Google Scholar 

  7. Srinivas SK, Sixbey JW. Epstein-Barr virus induction of recombinase-activating genes RAG1 and RAG2. J Virol 1995;69:8155–8158.

    PubMed  CAS  Google Scholar 

  8. Wilson JB, Levine AJ. The oncogenic potential of Epstein-Barr virus nuclear antigen 1 in transgenic mice. Curr Top Microbiol Immunol 1992;182:375–384.

    PubMed  CAS  Google Scholar 

  9. zur Hausen H, Schulte-Holthausen H, Klein G, et al. EBV DNA in biopsies of Burkitt tumours and anaplastic carcinomas of the nasopharynx. Nature (Lond) 1970;228:1056–1058.

    Article  PubMed  Google Scholar 

  10. Pallesen G, Hamilton-Dutoit SJ, Zhou X. The association of Epstein-Barr virus (EBV) with T cell lymphoproliferations and Hodgkin’s disease: two new developments in the EBV field. Adv Cancer Res 1993;62:179–239.

    PubMed  CAS  Google Scholar 

  11. Meijer CJ, Jiwa NM, Dukers DF, et al. Epstein-Barr virus and human T-cell lymphomas. Semin Cancer Biol 1996;7:191–196.

    Article  PubMed  CAS  Google Scholar 

  12. Herbst H. Epstein-Barr virus in Hodgkin’s disease. Semin Cancer Biol 1996;7:183–189.

    Article  PubMed  CAS  Google Scholar 

  13. Boiocchi M, Dolcetti R, DeRe V, et al. Association of Epstein-Barr virus with Hodgkin’s disease. In: Barbanti-Brodano G, Bendinelli M, Friedman H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:375–393.

    Google Scholar 

  14. Niedobitek G, Agathanggelou A, Nicholls JM. Epstein-Barr virus infection and the pathogenesis of nasopharyngeal carcinoma: viral gene expression, tumour cell phenotype, and the role of the lymphoid stroma. Semin Cancer Biol 1996;7:165–174.

    Article  PubMed  CAS  Google Scholar 

  15. Young LS, Murray PG. Epstein-Barr virus and oncogenesis: from latent genes to tumours. Oncogene 2003;22:5108–5121.

    Article  PubMed  CAS  Google Scholar 

  16. Croce CM. Chromosome translocations and human cancer. Cancer Res 1986;46:6019–6023.

    PubMed  CAS  Google Scholar 

  17. Polack A, Hortnagel K, Pajic A, et al. c-myc activation renders proliferation of Epstein-Barr virus (EBV)-transformed cells independent of EBV nuclear antigen 2 and latent membrane protein 1. Proc Natl Acad Sci USA 1996;93:10411–10416.

    Article  PubMed  CAS  Google Scholar 

  18. Klein G, Klein E. Evolution of tumours and the impact of molecular oncology. Nature (Lond) 1985;315:190–195.

    Article  PubMed  CAS  Google Scholar 

  19. Lenoir G, Bornkamm GW. Burkitt’s lymphoma: a human cancer model for the study of the multistep development of cancer: proposal for a new scenario. In: Klein E (ed). Advances in Viral Oncology, vol 7. New York: Raven Press, 1986:173–206.

    Google Scholar 

  20. Razzouk BI, Srinivas S, Sample CE, et al. Epstein-Barr virus DNA recombination and loss in sporadic Burkitt’s lymphoma. J Infect Dis 1996;173:529–535.

    PubMed  CAS  Google Scholar 

  21. Brooks L, Crook T, Crawford D. Epstein-Barr virus and lymphomas. In: Newton R, Beral V, Weiss I (eds). Infections and Human Cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:99–123.

    Google Scholar 

  22. Gaidano G, Pastore C, Gloghini A, et al. AIDS-related non-Hodgkin’s lymphomas: molecular genetics, viral infection and cytokine deregulation. Acta Haematol 1996;95:193–198.

    Article  PubMed  CAS  Google Scholar 

  23. Swinnen L. Posttransplant lymphoproliferative disorder. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:63–76.

    Chapter  Google Scholar 

  24. Purtilo DT, Cassel CK, Yang JP, et al. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet 1975;1:935–940.

    Article  PubMed  CAS  Google Scholar 

  25. Seemayer T, Greiner T, Gross T, et al. X-linked lymphoproliferative disease. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:51–61.

    Chapter  Google Scholar 

  26. Gross TG, Davis JR, Baker KS, et al. Exaggerated IL-2 response to Epstein-Barr virus (EBV) in X-linked lymphoproliferative disease (XLP). Clin Immunol Immunopathol 1995;75:280–281.

    Google Scholar 

  27. O’Connor P, Scadden D. Hodgkin’s disease. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:113–127.

    Chapter  Google Scholar 

  28. Wong M, Pagano JS, Schiller JT, et al. New associations of human papillomavirus, simian virus 40, and Epstein-Barr virus with human cancer. J Natl Cancer Inst 2002;94:1832–1836.

    PubMed  CAS  Google Scholar 

  29. Kripalani-Joshi S, Law HY. Identification of integrated Epstein-Barr virus in nasopharyngeal carcinoma using pulse field gel electrophoresis. Int J Cancer 1994;56:187–192.

    Article  PubMed  CAS  Google Scholar 

  30. Hoppe-Seyler F, Butz K. Viral mechanisms of human carcinogenesis. In: Coleman W, Tsongalis G (eds). The Molecular Basis of Human Cancer. Totowa, NJ: Humana Press, 2002:233–247.

    Google Scholar 

  31. Osato T, Imai S. Epstein-Barr virus and gastric carcinoma. Semin Cancer Biol 1996;7:175–182.

    Article  PubMed  CAS  Google Scholar 

  32. Takada K. Epstein-Barr virus and gastric carcinoma. J Clin Pathol Mol Pathol 2000;53:255–261.

    CAS  Google Scholar 

  33. Wei MX, Ooka T. A transforming function of the BARF1 gene encoded by Epstein-Barr virus. EMBO J 1989;8:2897–2903.

    PubMed  CAS  Google Scholar 

  34. zur Hausen A, Brink AA, Craanen ME, et al. Unique transcription pattern of Epstein-Barr virus (EBV) in EBV-carrying gastric adenocarcinomas: expression of the transforming BARF1 gene. Cancer Res 2000;60:2745–2748.

    PubMed  Google Scholar 

  35. Jenson H. Leiomyoma and leiomyosarcoma. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:145–159.

    Chapter  Google Scholar 

  36. Granovsky MO, Mueller BU, Nicholson HS, et al. Cancer in human immunodeficiency virus-infected children: a case series from the Children’s Cancer Group and the National Cancer Institute. J Clin Oncol 1998;16:1729–1735.

    PubMed  CAS  Google Scholar 

  37. Raab-Traub N, Rajadurai P, Flynn K, et al. Epstein-Barr virus infection in carcinoma of the salivary gland. J Virol 1991;65:7032–7036.

    PubMed  CAS  Google Scholar 

  38. Bonnet M, Guinebretiere JM, Kremmer E, et al. Detection of Epstein-Barr virus in invasive breast cancers. J Natl Cancer Inst 1999;91:1376–1381.

    Article  PubMed  CAS  Google Scholar 

  39. Chang Y, Cesarman E, Pessin MS, et al. Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 1994;266:1865–1879.

    Article  PubMed  CAS  Google Scholar 

  40. Lisitsyn N, Wigler M. Cloning the differences between two complex genomes. Science 1993;259:946–951.

    Article  PubMed  CAS  Google Scholar 

  41. Biesinger B, Muller-Fleckenstein I, Simmer B, et al. Stable growth transformation of human T lymphocytes by herpesvirus saimiri. Proc Natl Acad Sci USA 1992;89:3116–3119.

