Skip to main content

The Genus Derxia

  • Reference work entry
The Prokaryotes
  • 6514 Accesses

Abstract

In the genus Derxia only a single species is recognized, D. gummosa. This species was originally described by Jensen et al. (1960) from an isolate obtained from Indian soil, but was later found to be widely distributed in soils of South America (Brazil), Southern Africa, Indonesia, and China, but not in temperate regions.

Although Roy and Sen (1962) described a second species of Derxia (D. indica sp. nov.) from a sample of partially retted jute plant (Corchorus olitorius L.) from Uttar Pradesh, India, they did not present cultural and physiological data showing that their isolate was sufficiently different from Derxia gummosa to warrant the designation of a new species.

The genus is named for H. G. Derx (1894–1953), a Dutch microbiologist.

Using rRNA cistron similarity as a criterion for genetic relatedness, De Smedt et al. (1980) found that D. gummosa is quite different from species of the genera Azotobacter, Azomonas, and Beijerinckia. From hybridization studies with DNAs from three D. gummosa strains using the 14C-labeled rRNAs from a great variety of other organisms, it was quite obvious that the Derxia rRNA cistrons most closely resemble those of Pseudomonas acidovorans, P. solanacearum, Chromobacterium violaceum, Janthinobacterium lividum, and Alcaligenes faecalis. These taxa, together with a few others, constitute the third rRNA superfamily of De Ley (see The Proteobacteria: Ribosomal RNA Cistron Similarities and Bacterial Taxonomy in the second edition). Members of these taxa have in common that they consist of Gram-negative rods, usually 1.0–4.0 µm in length and 0.5–1.0 µm in diameter, do not possess resting stages, have a GC content of the DNA of 57–72 mol%, are chemoheterotrophic, exhibit respiratory (oxidative) metabolism, and occur in soil and water habitats. The third rRNA superfamily of De Ley (De Smedt et al., 1980) is identical with the beta subclass of the Proteobacteria, according to the phylogenetic taxon nomenclature of Stackebrandt et al. 1988.

Based on numerical analysis of a large number of attributes, Thompson and Skerman (1979) showed fusion of their five Derxia strains tested with “Azotomonas” (“Azotomonas insolitaStapp, 1940, sometimes termed “Pseudomonas insolita” [Stapp] Brisou, 1961) at group 1296 in their dendrograms of hierarchical interrelations (see also Krieg and Holt, 1984). This indicates that Derxia is not related to the genera Azotobacter or Azomonas and thus confirms the conclusions of De Smedt et al. (1980).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 700.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literature Cited

  • Brisou, B. 1961 Etudes de quelques Pseudomonas chromogènes isolés à Diego-Suarez Bull. Soc. Path. Exot. 54 746–755

    PubMed  CAS  Google Scholar 

  • Buchanan, R. E., N. E. Gibbons (ed.). 1974 Bergey’s manual of determinative bacteriology. 8th ed Williams and Wilkins, Baltimore

    Google Scholar 

  • Campêlo, A. B., Döbereiner, J. A. 1970 Ocorrência de Derxia sp. em solos de alguns Estados Brasileiros Pesquisa Agropecuária Brasileira 5 327–332

    Google Scholar 

  • De Ley, J., Park, I. W. 1966 Molecular biological taxonomy of some free-living nitrogen-fixing bacteria, Antonie van Leeuwenhoek, Journal of Microbiology and Serology 32 6–16

    Google Scholar 

  • De Smedt, J., Bauwens, M., Tytgat, R., De Ley, J. 1980 Intra-and intergeneric similarities of ribosomal ribonucleic acid cistrons of free-living, nitrogen-fixing bacteria Int. J. Syst. Bacteriol. 30 106–122

    Article  Google Scholar 

  • Hanus, F. J., Maier, R. J., Evans, H. J. 1979 Autotrophic growth of H2-uptake-positive strains of Rhizobium japonicum in an atmosphere supplied with hydrogen gas Proc. Natn. Acad. Sci., USA 76 1788–1792

    Article  CAS  Google Scholar 

  • Hill, S. 1971 Influence of oxygen concentration on the colony type of Derxia gummosa grown on nitrogen-free media J. Gen. Microbiol. 67 77–83