    Article  PubMed  CAS  Google Scholar 

  42. Cesarman E, Chang Y, Moore PS, et al. Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related bodycavity-based lymphomas. N Engl J Med 1995;332:1186–1191.

    Article  PubMed  CAS  Google Scholar 

  43. Sarid R, Olsen SJ, Moore PS. Kaposi’s sarcoma-associated herpesvirus: epidemiology, virology, and molecular biology. Adv Virus Res 1999;52:139–232.

    PubMed  CAS  Google Scholar 

  44. Boshoff C. Kaposi’s sarcoma associated herpesvirus. In: Newton R, Beral V, Weiss RA (eds). Infections and Human Cancer. Cancer Surveys, vol 33. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:157–190.

    Google Scholar 

  45. Castleman B, Iverson L, Menendez VP. Localized mediastinal lymph-node hyperplasia resembling thymoma. Cancer (Phila) 1956;9:822–830.

    Article  PubMed  CAS  Google Scholar 

  46. Ensoli B, Sgadari C, Barillari G, et al. Biology of Kaposi’s sarcoma. Eur J Cancer 2001;37:1251–1269.

    Article  PubMed  CAS  Google Scholar 

  47. Ensoli B, Sturzl M, Monini P. Cytokine-mediated growth promotion of Kaposi’s sarcoma and primary effusion lymphoma. Semin Cancer Biol 2000;10:367–381.

    Article  PubMed  CAS  Google Scholar 

  48. Monini P, de Lellis L, Fabris M, et al. Kaposi’s sarcomaassociated herpesvirus DNA sequences in prostate tissue and human semen. N Engl J Med 1996;334:1168–1172.

    Article  PubMed  CAS  Google Scholar 

  49. Ganem D. KSHV and Kaposi’s sarcoma: the end of the beginning? Cell 1997;91:157–160.

    Article  PubMed  CAS  Google Scholar 

  50. Ensoli B, Sturzl M, Monini P. Reactivation and role of HHV-8 in Kaposi’s sarcoma initiation. Adv Cancer Res 2001;81:161–200.

    PubMed  CAS  Google Scholar 

  51. Russo JJ, Bohenzky RA, Chien MC, et al. Nucleotide sequence of the Kaposi sarcoma-associated herpesvirus (HHV8). Proc Natl Acad Sci USA 1996;93:14862–14867.

    Article  PubMed  CAS  Google Scholar 

  52. Sturzl M, Zietz C, Monini P, et al. Human herpesvirus-8 and Kaposi’s sarcoma: relationship with the multistep concept of tumorigenesis. Adv Cancer Res 2001;81:125–159.

    PubMed  CAS  Google Scholar 

  53. Neipel F, Albrecht JC, Fleckenstein B. Cell-homologous genes in the Kaposi’s sarcoma-associated rhadinovirus human herpesvirus 8: determinants of its pathogenicity? J Virol 1997;71:4187–4192.

    PubMed  CAS  Google Scholar 

  54. Cheng EH, Nicholas J, Bellows DS, et al. A Bcl-2 homolog encoded by Kaposi sarcoma-associated virus, human herpesvirus 8, inhibits apoptosis but does not heterodimerize with Bax or Bak. Proc Natl Acad Sci USA 1997;94:690–694.

    Article  PubMed  CAS  Google Scholar 

  55. Chang Y, Moore PS, Talbot SJ, et al. Cyclin encoded by KS herpesvirus. Nature (Lond) 1996;382:410.

    Article  PubMed  CAS  Google Scholar 

  56. Swanton C, Mann DJ, Fleckenstein B, et al. Herpes viral cyclin/Cdk6 complexes evade inhibition by CDK inhibitor proteins. Nature (Lond) 1997;390:184–187.

    Article  PubMed  CAS  Google Scholar 

  57. Arvanitakis L, Geras-Raaka E, Varma A, et al. Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature (Lond) 1997;385:347–350.

    Article  PubMed  CAS  Google Scholar 

  58. Bais C, Santomasso B, Coso O, et al. G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature (Lond) 1998;391:86–89.

    Article  PubMed  CAS  Google Scholar 

  59. Yang TY, Chen SC, Leach MW, et al. Transgenic expression of the chemokine receptor encoded by human herpesvirus 8 induces an angioproliferative disease resembling Kaposi’s sarcoma. J Exp Med 2000;191:445–454.

    Article  PubMed  CAS  Google Scholar 

  60. Boshoff C, Endo Y, Collins PD, et al. Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 1997;278:290–294.

    Article  PubMed  CAS  Google Scholar 

  61. Moore PS, Boshoff C, Weiss RA, et al. Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 1996;274:1739–1744.

    Article  PubMed  CAS  Google Scholar 

  62. Rettig MB, Ma HJ, Vescio RA, et al. Kaposi’s sarcoma-associated herpesvirus infection of bone marrow dendritic cells from multiple myeloma patients. Science 1997;276:1851–1854.

    Article  PubMed  CAS  Google Scholar 

  63. Imperiale MJ. The human polyomaviruses: an overview. In: Khalili K, Stoner G (eds). Human Polyomaviruses. New York: Wiley-Liss, 2001:53–71.

    Chapter  Google Scholar 

  64. Imperiale MJ. Oncogenic transformation by the human polyomaviruses. Oncogene 2001;20:7917–7923.

    Article  PubMed  CAS  Google Scholar 

  65. Corallini A, Tognon M, Negrini M, et al. Evidence for BK virus as a human tumor virus. In: Khalili K, Stoner G (eds). Human Polyomaviruses. New York: Wiley-Liss, 2001:431–460.

    Chapter  Google Scholar 

  66. Bofill-Mas S, Formiga-Cruz M, Clemente-Casares P, et al. Potential transmission of human polyomaviruses through the gastrointestinal tract after exposure to virions or viral DNA. J Virol 2001;75:10290–10299.

    Article  PubMed  CAS  Google Scholar 

  67. Carbone M, Rizzo P, Pass HI. Simian virus 40, poliovaccines and human tumors: a review of recent developments. Oncogene 1997;15:1877–1888.

    Article  PubMed  CAS  Google Scholar 

  68. Melnick JL, Stinebaugh S. Excretion of vacuolating SV-40 virus (papova virus group) after ingestion as a contaminant of oral poliovaccine. Proc Soc Exp Biol Med 1962;109:965–968.

    PubMed  CAS  Google Scholar 

  69. Bergsagel DJ, Finegold MJ, Butel JS, et al. DNA sequences similar to those of simian virus 40 in ependymomas and choroid plexus tumors of childhood. N Engl J Med 1992;326:988–993.

    Article  PubMed  CAS  Google Scholar 

  70. Carbone M, Rizzo P, Procopio A, et al. SV40-like sequences in human bone tumors. Oncogene 1996;13:527–535.

    PubMed  CAS  Google Scholar 

  71. Martini F, Iaccheri L, Lazzarin L, et al. SV40 early region and large T antigen in human brain tumors, peripheral blood cells, and sperm fluids from healthy individuals. Cancer Res 1996; 56:4820–4825.

    PubMed  CAS  Google Scholar 

  72. Lednicky JA, Stewart AR, Jenkins JJ III, et al. SV40 DNA in human osteosarcomas shows sequence variation among T-antigen genes. Int J Cancer 1997;72:791–800.

    Article  PubMed  CAS  Google Scholar 

  73. Martini F, Lazzarin L, Iaccheri L, et al. Different simian virus 40 genomic regions and sequences homologous with SV40 large T antigen in DNA of human brain and bone tumors and of leukocytes from blood donors. Cancer (Phila) 2002;94:1037–1048.

    Article  PubMed  CAS  Google Scholar 

  74. Martini F, Dolcetti R, Gloghini A, et al. Simian-virus-40 footprints in human lymphoproliferative disorders of HIV-and HIV+ patients. Int J Cancer 1998;78:669–674.

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto H, Nakayama T, Murakami H, et al. High incidence of SV40-like sequences detection in tumour and peripheral blood cells of Japanese osteosarcoma patients. Br J Cancer 2000;82:1677–1681.

    Article  PubMed  CAS  Google Scholar 

  76. David H, Mendoza S, Konishi T, et al. Simian virus 40 is present in human lymphomas and normal blood. Cancer Lett 2001; 162:57–64.

    Article  PubMed  CAS  Google Scholar 

  77. Li RM, Branton MH, Tanawattanacharoen S, et al. Molecular identification of SV40 infection in human subjects and possible association with kidney disease. J Am Soc Nephrol 2002; 13:2320–2330.

    Article  PubMed  CAS  Google Scholar 

  78. Li RM, Mannon RB, Kleiner D, et al. BK virus and SV40 coinfection in polyomavirus nephropathy. Transplantation 2002;74:1497–1504.

    Article  PubMed  Google Scholar 

  79. Vastag B. Sewage yields clues to SV40 transmission. JAMA 2002;288:1337–1338.

    Article  PubMed  Google Scholar 

  80. Kops SP. Oral polio vaccine and human cancer: a reassessment of SV40 as a contaminant based upon legal documents. Anticancer Res 2000;20:4745–4749.

    PubMed  CAS  Google Scholar 

  81. Lednicky JA, Garcea RL, Bergsagel DJ, et al. Natural simian virus 40 strains are present in human choroid plexus and ependymoma tumors. Virology 1995;212:710–717.

    Article  PubMed  CAS  Google Scholar 

  82. Shah KV. Neutralizing antibodies to simian virus 40 (SV40) in human sera from India. Proc Soc Exp Biol Med 1966;121:303–307.

    PubMed  CAS  Google Scholar 

  83. Jafar S, Rodriguez-Barradas M, Graham DY, et al. Serological evidence of SV40 infections in HIV-infected and HIV-negative adults. J Med Virol 1998;54:276–284.

    Article  PubMed  CAS  Google Scholar 

  84. Butel JS, Jafar S, Wong C, et al. Evidence of SV40 infections in hospitalized children. Hum Pathol 1999;30:1496–1502.

    Article  PubMed  CAS  Google Scholar 

  85. Rollison DE, Helzlsouer KJ, Alberg AJ, et al. Serum antibodies to JC virus, BK virus, simian virus 40, and the risk of incident adult astrocytic brain tumors. Cancer Epidemiol Biomarkers Prev 2003;12:460–463.

    PubMed  Google Scholar 

  86. Simmons DT. SV40 large T antigen functions in DNA replication and transformation. Adv Virus Res 2000;55:75–134.

    Article  PubMed  CAS  Google Scholar 

  87. Ali SH, DeCaprio JA. Cellular transformation by SV40 large T antigen: interaction with host proteins. Semin Cancer Biol 2001;11:15–23.

    Article  PubMed  CAS  Google Scholar 

  88. Testa JR, Giordano A. SV40 and cell cycle perturbations in malignant mesothelioma. Semin Cancer Biol 2001;11:31–38.

    Article  PubMed  CAS  Google Scholar 

  89. Dyson N, Buchkovich K, Whyte P, et al. The cellular 107K protein that binds to adenovirus E1A also associates with the large T antigens of SV40 and JC virus. Cell 1989;58:249–255.

    Article  PubMed  CAS  Google Scholar 

  90. Dyson N, Bernards R, Friend SH, et al. Large T antigens of many polyomaviruses are able to form complexes with the retinoblastoma protein. J Virol 1990;64:1353–1356.

    PubMed  CAS  Google Scholar 

  91. Ray FA, Peabody DS, Cooper JL, et al. SV40 T antigen alone drives karyotype instability that precedes neoplastic transformation of human diploid fibroblasts. J Cell Biochem 1990;42:13–31.

    Article  PubMed  CAS  Google Scholar 

  92. Stewart N, Bacchetti S. Expression of SV40 large T antigen, but not small t antigen, is required for the induction of chromosomal aberrations in transformed human cells. Virology 1991;180:49–57.

    Article  PubMed  CAS  Google Scholar 

  93. Neel JV, Major EO, Awa AA, et al. Hypothesis: “Rogue cell”-type chromosomal damage in lymphocytes is associated with infection with the JC human polyoma virus and has implications for oncogenesis. Proc Natl Acad Sci USA 1996;93:2690–2695.

    Article  PubMed  CAS  Google Scholar 

  94. Trabanelli C, Corallini A, Gruppioni R, et al. Chromosomal aberrations induced by BK virus T antigen in human fibroblasts. Virology 1998;243:492–496.

    Article  PubMed  CAS  Google Scholar 

  95. Simmons DT, Melendy T, Usher D, et al. Simian virus 40 large T antigen binds to topoisomerase I. Virology 1996;222:365–374.

    Article  PubMed  CAS  Google Scholar 

  96. Dean FB, Bullock P, Murakami Y, et al. Simian virus 40 (SV40) DNA replication: SV40 large T antigen unwinds DNA containing the SV40 origin of replication. Proc Natl Acad Sci USA 1987;84:16–20.

    Article  PubMed  CAS  Google Scholar 

  97. Rundell K, Parakati R. The role of the SV40 small t antigen in cell growth promotion and transformation. Semin Cancer Biol 2001;11:5–13.

    Article  PubMed  CAS  Google Scholar 

  98. Pallas DC, Shahrik LK, Martin BL, et al. Polyoma small and middle T antigens and SV40 small t antigen form stable complexes with protein phosphatase 2A. Cell 1990;60:167–176.

    Article  PubMed  CAS  Google Scholar 

  99. Baysal BE, Farr JE, Goss JR, et al. Genomic organization and precise physical location of protein phosphatase 2A regulatory subunit A beta isoform gene on chromosome band 11q23. Gene Amst 1998;217:107–116.

    Article  CAS  Google Scholar 

  100. Wang SS, Esplin ED, Li JL, et al. Alterations of the PPP2R1B gene in human lung and colon cancer. Science 1998;282:284–287.

    Article  PubMed  CAS  Google Scholar 

  101. Calin GA, di Iasio MG, Caprini E, et al. Low frequency of alterations of the alpha (PPP2R1A) and beta (PPP2R1B) isoforms of the subunit A of the serine-threonine phosphatase 2A in human neoplasms. Oncogene 2000;19:1191–1195.

    Article  PubMed  CAS  Google Scholar 

  102. Beck GRJ, Zerler BR, Moran E. Introduction to DNA tumor viruses: adenovirus, simian virus 40, and polyomavirus. In: McCance DJ (ed). Human Tumor Viruses. Washington, DC: Ameican Society for Microbiology (ASM) Press, 1998:51–86.

    Google Scholar 

  103. Flaegstad T, Andresen PA, Johnsen JI, et al. A possible contributory role of BK virus infection in neuroblastoma development. Cancer Res 1999;59:1160–1163.

    PubMed  CAS  Google Scholar 

  104. Monini P, Rotola A, de Lellis L, et al. Latent BK virus infection and Kaposi’s sarcoma pathogenesis. Int J Cancer 1996;66:717–722.

    Article  PubMed  CAS  Google Scholar 

  105. Rencic A, Gordon J, Otte J, et al. Detection of JC virus DNA sequence and expression of the viral oncoprotein, tumor antigen, in brain of immunocompetent patient with oligoastrocytoma. Proc Natl Acad Sci USA 1996;93:7352–7357.