    CAS  Google Scholar 

  • Hill, S., Postgate, J. R. 1969 Failure of putative nitrogen-fixing bacteria to fix nitrogen J. Gen. Microbiol. 58 277–285

    PubMed  CAS  Google Scholar 

  • Jensen, H. L., Petersen, E. J., De, P. K., Bhattacharya, R. 1960 A new nitrogen-fixing bacterium: Derxia gummosa nov. gen. nov. spec Arch. Microbiol. 36 182–195

    Google Scholar 

  • Krieg, N. R., Holt, J. G. (ed.). 1984 Bergey’s manual of systematic bacteriology, vol. 1 Williams and Wilkins, Baltimore

    Google Scholar 

  • Lipman, J. G. 1903. Experiments on the transformation and fixation of nitrogen by bacteria, 217–285, 16th Annual Report over 1903 of the New Jersey State Agricultural Experiment Station, USA.

    Google Scholar 

  • Malik, K. A., Claus, D. 1979 Xanthobacter flavus, a new species of nitrogen-fixing hydrogen bacteria Int. J. Syst. Bacteriol. 29 283–287

    Article  Google Scholar 

  • Malik, K. A., Schlegel, H. G. 1981 Chemolithotropic growth of bacteria able to grow under N2-fixing conditions FEMS Microbiol. Lett. 11 63–67

    Article  CAS  Google Scholar 

  • Pedrosa, F. O., Döbereiner, J., Yates, M. G. 1980 Hydrogen-dependent growth and autotrophic carbon dioxide fixation in Derxia J. Gen. Microbiol. 119 547–551

    CAS  Google Scholar 

  • Rittenberg, S. C. 1969 The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria Adv. Microbiol. Physiol. 3 159–196

    Article  CAS  Google Scholar 

  • Roy, A. B., Sen, S. 1962 A new species of Derxia Nature, London 194 604–605

    Article  Google Scholar 

  • Sampaio, M.-J. A. M., da Silva, E. M. R., Döbereiner, J., Yates, M. G., Pedrosa, F. O. 1981 Autotrophy and methylotrophy in Derxia gummosa, Azospirillum brasilense and A. lipoferum 447 Gibson, A. H., and Newton, W. E. (ed.) Current perspectives in nitrogen fixation, Proc. 4th Int. Symp. on Nitrogen Fixation, Canberra, Australia, Dec. 1–5, 1980 Elsevier/North-Holland Biomedical Press, Amsterdam

    Google Scholar 

  • Stackebrandt, E., Murray, R. G. E., Trüper, H. G. 1988 Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives”. Int. J. Syst. Bacteriol. 38 321–325

    Article  Google Scholar 

  • Stapp, C. 1940 Azotomonas insolita, ein neuer aerober stickstoffbindender Mikroorganismus Zentralblatt für Bakteriologie, Parasitenkunde, Infektionskrankheiten, und Hygiene, Abt. II 102 142–150

    Google Scholar 

  • Tchan, Y. T., Jensen, H. L. 1963 Studies of nitrogen fixing bacteria Proc. Linn. Soc. New South Wales 88 379–385

    Google Scholar 

  • Thompson, J. P., Skerman, V. B. D. 1979 Azotobacteraceae: The taxonomy and ecology of the aerobic nitrogen-fixing bacteria Academic Press, London

    Google Scholar 

  • Wiegel, J., Schlegel, H. G. 1984 Genus Xanthobacter 325–333 Bergey’s manual of systematic bacteriology Williams and Wilkins, Baltimore

    Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R., Schlegel, H. 1978 Transfer of the nitrogen-fixing hydrogen bacterium Corynebacterium autotrophicum Baumgarten et al. to Xanthobacter gen. nov Int. J. Syst. Bacteriol. 28 573–581

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag

About this entry

Cite this entry

Becking, J.H. (2006). The Genus Derxia . In: Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, KH., Stackebrandt, E. (eds) The Prokaryotes. Springer, New York, NY. https://doi.org/10.1007/0-387-30745-1_34

Download citation

Publish with us

Policies and ethics