    Article  PubMed  CAS  Google Scholar 

  106. Krynska B, Del Valle L, Croul S, et al. Detection of human neurotropic JC virus DNA sequence and expression of the viral oncogenic protein in pediatric medulloblastomas. Proc Natl Acad Sci USA 1999;96:11519–11524.

    Article  PubMed  CAS  Google Scholar 

  107. Del Valle L, Gordon J, Ferrante P, et al. Jc virus in experimental and clinical brain tumorigenesis. In: Khalili K, Stoner G (eds). Human Polyomaviruses. New York: Wiley-Liss, 2001:409–430.

    Chapter  Google Scholar 

  108. Khalili K, Del Valle L, Otte J, et al. Human neurotropic polyomavirus, JCV, and its role in carcinogenesis. Oncogene 2003;22:5181–5191.

    Article  PubMed  CAS  Google Scholar 

  109. Laghi L, Randolph AE, Chauhan DP, et al. JC virus DNA is present in the mucosa of the human colon and in colorectal cancers. Proc Natl Acad Sci USA 1999;96:7484–7489.

    Article  PubMed  CAS  Google Scholar 

  110. Ricciardiello L, Chang DK, Laghi L, et al. Mad-1 is the exclusive JC virus strain present in the human colon, and its transcriptional control region has a deleted 98-base-pair sequence in colon cancer tissues. J Virol 2001;75:1996–2001.

    Article  PubMed  CAS  Google Scholar 

  111. Ricciardiello L, Baglioni M, Giovannini C, et al. Induction of chromosomal instability in colonic cells by the human polyomavirus JC through a hit and run mechanism. Cancer Res 2003;63(21):7256–7262.

    PubMed  CAS  Google Scholar 

  112. Enam S, Del Valle L, Lara C, et al. Association of human polyomavirus JCV with colon cancer: evidence for interaction of viral T-antigen and beta-catenin. Cancer Res 2002;62:7093–7101.

    PubMed  CAS  Google Scholar 

  113. Jasani B, Cristaudo A, Emri SA, et al. Association of SV40 with human tumours. Semin Cancer Biol 2001;11:49–61.

    Article  PubMed  CAS  Google Scholar 

  114. Garcea RL, Imperiale MJ. Simian virus 40 infection of humans. J Virol 2003;77:5039–5045.

    Article  PubMed  CAS  Google Scholar 

  115. Vilchez RA, Butel JS. SV40 in human brain cancers and non-Hodgkin’s lymphoma. Oncogene 2003;22:5164–5172.

    Article  PubMed  CAS  Google Scholar 

  116. Barbanti-Brodano G, Sabbioni S, Martini F, et al. Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology, 2004;318(1):1–9.

    Article  PubMed  CAS  Google Scholar 

  117. Shah KV. Does SV40 infection contribute to the development of human cancers? Rev Med Virol 2000;10:31–43.

    Article  PubMed  CAS  Google Scholar 

  118. Stratton K, Almario DA, McCormick MC, eds. Immunization safety review: SV40 contamination of polio vaccine and cancer. Institute of Medicine of the National Academies. Washington, DC: National Academic Press, 2002.

    Google Scholar 

  119. Klein G, Powers A, Croce C. Association of SV40 with human tumors. Oncogene 2002;21:1141–1149.

    Article  PubMed  CAS  Google Scholar 

  120. Reinartz JJ. Cancer genes. In: Coleman W, Tsongalis GJ (eds). The Molecular Basis of Human Cancer. Totowa, NJ: Humana Press, 2002:45–64.

    Google Scholar 

  121. Lengauer C, Kinzler KW, Vogelstein B. Genetic instabilities in human cancers. Nature (Lond) 1998;396:643–649.

    Article  PubMed  CAS  Google Scholar 

  122. Coleman W, Tsongalis GJ. The role of genomic instability in the development of human cancer. In: Coleman W, Tonsgalis GJ (eds). The Molecular Basis of Human Cancer. Totowa, NJ: Humana Press, 2002:115–142.

    Google Scholar 

  123. Tzeng YJ, Zimmermann C, Guhl E, et al. SV40 T/t-antigen induces premature mammary gland involution by apoptosis and selects for p53 missense mutation in mammary tumors. Oncogene 1998;16:2103–2114.

    Article  PubMed  CAS  Google Scholar 

  124. Salewski H, Bayer TA, Eidhoff U, et al. Increased oncogenicity of subclones of SV40 large T-induced neuroectodermal tumor cell lines after loss of large T expression and concomitant mutation in p53. Cancer Res 1999;59:1980–1986.

    PubMed  CAS  Google Scholar 

  125. Cacciotti P, Libener R, Betta P, et al. SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci USA 2001;98:12032–12037.

    Article  PubMed  CAS  Google Scholar 

  126. Cacciotti P, Strizzi L, Vianale G, et al. The presence of simian-virus 40 sequences in mesothelioma and mesothelial cells is associated with high levels of vascular endothelial growth factor. Am J Respir Cell Mol Biol 2002;26:189–193.

    PubMed  CAS  Google Scholar 

  127. Catalano A, Romano M, Martinotti S, et al. Enhanced expression of vascular endothelial growth factor (VEGF) plays a critical role in the tumor progression potential induced by simian virus 40 large T antigen. Oncogene 2002;21:2896–2900.

    Article  PubMed  CAS  Google Scholar 

  128. Carbone M, Pass HI, Miele L, et al. New developments about the association of SV40 with human mesothelioma. Oncogene 2003;22:5173–5180.

    Article  PubMed  CAS  Google Scholar 

  129. Carbone M, Rizzo P, Grimley PM, et al. Simian virus-40 large-T antigen binds p53 in human mesotheliomas. Nat Med 1997;3:908–912.

    Article  PubMed  CAS  Google Scholar 

  130. De Luca A, Baldi A, Esposito V, et al. The retinoblastoma gene family pRb/p105, p107, pRb2/p130 and simian virus-40 large T-antigen in human mesotheliomas. Nat Med 1997;3:913–916.

    Article  PubMed  Google Scholar 

  131. Waheed I, Guo ZS, Chen GA, et al. Antisense to SV40 early gene region induces growth arrest and apoptosis in T-antigen-positive human pleural mesothelioma cells. Cancer Res 1999;59:6068–6073.

    PubMed  CAS  Google Scholar 

  132. Shivapurkar N, Wiethege T, Wistuba II, et al. Presence of simian virus 40 sequences in malignant mesotheliomas and mesothelial cell proliferations. J Cell Biochem 1999;76:181–188.

    Article  PubMed  CAS  Google Scholar 

  133. Bocchetta M, Miele L, Pass HI, et al. Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 2003;22:81–89.

    Article  PubMed  CAS  Google Scholar 

  134. Weijzen S, Rizzo P, Braid M, et al. Activation of Notch-1 signaling maintains the neoplastic phenotype in human Rastransformed cells. Nat Med 2002;8:979–986.

    Article  PubMed  CAS  Google Scholar 

  135. Bocchetta M, Di Resta I, Powers A, et al. Human mesothelial cells are unusually susceptible to simian virus 40-mediated transformation and asbestos cocarcinogenicity. Proc Natl Acad Sci USA 2000;97:10214–10219.

    Article  PubMed  CAS  Google Scholar 

  136. Gazdar AF, Butel JS, Carbone M. SV40 and human tumours: myth, association or causality? Nat Rev Cancer 2002;2:957–964.

    Article  PubMed  CAS  Google Scholar 

  137. Foddis R, De Rienzo A, Broccoli D, et al. SV40 infection induces telomerase activity in human mesothelial cells. Oncogene 2002;21:1434–1442.

    Article  PubMed  CAS  Google Scholar 

  138. Vilchez RA, Kozinetz CA, Butel JS. Conventional epidemiology and the link between SV40 and human cancers. Lancet Oncol 2003;4:188–191.

    Article  PubMed  CAS  Google Scholar 

  139. Cerni C, Seelos C. Papillomaviruses as promoting agents in human epithelial tumors. In: Barbanti-Brodano G, Bendinelli M, Friedman H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:123–155.

    Google Scholar 

  140. zur Hausen H. Papillomaviruses in human cancers. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:245–261.

    Chapter  Google Scholar 

  141. Bosch FX, Lorincz A, Munoz N, et al. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002;55:244–265.

    PubMed  CAS  Google Scholar 

  142. Leigh IM, Brener JA, Buchanan JAG. Human papilloma viruses and cancers of the skin and oral mucosa. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:289–309.

    Chapter  Google Scholar 

  143. zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002;2:342–350.

    Article  PubMed  CAS  Google Scholar 

  144. Phillips AC, Vousden KH. Human papillomavirus and cancer: the viral transforming genes. In: Newton R, Beral V, Weiss RA (eds). Infections and Human Cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:55–74.

    Google Scholar 

  145. Munger K, Phelps WC, Bubb V, et al. The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. J Virol 1989;63:4417–4421.

    PubMed  CAS  Google Scholar 

  146. Hawley-Nelson P, Vousden KH, Hubbert NL, et al. HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO J 1989;8:3905–3910.

    PubMed  CAS  Google Scholar 

  147. Woodworth CD, DiPaolo JA. Immortalization of keratinocytes by human papillomaviruses. In: Barbanti-Brodano G, Bendinelli M, Friedman H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:91–109.

    Google Scholar 

  148. Scheffner M, Werness BA, Huibregtse JM, et al. The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 1990;63:1129–1136.

    Article  PubMed  CAS  Google Scholar 

  149. Scheffner M, Huibregtse JM, Vierstra RD, et al. The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53. Cell 1993;75:495–505.

    Article  PubMed  CAS  Google Scholar 

  150. Klingelhutz AJ, Foster SA, McDougall JK. Telomerase activation by the E6 gene product of human papillomavirus type 16. Nature (Lond) 1996;380:79–82.

    Article  PubMed  CAS  Google Scholar 

  151. Keen N, Elston R, Crawford L. Interaction of the E6 protein of human papillomavirus with cellular proteins. Oncogene 1994;9:1493–1499.

    PubMed  CAS  Google Scholar 

  152. Chen JJ, Reid CE, Band V, et al. Interaction of papillomavirus E6 oncoproteins with a putative calcium-binding protein. Science 1995;269:529–531.

    Article  PubMed  CAS  Google Scholar 

  153. Tong X, Howley PM. The bovine papillomavirus E6 oncoprotein interacts with paxillin and disrupts the actin cytoskeleton. Proc Natl Acad Sci USA 1997;94:4412–4417.

    Article  PubMed  CAS  Google Scholar 

  154. Kiyono T, Hiraiwa A, Fujita M, et al. Binding of high-risk human papillomavirus E6 oncoproteins to the human homologue of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997;94:11612–11616.

    Article  PubMed  CAS  Google Scholar 

  155. Lee SS, Weiss RS, Javier RT. Binding of human virus oncoproteins to hDlg/SAP97, a mammalian homolog of the Drosophila discs large tumor suppressor protein. Proc Natl Acad Sci USA 1997;94:6670–6675.

    Article  PubMed  CAS  Google Scholar 

  156. Desaintes C, Hallez S, Van Alphen P, et al. Transcriptional activation of several heterologous promoters by the E6 protein of human papillomavirus type 16. J Virol 1992;66:325–333.

    PubMed  CAS  Google Scholar 

  157. Elbel M, Carl S, Spaderna S, et al. A comparative analysis of the interactions of the E6 proteins from cutaneous and genital papillomaviruses with p53 and E6AP in correlation to their transforming potential. Virology 1997;239:132–149.

    Article  PubMed  CAS  Google Scholar 

  158. Munger K, Phelps WC. The human papillomavirus E7 protein as a transforming and transactivating factor. Biochim Biophys Acta 1993;1155:111–123.

    PubMed  CAS  Google Scholar 

  159. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995;81:323–330.

    Article  PubMed  CAS  Google Scholar 

  160. La Thangue NB. DRTF1/E2F: an expanding family of heterodimeric transcription factors implicated in cell-cycle control. Trends Biochem Sci 1994;19:108–114.

    Article  PubMed  Google Scholar 

  161. Huang PS, Patrick DR, Edwards G, et al. Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol Cell Biol 1993;13:953–960.

    PubMed  CAS  Google Scholar 

  162. Boyer SN, Wazer DE, Band V. E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 1996;56:4620–4624.

    PubMed  CAS  Google Scholar 

  163. Funk JO, Waga S, Harry JB, et al. Inhibition of CDK activity and PCNA-dependent DNA replication by p21 is blocked by interaction with the HPV-16 E7 oncoprotein. Genes Dev 1997;11:2090–2100.

    PubMed  CAS  Google Scholar 

  164. Jones DL, Alani RM, Munger K. The human papillomavirus E7 oncoprotein can uncouple cellular differentiation and proliferation in human keratinocytes by abrogating p21Cip1-mediated inhibition of cdk2. Genes Dev 1997;11:2101–2111.

    Article  PubMed  CAS  Google Scholar 

  165. Edmonds C, Vousden KH. A point mutational analysis of human papillomavirus type 16 E7 protein. J Virol 1989;63:2650–2656.

    PubMed  CAS  Google Scholar 

  166. Banks L, Edmonds C, Vousden KH. Ability of the HPV16 E7 protein to bind RB and induce DNA synthesis is not sufficient for efficient transforming activity in NIH3T3 cells. Oncogene 1990;5:1383–1389.

    PubMed  CAS  Google Scholar 

  167. Phelps WC, Munger K, Yee CL, et al. Structure-function analysis of the human papillomavirus type 16 E7 oncoprotein. J Virol 1992;66:2418–2427.

    PubMed  CAS  Google Scholar 

  168. White AE, Livanos EM, Tlsty TD. Differential disruption of genomic integrity and cell cycle regulation in normal human fibroblasts by the HPV oncoproteins. Genes Dev 1994;8:666–677.

    Article  PubMed  CAS  Google Scholar 

  169. Antinore MJ, Birrer MJ, Patel D, et al. The human papillomavirus type 16 E7 gene product interacts with and transactivates the AP1 family of transcription factors. EMBO J 1996;15:1950–1960.

    PubMed  CAS  Google Scholar 

  170. Massimi P, Pim D, Storey A, et al. HPV-16 E7 and adenovirus E1a complex formation with TATA box binding protein is enhanced by casein kinase II phosphorylation. Oncogene 1996;12:2325–2330.

    PubMed  CAS  Google Scholar 

  171. Choo KB, Chong KY. Absence of mutation in the p53 and the retinoblastoma susceptibility genes in primary cervical carcinomas. Virology 1993;193:1042–1046.

    Article  PubMed  CAS  Google Scholar 

  172. Lee YY, Wilczynski SP, Chumakov A, et al. Carcinoma of the vulva: HPV and p53 mutations. Oncogene 1994;9:1655–1659.

    PubMed  CAS  Google Scholar 

  173. Crook T, Wrede D, Tidy JA, et al. Clonal p53 mutation in primary cervical cancer: association with human-papillomavirus-negative tumours. Lancet 1992;339:1070–1073.

    Article  PubMed  CAS  Google Scholar 

  174. Herrero R, Munoz N. Human papillomavirus and cancer. In: Newton R, Beral V, Weiss RA (eds). Infections and Human Cancer. Cancer Surveys, vol 33. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:75–98.

    Google Scholar 

  175. Jackson ME, Campo MS. Cooperation between bovine papillomaviruses and dietary carcinogens in cancers of cattle. In: Barbanti-Brodano G, Bendinelli M, Friedman H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:111–122.

    Google Scholar 

  176. Di Luca D, Caselli E, Cassai E. Herpes simplex virus as a cooperating agent in human genital carcinogenesis. In: Barbanti-Brodano G, Bendinelli M, Friedman H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:281–293.

    Google Scholar 

  177. Lee WM. Hepatitis B virus infection. N Engl J Med 1997;337:1733–1745.

    Article  PubMed  CAS  Google Scholar 

  178. Lau JY, Wright TL. Molecular virology and pathogenesis of hepatitis B. Lancet 1993;342:1335–1340.

    PubMed  CAS  Google Scholar 

  179. Buendia MA, Pineau P. The complex role of hepatitis B virus in human hepatocarcinogenesis. In: Barbanti-Brodano G, Bendinelli M, Friedmam H (eds). DNA Tumor viruses: oncogenic Mechanisms. New York: Plenum Press, 1995:171–193.

    Google Scholar 

  180. Wild CP, Hall AJ. Hepatitis B virus and liver cancer: unanswered questions. In: Newton R, Beral V, Weiss RA (eds). Infections and Human Cancer. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:35–54.

    Google Scholar 

  181. Kao JH, Chen DS. Overview of hepatitis B and C viruses. In: Goedert JJ (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:313–330.

    Chapter  Google Scholar 

  182. Block TM, Mehta AS, Fimmel CJ, et al. Molecular viral oncology of hepatocellular carcinoma. Oncogene 2003;22:5093–5107.

    Article  PubMed  CAS  Google Scholar 

  183. Beasley RP. Hepatitis B virus. The major etiology of hepatocellular carcinoma. Cancer (Phila) 1988;61:1942–1956.

    Article  PubMed  CAS  Google Scholar 

  184. Grisham JW. Molecular genetic alterations in primary hepatocellular neoplasms. In: Coleman W, Tsongalis GJ (eds). The Molecular Basis of Human Cancer. Totowa, NJ: Humana Press, 2002:269–346.

    Google Scholar 

  185. Dejean A, Bougueleret L, Grzeschik KH, et al. Hepatitis B virus DNA integration in a sequence homologous to v-erb-A and steroid receptor genes in a hepatocellular carcinoma. Nature (Lond) 1986;322:70–72.

    Article  PubMed  CAS  Google Scholar 

  186. Wang J, Zindy F, Chenivesse X, et al. Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene 1992;7:1653–1656.

    PubMed  CAS  Google Scholar 

  187. Shirakata Y, Kawada M, Fujiki Y, et al. The X gene of hepatitis B virus induced growth stimulation and tumorigenic transformation of mouse NIH3T3 cells. Jpn J Cancer Res 1989;80:617–621.

    PubMed  CAS  Google Scholar 

  188. Hohne M, Schaefer S, Seifer M, et al. Malignant transformation of immortalized transgenic hepatocytes after transfection with hepatitis B virus DNA. EMBO J 1990;9:1137–1145.

    PubMed  CAS  Google Scholar 

  189. Kim CM, Koike K, Saito I, et al. HBX gene of hepatitis B virus induces liver cancer in transgenic mice. Nature (Lond) 1991;351:317–320.

    Article  PubMed  CAS  Google Scholar 

  190. Feitelson MA, Zhu M, Duan LX, et al. Hepatitis B X antigen and p53 are associated in vitro and in liver tissues from patients with primary hepatocellular carcinoma. Oncogene 1993;8:1109–1117.

    PubMed  CAS  Google Scholar 

  191. Wang XW, Forrester K, Yeh H, et al. Hepatitis B virus X protein inhibits p53 sequence-specific DNA binding, transcriptional activity, and association with transcription factor ERCC3. Proc Natl Acad Sci USA 1994;91:2230–2234.

    Article  PubMed  CAS  Google Scholar 

  192. Wang XW, Gibson MK, Vermeulen W, et al. Abrogation of p53-induced apoptosis by the hepatitis B virus X gene. Cancer Res 1995;55:6012–6016.

    PubMed  CAS  Google Scholar 

  193. Ueda H, Ullrich SJ, Gangemi JD, et al. Functional inactivation but not structural mutation of p53 causes liver cancer. Nat Genet 1995;9:41–47.

    Article  PubMed  CAS  Google Scholar 

  194. Takada S, Kaneniwa N, Tsuchida N, et al. Cytoplasmic retention of the p53 tumor suppressor gene product is observed in the hepatitis B virus X gene-transfected cells. Oncogene 1997;15:1895–1901.

    Article  PubMed  CAS  Google Scholar 

  195. Lee TH, Elledge SJ, Butel JS. Hepatitis B virus X protein interacts with a probable cellular DNA repair protein. J Virol 1995;69:1107–1114.

    PubMed  CAS  Google Scholar 

  196. Hildt E, Hofschneider PH, Urban S. The role of hepatitis B virus (HBV) in the development of hepatocellular carcinoma. Semin Virol 1996;7:333–347.

    Article  CAS  Google Scholar 

  197. Chisari FV, Klopchin K, Moriyama T, et al. Molecular pathogenesis of hepatocellular carcinoma in hepatitis B virus transgenic mice. Cell 1989;59:1145–1156.

    Article  PubMed  CAS  Google Scholar 

  198. Chisari FV, Ferrari C. Hepatitis B virus immunopathogenesis. Annu Rev Immunol 1995;13:29–60.

    Article  PubMed  CAS  Google Scholar 

  199. Jhappan C, Stahle C, Harkins RN, et al. TGF alpha overexpression in transgenic mice induces liver neoplasia and abnormal development of the mammary gland and pancreas. Cell 1990;61:1137–1146.

    Article  PubMed  CAS  Google Scholar 

  200. Lieber CS, Garro A, Leo MA, et al. Alcohol and cancer. Hepatology 1986;6:1005–1019.

    Article  PubMed  CAS  Google Scholar 

  201. Luscombe CA, Locarnini SA. The mechanism of action of antiviral agents in chronic hepatitis B. Virol Hepatol Rev 1996;2:1–35.

    Google Scholar 

  202. Fiume L, Di Stefano G, Busi C, et al. Liver targeting of antiviral nucleoside analogues through the asialoglycoprotein receptor. J Viral Hepatol 1997;4:363–370.

    Article  CAS  Google Scholar 

  203. Hayashi J, Kishihara Y, Yamaji K, et al. Hepatitis C viral quasispecies and liver damage in patients with chronic hepatitis C virus infection. Hepatology 1997;25:697–701.

    Article  PubMed  CAS  Google Scholar 

  204. Purcell R. The hepatitis C virus: overview. Hepatology 1997;26:11S–14S.

    Article  PubMed  CAS  Google Scholar 

  205. Bendinelli M, Vatteroni ML, Maggi F, et al. Hepatitis C virus. In: Specter S (ed). Viral Hepatitis: Diagnosis, Therapy, and Prevention. Totowa, NJ: Humana Press, 1999:65–127.

    Google Scholar 

  206. Farci P, Alter HJ, Govindarajan S, et al. Lack of protective immunity against reinfection with hepatitis C virus. Science 1992;258:135–140.

    Article  PubMed  CAS  Google Scholar 

  207. Di Bisceglie AM. Hepatitis C and hepatocellular carcinoma. In: Hoofnagle JH (ed). Hepatitis C. New York: Academic Press, 2000:265–275.

    Google Scholar 

  208. Di Bisceglie AM, Order SE, Klein JL, et al. The role of chronic viral hepatitis in hepatocellular carcinoma in the United States. Am J Gastroenterol 1991;86:335–338.

    PubMed  Google Scholar 

  209. Nelson DR, Lau JYN. Pathogenesis of hepatocellular damage in chronic hepatitis C virus infection. Clin Liver Dis 1997;1:515–527.

    Article  PubMed  CAS  Google Scholar 

  210. De Mitri MS, Poussin K, Baccarini P, et al. HCV-associated liver cancer without cirrhosis. Lancet 1995;345:413–415.

    Article  PubMed  Google Scholar 

  211. Sakamuro D, Furukawa T, Takegami T. Hepatitis C virus nonstructural protein NS3 transforms NIH 3T3 cells. J Virol 1995;69:3893–3896.

    PubMed  CAS  Google Scholar 

  212. Ray RB, Meyer K, Ray R. Suppression of apoptotic cell death by hepatitis C virus core protein. Virology 1996;226:176–182.

    Article  PubMed  CAS  Google Scholar 

  213. Ray RB, Lagging LM, Meyer K, et al. Hepatitis C virus core protein cooperates with ras and transforms primary rat embryo fibroblasts to tumorigenic phenotype. J Virol 1996;70:4438–4443.

    PubMed  CAS  Google Scholar 

  214. Moriya K, Fujie H, Shintani Y, et al. The core protein of hepatitis C virus induces hepatocellular carcinoma in transgenic mice. Nat Med 1998;4:1065–1067.

    Article  PubMed  CAS  Google Scholar 

  215. Agnello V. Mixed cryoglobulinemia and other extrahepatic manifestations of hepatitis C virus infection. In: Hoofnagle JH (ed). Hepatitis C. New York: Academic Press, 2000:295–313.

    Google Scholar 

  216. Ferri C, Pileri S, Zignego AL. Hepatitis C virus, B-cell disorders and non-Hodgkin’s lymphoma. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:349–368.

    Chapter  Google Scholar 

  217. De Vita S, Sacco C, Sansonno D, et al. Characterization of overt B-cell lymphomas in patients with hepatitis C virus infection. Blood 1997;90:776–782.

    PubMed  Google Scholar 

  218. De Vita S, Sansonno D, Dolcetti R, et al. Hepatitis C virus within a malignant lymphoma lesion in the course of type II mixed cryoglobulinemia. Blood 1995;86:1887–1892.

    PubMed  Google Scholar 

  219. Ascoli V, Lo Coco F, Artini M, et al. Extranodal lymphomas associated with hepatitis C virus infection. Am J Clin Pathol 1998;109:600–609.

    PubMed  CAS  Google Scholar 

  220. De Vita S, Zagonel V, Russo A, et al. Hepatitis C virus, non-Hodgkin’s lymphomas and hepatocellular carcinoma. Br J Cancer 1998;77:2032–2035.

    PubMed  Google Scholar 

  221. Tajima K, Takezaki T. Human T cell leukemia virus type I. In: Newton R, Beral V, Weiss RA (eds). Infections and Human Cancer. Cancer Surveys, vol 33. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 1999:191–211.

    Google Scholar 

  222. Matsuoka M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene 2003;22:5131–5140.

    Article  PubMed  CAS  Google Scholar 

  223. Rosenblatt JD, Golde DW, Wachsman W, et al. A second isolate of HTLV-II associated with atypical hairy-cell leukemia. N Engl J Med 1986;315:372–377.

    Article  PubMed  CAS  Google Scholar 

  224. Yoshida M, Miyoshi I, Hinuma Y. Isolation and characterization of retrovirus from cell lines of human adult T-cell leukemia and its implication in the disease. Proc Natl Acad Sci USA 1982;79:2031–2035.

    Article  PubMed  CAS  Google Scholar 

  225. Matsuoka M. Adult T-cell leukemia/lymphoma. In: Goedert J (ed). Infectious Causes of Cancer. Totowa, NJ: Humana Press, 2000:211–229.

    Chapter  Google Scholar 

  226. Gatza ML, Watt JC, Marriott SJ. Cellular transformation by the HTLV-I Tax protein, a jack-of-all-trades. Oncogene 2003;22:5141–5149.

    Article  PubMed  CAS  Google Scholar 

  227. Greene WC, Leonard WJ, Wano Y, et al. Trans-activator gene of HTLV-II induces IL-2 receptor and IL-2 cellular gene expression. Science 1986;232:877–880.

    Article  PubMed  CAS  Google Scholar 

  228. Maruyama M, Shibuya H, Harada H, et al. Evidence for aberrant activation of the interleukin-2 autocrine loop by HTLV-1-encoded p40x and T3/Ti complex triggering. Cell 1987;48:343–350.

    Article  PubMed  CAS  Google Scholar 

  229. Fujii M, Tsuchiya H, Chuhjo T, et al. Interaction of HTLV-1 Tax1 with p67SRF causes the aberrant induction of cellular immediate early genes through CArG boxes. Genes Dev 1992;6:2066–2076.

    Article  PubMed  CAS  Google Scholar 

  230. Franchini G. Molecular mechanisms of human T-cell leukemia/lymphotropic virus type I infection. Blood 1995;86:3619–3639.

    PubMed  CAS  Google Scholar 

  231. Jeang KT, Widen SG, Semmes OJ 4th, et al. HTLV-I transactivator protein, tax, is a trans-repressor of the human beta-polymerase gene. Science 1990;247:1082–1084.

    Article  PubMed  CAS  Google Scholar 

  232. Lemasson I, Robert-Hebmann V, Hamaia S, et al. Transrepression of lck gene expression by human T-cell leukemia virus type 1-encoded p40tax. J Virol 1997;71:1975–1983.

    PubMed  CAS  Google Scholar 

  233. Suzuki T, Kitano S, Matsushime H, et al. HTLV-I Tax protein interacts with cyclin-dependent kinase inhibitor p16 INK4A and counteracts its inhibitory activity towards CDK4. EMBO J 1995;7:1607–1614.

    Google Scholar 

  234. Pise-Masison CA, Choi KS, Radonovich M, et al. Inhibition of p53 transactivation function by the human T-cell lymphotropic virus type 1 Tax protein. J Virol 1998;72:1165–1170.

    PubMed  CAS  Google Scholar 

  235. Jin DY, Spencer F, Jeang KT. Human T cell leukemia virus type 1 oncoprotein Tax targets the human mitotic checkpoint protein MAD1. Cell 1998;93:81–91.

    Article  PubMed  CAS  Google Scholar 

  236. Miyake H, Suzuki T, Hirai H, et al. Trans-activator Tax of human T-cell leukemia virus type 1 enhances mutation frequency of the cellular genome. Virology 1999;253:155–161.

    Article  PubMed  CAS  Google Scholar 

  237. Scadden DT. AIDS-related malignancies. Annu Rev Med 2003;54:285–303.

    Article  PubMed  CAS  Google Scholar 

  238. Caputo A, Betti M, Boarini C, et al. Mutiple functions of human immunodeficiency virus type 1 Tat protein in the pathogenesis of AIDS. Recent Res Dev Virol 1999;1:753–771.

    CAS  Google Scholar 

  239. Barillari G, Ensoli B. Angiogenic effects of extracellular human immunodeficiency virus type 1 Tat protein and its role in the pathogenesis of AIDS-associated Kaposi’s sarcoma. Clin Microbiol Rev 2002;15:310–326.

    Article  PubMed  CAS  Google Scholar 

  240. Helland DE, Welles JL, Caputo A, et al. Transcellular transactivation by the human immunodeficiency virus type 1 tat protein. J Virol 1991;65:4547–4549.

    PubMed  CAS  Google Scholar 

  241. Ensoli B, Buonaguro L, Barillari G, et al. Release, uptake, and effects of extracellular human immunodeficiency virus type 1 Tat protein on cell growth and viral transactivation. J Virol 1993;67:277–287.

    PubMed  CAS  Google Scholar 

  242. Chang HC, Samaniego F, Nair BC, et al. HIV-1 Tat protein exits from cells via a leaderless secretory pathway and binds to extracellular matrix-associated heparan sulfate proteoglycans through its basic region. AIDS 1997;11:1421–1431.

    Article  PubMed  CAS  Google Scholar 

  243. Corallini A, Campioni D, Rossi C, et al. Promotion of tumour metastases and induction of angiogenesis by native HIV-1 Tat protein from BK virus/tat transgenic mice. AIDS 1996;10:701–710.

    Article  PubMed  CAS  Google Scholar 

  244. Ensoli B, Gendelman R, Markham P, et al. Synergy between basic fibroblast growth factor and HIV-1 Tat protein in induction of Kaposi’s sarcoma. Nature (Lond) 1994;371:674–680.

    Article  PubMed  CAS  Google Scholar 

  245. Kim CM, Vogel J, Jay G, et al. The HIV tat gene transforms human keratinocytes. Oncogene 1992;7:1525–1529.

    PubMed  CAS  Google Scholar 

  246. Flores SC, Marecki JC, Harper KP, et al. Tat protein of human immunodeficiency virus type 1 represses expression of manganese superoxide dismutase in HeLa cells. Proc Natl Acad Sci USA 1993;90:7632–7636.

    Article  PubMed  CAS  Google Scholar 

  247. Church SL, Grant JW, Meese EU, et al. Sublocalization of the gene encoding manganese superoxide dismutase (MnSOD/SOD2) to 6q25 by fluorescence in situ hybridization and somatic cell hybrid mapping. Genomics 1992;14:823–825.

    Article  PubMed  CAS  Google Scholar 

  248. Church SL, Grant JW, Ridnour LA, et al. Increased manganese superoxide dismutase expression suppresses the malignant phenotype of human melanoma cells. Proc Natl Acad Sci USA 1993;90:3113–3117.

    Article  PubMed  CAS  Google Scholar 

  249. Li CJ, Wang C, Friedman DJ, et al. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1995;92:5461–5464.

    Article  PubMed  CAS  Google Scholar 

  250. Longo F, Marchetti MA, Castagnoli L, et al. A novel approach to protein-protein interaction: complex formation between the p53 tumor suppressor and the HIV Tat proteins. Biochem Biophys Res Commun 1995;206:326–334.

    Article  PubMed  CAS  Google Scholar 

  251. Westendorp MO, Li-Weber M, Frank RW, et al. Human immunodeficiency virus type 1 Tat upregulates interleukin-2 secretion in activated T cells. J Virol 1994;68:4177–4185.

    PubMed  CAS  Google Scholar 

  252. Zauli G, Gibellini D. The human immunodeficiency virus type-1 (HIV-1) Tat protein and Bcl-2 gene expression. Leuk Lymphoma 1996;23:551–560.

    Article  PubMed  CAS  Google Scholar 

  253. Scala G, Ruocco MR, Ambrosino C, et al. The expression of the interleukin 6 gene is induced by the human immunodeficiency virus 1 TAT protein. J Exp Med 1994;179:961–971.

    Article  PubMed  CAS  Google Scholar 

  254. Ambrosino C, Ruocco MR, Chen X, et al. HIV-1 Tat induces the expression of the interleukin-6 (IL6) gene by binding to the IL6 leader RNA and by interacting with CAAT enhancer-binding protein beta (NF-IL6) transcription factors. J Biol Chem 1997;272:14883–14892.

    Article  PubMed  CAS  Google Scholar 

  255. Corallini A, Altavilla G, Pozzi L, et al. Systemic expression of HIV-1 tat gene in transgenic mice induces endothelial proliferation and tumors of different histotypes. Cancer Res 1993;53:5569–5575.

    PubMed  CAS  Google Scholar 

  256. Altavilla G, Trabanelli C, Merlin M, et al. Morphological, histochemical, immunohistochemical, and ultrastructural characterization of tumors and dysplastic and non-neoplastic lesions arising in BK virus/tat transgenic mice. Am J Pathol 1999;154:1231–1244.

    PubMed  CAS  Google Scholar 

  257. Altavilla G, Caputo A, Lanfredi M, et al. Enhancement of chemical hepatocarcinogenesis by the HIV-1 tat gene. Am J Pathol 2000;157:1081–1089.

    PubMed  CAS  Google Scholar 

  258. Altavilla G, Caputo A, Trabanelli C, et al. Prevalence of liver tumours in HIV-1 tat-transgenic mice treated with urethane. Eur J Cancer 2004;40(2):275–283.

    Article  PubMed  CAS  Google Scholar 

  259. Chang MH, Chen CJ, Lai MS, et al. Universal hepatitis B vaccination in Taiwan and the incidence of hepatocellular carcinoma in children. Taiwan Childhood Hepatoma Study Group. N Engl J Med 1997;336:1855–1859.

    Article  PubMed  CAS  Google Scholar 

  260. Kong Q, Richter L, Yang YF, et al. Oral immunization with hepatitis B surface antigen expressed in transgenic plants. Proc Natl Acad Sci USA 2001;98:11539–11544.

    Article  PubMed  CAS  Google Scholar 

  261. Schiller JT, Lowy DR. Papillomavirus-like particles and HPV vaccine development. Semin Cancer Biol 1996;7:373–382.

    Article  PubMed  CAS  Google Scholar 

  262. Tindle RW. Human papillomavirus vaccines for cervical cancer. Curr Opin Immunol 1996;8:643–650.

    Article  PubMed  CAS  Google Scholar 

  263. Epstein MA, Morgan AJ, Finerty S, et al. Protection of cottontop tamarins against Epstein-Barr virus-induced malignant lymphoma by a prototype subunit vaccine. Nature (Lond) 1985;318:287–289.

    Article  PubMed  CAS  Google Scholar 

  264. Morgan AJ. The development of Epstein-Barr virus vaccines. In: Barbanti-Brodano G, Bendinelli M, Friedmam H (eds). DNA Tumor Viruses: Oncogenic Mechanisms. New York: Plenum Press, 1995:395–419.

    Google Scholar 

  265. Xie YC, Hwang C, Overwijk W, et al. Induction of tumor antigen-specific immunity in vivo by a novel vaccinia vector encoding safety-modified simian virus 40 T antigen. J Natl Cancer Inst 1999;91:169–175.

    Article  PubMed  CAS  Google Scholar 

  266. Saenz-Robles MT, Sullivan CS, Pipas JM. Transforming functions of simian virus 40. Oncogene 2001;20:7899–7907.

    Article  PubMed  CAS  Google Scholar 

  267. Imperiale MJ, Pass HI, Sanda MG. Prospects for an SV40 vaccine. Semin Cancer Biol 2001;11:81–85.

    Article  PubMed  CAS  Google Scholar 

  268. Cafaro A, Caputo A, Fracasso C, et al. Control of SHIV-89.6P-infection of cynomolgus monkeys by HIV-1 Tat protein vaccine. Nat Med 1999;5:643–650.

    Article  PubMed  CAS  Google Scholar 

  269. Pauza CD, Trivedi P, Wallace M, et al. Vaccination with tat toxoid attenuates disease in simian/HIV-challenged macaques. Proc Natl Acad Sci USA 2000;97:3515–3519.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Carbone, M., Barbanti-Brodano, G. (2006). Viral Carcinogenesis. In: Chang, A.E., et al. Oncology. Springer, New York, NY. https://doi.org/10.1007/0-387-31056-8_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-31056-8_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-24291-0

  • Online ISBN: 978-0-387-31056-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics