Skip to main content

Epithelial-Mesenchymal Transitions in Human Cancer

  • Chapter
Rise and Fall of Epithelial Phenotype

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Epithelial-mesenchymal transition (EMT) is a type of epithelial plasticity that is characterized by long-lasting morphological and molecular changes in epithelial cells as a result of transdifferentiation towards a mesenchymal cell type. To detect possible phenotypic transitions in human cancer, surgical pathology is a useful medical discipline, examining surgical or biopsy material at the microscopic and ultrastructural level. The expression in a particular tumor of epithelial and mesenchymal markers is evaluated by means of immunohistochemistry or in situ hybridization, and this could, besides directing to a correct diagnosis, substantiate a possible transdifferentiation. Whereas EMT occurs in several stages of embryonic development and can be readily induced in (cancer) cell lines in vitro, in human cancer the phenomenon is rarely encountered. Carcinosarcoma is the tumor best studied, in which monoclonality of both epithelial and mesenchymal cell components strongly favors an EMT. A challenging hypothes is considers EMT as a more general event, providing an additional survival advantage in all types of carcinoma. By means of EMT the epithelial tumor cells would transdifferentiate into myofibroblasts that lose their malignant phenotype but constitute the desmoplastic stroma which is essential for tumor growth, invasion and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Janda E, Lehmann K, Killisch I et al. Ras and TGFβ cooperatively regulate epithelial cell plasticity and metastasis: dissection of Ras signaling pathways. J Cell Biol 2002;156:299–313.

    PubMed  CAS  Google Scholar 

  2. Slack JMW, Tosh D. Transdifferentiation and metaplasia-switching cell types. Curr Opin Genet Dev 2001;11:581–586.

    PubMed  CAS  Google Scholar 

  3. Cotran RS, Kumar V, Collins T (eds). Robbins Pathologic Basis of Disease. 6th Edition. WB Saunders Company, Philadelphia, 1999:264–267.

    Google Scholar 

  4. Cotran RS, Kumar V, Collins T (eds). Robbins Pathologic Basis of Disease. 6th Edition. WB Saunders Company, Philadelphia, 1999:36–38.

    Google Scholar 

  5. Tosh D, Slack JMW. How cells change their phenotype. Nat Rev Mol Cell Biol 2002;3:187–194.

    PubMed  CAS  Google Scholar 

  6. Hay ED, Zuk A. Transformations between epithelium and mesenchyme: normal, pathological, and experimentally induced. Am J Kidney Dis 1995;26:678–690.

    PubMed  CAS  Google Scholar 

  7. Vrancken Peeters M-PFM, Gittenberger-de Groot AC, Mentink MMT et al. Smooth muscle cells and fibroblasts of the coronary arteries derive from epithelial-mesenchymal transformation of the epicardium. Anat Embryol (Berl) 1999;199:367–378.

    PubMed  CAS  Google Scholar 

  8. Morabito CJ, Dettman RW, Kattan J et al. Positive and negative regulation of epicardial-mesenchymal transformation during avian heart development. Dev Biol 2001;234:204–215.

    PubMed  CAS  Google Scholar 

  9. Vicovac L, Aplin JD. Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel) 1996;156:202–216.

    PubMed  CAS  Google Scholar 

  10. Horster MF, Braun GS, Huber SM. Embryonic renal epithelia: induction, nephrogenesis, and cell differentiation. Physiol Rev 1999;79:1157–1191.

    PubMed  CAS  Google Scholar 

  11. Schedl A, Hastie ND. Cross-talk in kidney development. Curr Opin Genet Dev 2000;10:543–549.

    PubMed  CAS  Google Scholar 

  12. Vainio S, Karavanova I, Jowett A et al. Identification of BMP-4 as a signal mediating secondary induction between epithelial and mesenchymal tissues during early tooth development. Cell 1993;75:45–58.

    PubMed  CAS  Google Scholar 

  13. Dulbecco R, Henahan M, Bowman M et al. Generation of fibroblast-like cells from cloned epithelial mammary cells in vitro: a possible new cell type. Proc Natl Acad Sci USA 1981;78:2345–2349.

    PubMed  CAS  Google Scholar 

  14. Auersperg N, Maines-Bandiera SL, Dyck HG et al. Characterization of cultured human ovarian surface epithelial cells: phenotypic plasticity and premalignant changes. Lab Invest 1994;71:510–518.

    PubMed  CAS  Google Scholar 

  15. Sood AK, Seftor EA, Fletcher MS et al. Molecular determinants of ovarian cancer plasticity. Am J Pathol 2001;158:1279–1288.

    PubMed  CAS  Google Scholar 

  16. Maniotis AJ, Folberg R, Hess A et al. Vascular channel formation by human melanoma cells in vivo and in vitro: vasculogenic mimicry. Am J Pathol 1999;155:739–752.

    PubMed  CAS  Google Scholar 

  17. Burke JM, Skumatz CMB, Irving PE et al. Phenotypic heterogeneity of retinal pigment epithelial cells in vitro and in situ. Exp Eye Res 1996;62:63–73.

    PubMed  CAS  Google Scholar 

  18. Van Aken EH, De Wever O, Van Hoorde L et al. Invasion of retinal pigment epithelial cells: N-cadherin, hepatocyte growth factor, and focal adhesion kinase. Invest Ophthalmol Vis Sci 2003;44:463–472.

    PubMed  Google Scholar 

  19. Zuk A, Hay ED. Expression of β1 integrins changes during transformation of avian lens epithelium to mesenchyme in collagen gels. Dev Dyn 1994;201:378–393.

    PubMed  CAS  Google Scholar 

  20. Shen C-N, Slack JMW, Tosh D. Molecular basis of transdifferentiation of pancreas to liver. Nat Cell Biol 2000;2:879–887.

    PubMed  CAS  Google Scholar 

  21. Hu E, Tontonoz P, Spiegelman BM. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc Natl Acad Sci USA 1995;92:9856–9860.

    PubMed  CAS  Google Scholar 

  22. Donna A, Betta PG, Bianchi V et al. A new insight into the histogenesis of ‘mesodermomas’-malignant mesotheliomas. Histopathology 1991;19:239–244.

    PubMed  CAS  Google Scholar 

  23. Vleminckx K, Vakaet L Jr, Mareel M et al. Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell 1991;66:107–119.

    PubMed  CAS  Google Scholar 

  24. Matsuzaki F, Mège RM, Jaffe SH et al. cDNAs of cell adhesion molecules of different specificity induce changes in cell shape and border formation in cultured S180 cells. J Cell Biol 1990;110:1239–1252.

    PubMed  CAS  Google Scholar 

  25. Nagafuchi A, Shirayoshi Y, Okazaki K et al. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 1987;329:341–343.

    PubMed  CAS  Google Scholar 

  26. Van Aken E, De Wever O, Correia da Rocha AS et al. Defective E-cadherin/catenin complexes in human cancer. Virchows Arch 2001;439:725–751.

    PubMed  Google Scholar 

  27. Berx G, Cleton-Jansen A-M, Nollet F et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J 1995;14:6107–6115.

    PubMed  CAS  Google Scholar 

  28. Berx G, Cleton-Jansen A-M, Strumane K et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene 1996;13:1919–1925.

    PubMed  CAS  Google Scholar 

  29. Guilford P, Hopkins J, Harraway J et al. E-cadherin germline mutations in familial gastric cancer. Nature 1998;392:402–405.

    PubMed  CAS  Google Scholar 

  30. Humar B, Toro T, Graziano F et al. Novel germline CDH1 mutations in hereditary diffuse gastric cancer families. Hum Mutat 2002;19:518–525.

    PubMed  CAS  Google Scholar 

  31. Risinger JI, Berchuck A, Kohler MF et al. Mutations of the E-cadherin gene in human gynecologic cancers. Nat Genet 1994;7:98–102.

    PubMed  CAS  Google Scholar 

  32. Suriano G, Oliveira C, Ferreira P et al. Identification of CDH1 germline missense mutations associated with functional inactivation of the E-cadherin protein in young gastric cancer probands. Hum Mol Genet 2003;12:575–582.

    PubMed  CAS  Google Scholar 

  33. Grady WM, Willis J, Guilford PJ et al. Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 2000;26:16–17.

    PubMed  CAS  Google Scholar 

  34. Machado JC, Oliveira C, Carvalho R et al. E-cadherin gene (CDH1) promoter methylation as the second hit in sporadic diffuse gastric carcinoma. Oncogene 2001;20:1525–1528.

    PubMed  CAS  Google Scholar 

  35. Tamura G, Yin J, Wang S et al. E-cadherin gene promoter hypermethylation in primary human gastric carcinomas. J Natl Cancer Inst 2000;92:569–573.

    PubMed  CAS  Google Scholar 

  36. Yoshiura K, Kanai Y, Ochiai A et al. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci USA 1995;92:7416–7419.

    PubMed  CAS  Google Scholar 

  37. Nieto MA. The Snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 2002;3:155–166.

    PubMed  CAS  Google Scholar 

  38. Nieto MA, Sargent MG, Wilkinson DG et al. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994;264:835–839.

    PubMed  CAS  Google Scholar 

  39. Batlle E, Sancho E, Franci C et al. The transcription factor Snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2000;2:84–89.

    PubMed  CAS  Google Scholar 

  40. Cano A, Pérez-Moreno MA, Rodrigo I et al. The transcription factor Snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biol 2000; 2:76–83.

    PubMed  CAS  Google Scholar 

  41. Bolós V, Peinado H, Pérez-Moreno MA et al. The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. J Cell Sci 2003; 116:499–511.

    PubMed  Google Scholar 

  42. Comijn J, Berx G, Vermassen P et al. The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 2001; 7:1267–1278.

    PubMed  CAS  Google Scholar 

  43. Yokoyama K, Kamata N, Hayashi E et al. Reverse correlation of E-cadherin and snail expression in oral squamous cell carcinoma cells in vitro. Oral Oncol 2001; 37:65–71.

    PubMed  CAS  Google Scholar 

  44. Blanco MJ, Moreno-Bueno G, Sarrio D et al. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 2002; 21:3241–3246.

    PubMed  CAS  Google Scholar 

  45. Rosivatz E, Becker I, Specht K et al. Differential expression of the epithelial-mesenchymal transition regulators Snail, SIP1, and Twist in gastric cancer. Am J Pathol 2002; 161:1881–1891.

    PubMed  CAS  Google Scholar 

  46. Hosono S, Gross I, English MA et al. E-cadherin is a WT1 target gene. J Biol Chem 2000; 275:10943–10953.

    PubMed  CAS  Google Scholar 

  47. Hosono S, Luo X, Hyink DP et al. WT1 expression induces features of renal epithelial differentia tion in mesenchymal fibroblasts. Oncogene 1999; 18:417–427.

    PubMed  CAS  Google Scholar 

  48. Han AC, Soler AP, Knudsen KA et al. Distinct cadherin profiles in special variant carcinomas and other tumors of the breast. Hum Pathol 1999; 30:1035–1039.

    PubMed  CAS  Google Scholar 

  49. Tomita K, van Bokhoven A, van Leenders GJLH et al. Cadherin switching in human prostate cancer progression. Cancer Res 2000; 60:3650–3654.

    PubMed  CAS  Google Scholar 

  50. Giroldi LA, Bringuier P-P, Shimazui T et al. Changes in cadherin-catenin complexes in the progression of human bladder carcinoma. Int J Cancer 1999; 82:70–76.

    PubMed  CAS  Google Scholar 

  51. Islam S, Carey TE, Wolf GT et al. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J Cell Biol 1996; 135:1643–1654.

    PubMed  CAS  Google Scholar 

  52. Hazan RB, Kang L, Whooley BP et al. N-cadherin promotes adhesion between invasive breast cancer cells and the stroma. Cell Adhesion Commun 1997; 4:399–411.

    CAS  Google Scholar 

  53. Hazan RB, Phillips GR, Fang Qiao R et al. Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. J Cell Biol 2000; 148:779–790.

    PubMed  CAS  Google Scholar 

  54. Nieman MT, Prudoff RS, Johnson KR et al. N-cadherin promotes motility in human breast cancer cells regardless of their E-cadherin expression. J Cell Biol 1999; 147:631–643.

    PubMed  CAS  Google Scholar 

  55. Suyama K, Shapiro I, Guttman M et al. A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2002; 2:301–314.

    PubMed  CAS  Google Scholar 

  56. Grände M, Franzen A, Karlsson J-O et al. Transforming growth factor-β and epidermal growth factor synergistically stimulate epithelial to mesenchymal transition (EMT) through a MEK-dependent mechanism in primary cultured pig thyrocytes. J Cell Sci 2002; 115:4227–4236.

    PubMed  Google Scholar 

  57. Bhowmick NA, Ghiassi M, Bakin A et al. Transforming growth factor-β1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12:27–36.

    PubMed  CAS  Google Scholar 

  58. Ackland ML, Newgreen DF, Fridman M et al. Epidermal growth factor-induced epithelio-mesenchymal transition in human breast carcinoma cells. Lab Invest 2003; 83:435–448.

    PubMed  CAS  Google Scholar 

  59. Bhowmick NA, Zent R, Ghiassi M et al. Integrin β1 signaling is necessary for transforming growth factor-β activation of p38MAPK and epithelial plasticity. J Biol Chem 2001; 276:46707–46713.

    PubMed  CAS  Google Scholar 

  60. Bakin AV, Tomlinson AK, Bhowmick NA et al. Phosphatidylinositol 3-kinase function is required for transforming growth factor β-mediated epithelial to mesenchymal transition and cell migration. J Biol Chem 2000; 275:36803–36810.

    PubMed  CAS  Google Scholar 

  61. Gotzmann J, Huber H, Thallinger C et al. Hepatocytes convert to a fibroblastoid phenotype through the cooperation of TGF-β1 and Ha-Ras: steps towards invasiveness. J Cell Sci 2002; 115:1189–1202.

    PubMed  CAS  Google Scholar 

  62. Potempa S, Ridley AJ. Activation of both MAP kinase and phosphatidylinositide 3-kinase by Ras is required for hepatocyte growth factor/scatter factor-induced adherens junction disassembly. Mol Biol Cell 1998; 9:2185–2200.

    PubMed  CAS  Google Scholar 

  63. Strutz F, Zeisberg M, Ziyadeh FN et al. Role of basic fibroblast growth factor-2 in epithelial-mesenchymal transformation. Kidney Int 2002; 61:1714–1728.

    PubMed  CAS  Google Scholar 

  64. Morali OG, Delmas V, Moore R et al. IGF-II induces rapid β-catenin relocation to the nucleus during epithelium to mesenchyme transition. Oncogene 2001; 20:4942–4950.

    PubMed  CAS  Google Scholar 

  65. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev 2002; 2:442–454.

    CAS  Google Scholar 

  66. Savagner P. Leaving the neighborhood: molecular mechanisms involved during epithelial-mesenchymal transition. BioEssays 2001; 23:912–923.

    PubMed  CAS  Google Scholar 

  67. Boyer B, Vaileé AM, Edme N. Induction and regulation of epithelial-mesenchymal transitions. Biochem Pharmacol 2000; 60:1091–1099.

    PubMed  CAS  Google Scholar 

  68. Cheville NF (ed). Ultrastructural Pathology. An introduction to interpretation, Iowa State Univer sity Press, Ames, Iowa, 1994:234–259.

    Google Scholar 

  69. Lloreta-Trull J, Serrano S. The current role of electron microscopy in the diagnosis of epithelial and epithelioid tumors. Semin Diagn Pathol 2003; 20:46–59.

    PubMed  Google Scholar 

  70. Suo Z, Nesland JM. Electron microscopy in diagnosis of spindle cell tumors. Semin Diagn Pathol 2003; 20:5–12.

    PubMed  Google Scholar 

  71. Eyden B. Electron microscopy in the study of myofibroblastic lesions. Semin Diagn Pathol 2003; 20:13–24.

    PubMed  Google Scholar 

  72. Sugai T, Oikawa M, Uesugi N et al. Esophageal squamous cell carcinoma characterized by extensive chondroid differentiation. Pathol Int 2000; 50:514–519.

    PubMed  CAS  Google Scholar 

  73. Domagala W, Striker G, Szadowska A et al. p53 protein and vimentin in invasive ductal NOS breast carcinoma-relationship with survival and sites of metastases. Eur J Cancer 1994; 30A:1527–1534.

    PubMed  CAS  Google Scholar 

  74. Jahkola T, Toivonen T, von Smitten K et al. Expression of tenascin in invasion border of early breast cancer correlates with higher risk of distant metastasis. Int J Cancer (Pred Oncol) 1996; 69:445–447.

    CAS  Google Scholar 

  75. Chenard M-P, O’Siorain L, Shering S et al. High levels of stromelysin-3 correlate with poor prognosis in patients with breast carcinoma. Int J Cancer (Pred Oncol) 1996; 69:448–451.

    CAS  Google Scholar 

  76. Davies JA, Garrod DR. Molecular aspects of the epithelial phenotype. BioEssays 1997; 19:699–704.

    PubMed  CAS  Google Scholar 

  77. Sappino AP, Schürch W, Gabbiani G. Biology of disease. Differentiation repertoire of fibroblastic cells: expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 1990; 63:144–161.

    PubMed  CAS  Google Scholar 

  78. Osborn M, Weber K. Intermediate filaments: cell-type-specific markers in differentiation and pathology. Cell 1982; 31:303–306.

    PubMed  CAS  Google Scholar 

  79. Moll R, Franke W, Schiller DL et al. The catalog of human cytokeratins: patterns of expression in normal epithelia, tumors and cultured cells. Cell 1982; 31:11–24.

    PubMed  CAS  Google Scholar 

  80. Cooper D, Schermer A, Sun T-T. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications, and limitations. Lab Invest 1985; 52:243–256.

    PubMed  CAS  Google Scholar 

  81. Moll R, Lowe A, Laufer J et al. Cytokeratin 20 in human carcinomas. A new histodiagnostic marker detected by monoclonal antibodies. Am J Pathol 1992; 140:427–447.

    PubMed  CAS  Google Scholar 

  82. Santini D, Ceccarelli C, Taffurelli M et al. Differentiation pathways in primary invasive breast carcinoma as suggested by intermediate filament and biopathological marker expression. J Pathol 1996; 179:386–391.

    PubMed  CAS  Google Scholar 

  83. Goddard MJ, Wilson B, Grant JW. Comparison of commercially available cytokeratin antibodies in normal and neoplastic adult epithelial and non-epithelial tissues. J Clin Pathol 1991; 44:660–663.

    PubMed  CAS  Google Scholar 

  84. Osborn M, Debus E, Weber K. Monoclonal antibodies specific for vimentin. Eur J Cell Biol 1984; 34:137–143.

    PubMed  CAS  Google Scholar 

  85. Sommers CL, Walker-Jones D, Heckford SE et al. Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res 1989; 49:4258–4263.

    PubMed  CAS  Google Scholar 

  86. Raymond WA, Leong AS-Y. Vimentin-a new prognostic parameter in breast carcinoma ? J Pathol 1989; 158:107–114.

    PubMed  CAS  Google Scholar 

  87. Domagala W, Wozniak L, Lasota J et al. Vimentin is preferentially expressed in high-grade ductal and medullary, but not in lobular breast carcinomas. Am J Pathol 1990; 137:1059–1064.

    PubMed  CAS  Google Scholar 

  88. Heatley M, Whiteside C, Maxwell P et al. Vimentin expression in benign and malignant breast epithelium. J Clin Pathol 1993; 46:441–445.

    PubMed  CAS  Google Scholar 

  89. Seshadri R, Raymond WA, Leong AS-Y et al. Vimentin expression is not associated with poor prognosis in breast cancer. Int J Cancer 1996; 67:353–356.

    PubMed  CAS  Google Scholar 

  90. Sommers CL, Byers SW, Thompson EW et al. Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 1994; 31:325–335.

    PubMed  CAS  Google Scholar 

  91. Thompson EW, Torri J, Sabol M et al. Oncogene-induced basement membrane invasiveness in human mammary epithelial cells. Clin Exp Metastasis 1994; 12:181–194.

    PubMed  CAS  Google Scholar 

  92. Hendrix MJC, Seftor EA, Seftor REB et al. Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and in creased invasive behavior. Am J Pathol 1997; 150:483–495.

    PubMed  CAS  Google Scholar 

  93. Zajchowski DA, Bartholdi MF, Gong Y et al. Identification of gene expression profiles that predict the aggressive behavior of breast cancer cells. Cancer Res 2001; 61:5168–5178.

    PubMed  CAS  Google Scholar 

  94. Ramaekers FC, Verhagen AP, Isaacs JT et al. Intermediate filament expression and the progression of prostatic cancer as studied in the Dunning R-3327 rat prostatic carcinoma system. Prostate 1989; 14:323–339.

    PubMed  CAS  Google Scholar 

  95. Gilles C, Polette M, Piette J et al. Epithelial-to-mesenchymal transition in HPV-33-transfected cervical keratinocytes is associated with increased invasiveness and expression of gelatinase A. Int J Cancer 1994; 59:661–666.

    PubMed  CAS  Google Scholar 

  96. Ebert AD, Wechselberger C, Nees M et al. Cripto-1-induced increase in vimentin expression is associated with enhanced migration of human Caski cervical carcinoma cells. Exp Cell Res 2000; 257:223–229.

    PubMed  CAS  Google Scholar 

  97. Sommers CL, Heckford SE, Skerker JM et al. Loss of epithelial markers and acquisition of vimentin expression in adriamycin-and vinblastine-resistant human breast cancer cell lines. Cancer Res 1992; 52:5190–5197.

    PubMed  CAS  Google Scholar 

  98. Domagala W, Lasota J, Dukowicz A et al. Vimentin expression appears to be associated with poor prognosis in node-negative ductal NOS breast carcinomas. Am J Pathol 1990; 137:1299–1304.

    PubMed  CAS  Google Scholar 

  99. Fuchs IB, Lichtenegger W, Buehler H et al. The prognostic significance of epithelial-mesenchymal transition in breast cancer. Anticancer Res 2002; 22:3415–3419.

    PubMed  Google Scholar 

  100. Domagala W, Markiewski M, Harezga B et al. Prognostic significance of tumor cell proliferation rate as determined by the MIB-1 antibody in breast carcinoma: its relationship with vimentin and p53 protein. Clin Cancer Res 1996; 2:147–154.

    PubMed  CAS  Google Scholar 

  101. Bozcuk H, Uslu G, Pestereli E et al. Predictors of distant metastasis at presentation in breast cancer: a study also evaluating associations among common biological indicators. Breast Cancer Res Treat 2001; 68:239–248.

    PubMed  CAS  Google Scholar 

  102. Heatley MK, Ewings P, Odling Smee W et al. Vimentin expression does not assist in predicting survival in ductal carcinoma of the breast. Pathology 2002; 34:230–232.

    PubMed  CAS  Google Scholar 

  103. Thomas PA, Kirschmann DA, Cerhan JR et al. Association between keratin and vimentin expression, malignant phenotype, and survival in postmenopausal breast cancer patients. Clin Cancer Res 1999; 5:2698–2703.

    PubMed  CAS  Google Scholar 

  104. Gilles C, Polette M, Piette J et al. Vimentin expression in cervical carcinomas: association with invasive and migratory potential. J Pathol 1996; 180:175–180.

    PubMed  CAS  Google Scholar 

  105. Auersperg N, Wong AST, Choi K-C et al. Ovarian surface epithelium: biology, endocrinology, and pathology. Endocr Rev 2001; 22:255–288.

    PubMed  CAS  Google Scholar 

  106. Holthöfer H. Immunohistology of renal carcinomas. Eur Urol 1990; 18(Suppl 2):15–16.

    PubMed  Google Scholar 

  107. Czernobilsky B, Moll R, Levy R et al. Co-expression of cytokeratin and vimentin filaments in mesothelial, granulosa and rete ovarii cells of the human ovary. Eur J Cell Biol 1985; 37:175–190.

    PubMed  CAS  Google Scholar 

  108. Dabbs DJ, Geisinger KR, Norris HT. Intermediate filaments in endometrial and endocervical carcinomas. The diagnostic utility of vimentin patterns. Am J Surg Pathol 1986; 10:568–576.

    PubMed  CAS  Google Scholar 

  109. Medeiros LJ, Michie SA, Johnson DE et al. An immunoperoxidase study of renal cell carcinomas. Correlation with nuclear grade, cell type, and histologic pattern. Hum Pathol 1988; 19:980–987.

    PubMed  CAS  Google Scholar 

  110. Holthöfer H, Miettinen A, Paasivuo R et al. Cellular origin and differentiation of renal carcinomas. A fluorescence microscopic study with kidney-specific antibodies, antiintermediate filament antibodies, and lectins. Lab Invest 1983; 49:317–326.

    PubMed  Google Scholar 

  111. Swanson PE. Heffalumps, jagulars, and Cheshire cats. A commentary on cytokeratins and soft tissue sarcomas. Am J Clin Pathol 1991; 95(Suppl 1):S2–S7.

    PubMed  CAS  Google Scholar 

  112. Quentmeier H, Osborn M, Reinhardt J et al. Immunocytochemical analysis of cell lines derived from solid tumors. J Histochem Cytochem 2001; 49:1369–1378.

    PubMed  CAS  Google Scholar 

  113. Okazaki M, Takeshita S, Kawai S et al. Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 1994; 269:12092–12098.

    PubMed  CAS  Google Scholar 

  114. Kimura Y, Matsunami H, Inoue T et al. Cadherin-11 expressed in association with mesenchymal morphogenesis in the head, somite, and limb bud of early mouse embryos. Dev Biol 1995; 169:347–358.

    PubMed  CAS  Google Scholar 

  115. Simonneau L, Kitagawa M, Suzuki S et al. Cadherin 11 expression marks the mesenchymal phenotype: towards new functions for cadherins? Cell Adhesion Commun 1995; 3:115–130.

    CAS  Google Scholar 

  116. Pishvaian MJ, Feltes CM, Thompson P et al. Cadherin-11 is expressed in invasive breast cancer cell lines. Cancer Res 1999; 59:947–952.

    PubMed  CAS  Google Scholar 

  117. Feltes CM, Kudo A, Blaschuk O et al. An alternatively spliced cadherin-11 enhances human breast cancer cell invasion. Cancer Res 2002; 62:6688–6697.

    PubMed  CAS  Google Scholar 

  118. Getsios S, Chen GTC, Stephenson MD et al. Regulated expression of cadherin-6 and cadherin-11 in the glandular epithelial and stromal cells of the human endometrium. Dev Dyn 1998; 211:238–247.

    PubMed  CAS  Google Scholar 

  119. MacCalman CD, Furth EE, Omigbodun A et al. Regulated expression of cadherin-11 in human epithelial cells: a role for cadherin-11 in trophoblast-endometrium interactions ? Dev Dyn 1996; 206:201–211.

    PubMed  CAS  Google Scholar 

  120. Getsios S, Chen GTC, Huang DTK et al. Regulated expression of cadherin-11 in human extravillous cytotrophoblasts undergoing aggregation and fusion in response to transforming growth factor β1. J Reprod Fertil 1998; 114:357–363.

    Article  PubMed  CAS  Google Scholar 

  121. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997; 137:1403–1419.

    PubMed  CAS  Google Scholar 

  122. Ikenouchi J, Matsuda M, Furuse M et al. Regulation of tight junctions during the epithelium-mesenchyme transition: direct repression of the gene expression of claudins/occludin by Snail. J Cell Sci 2003; 116:1959–1967.

    PubMed  CAS  Google Scholar 

  123. Yi JY, Hur KC, Lee E et al. TGFβ1-mediated epithelial to mesenchymal transition is accompanied by invasion in the SiHa cell line. Eur J Cell Biol 2002; 81:457–468.

    PubMed  CAS  Google Scholar 

  124. Kawano K, Kantak SS, Murai M et al. Integrin α3β1 engagement disrupts intercellular adhesion. Exp Cell Res 2001; 262:180–196.

    PubMed  CAS  Google Scholar 

  125. Vallés AM, Boyer B, Tarone G et al. α2β1 integrin is required for the collagen and FGF-1 induced cell dispersion in a rat bladder carcinoma cell line. Cell Adhes Commun 1996; 4:187–199.

    PubMed  Google Scholar 

  126. Erickson HP, Inglesias JL. A six-armed oligomer isolated from cell surface fibronectin preparations. Nature 1984; 311:267–269.

    PubMed  CAS  Google Scholar 

  127. Bourdon MA, Wikstrand CJ, Furthmayr H et al. Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res 1983; 43:2796–2805.

    PubMed  CAS  Google Scholar 

  128. Jones FS, Jones PL. The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 2000; 218:235–259.

    PubMed  CAS  Google Scholar 

  129. Vollmer G. Biologic and oncologic implications of tenascin-C/hexabrachion proteins. Crit Rev Oncol Hematol 1997; 25:187–210.

    PubMed  CAS  Google Scholar 

  130. Howeedy AA, Virtanen I, Laitinen L et al. Differential distribution of tenascin in the normal, hyperplastic, and neoplastic breast. Lab Invest 1990; 63:798–806.

    PubMed  CAS  Google Scholar 

  131. Hanamura N, Yoshida T, Matsumoto E-i et al. Expression of fibronectin and tenascin-c mRNA by myofibroblasts, vascular cells and epithelial cells in human colon adenomas and carcinomas. Int J Cancer 1997; 73:10–15.

    PubMed  CAS  Google Scholar 

  132. Latijnhouwers M, Bergers M, Ponec M et al. Human epidermal keratinocytes are a source of tenascin-C during wound healing. J Invest Dermatol 1997; 108:776–783.

    PubMed  CAS  Google Scholar 

  133. Yoshida T, Yoshimura E, Numata H et al. Involvement of tenascin-C in proliferation and migration of laryngeal carcinoma cells. Virchows Arch 1999; 435:496–500.

    PubMed  CAS  Google Scholar 

  134. Schnyder B, Semadeni RO, Fischer RW et al. Distribution pattern of tenascin-C in normal and neoplastic mesenchymal tissues. Int J Cancer 1997; 72:217–224.

    PubMed  CAS  Google Scholar 

  135. Riedl SE, Faissner A, Schlag P et al. Altered content and distribution of tenascin in colitis, colon adenoma, and colorectal carcinoma. Gastroenterology 1992; 103:400–406.

    PubMed  CAS  Google Scholar 

  136. Ishihara A, Yoshida T, Tamaki H et al. Tenascin expression in cancer cells and stroma of human breast cancer and its prognostic significance. Clin Cancer Res 1995; 1:1035–1041.

    PubMed  CAS  Google Scholar 

  137. Jahkola T, Toivonen T, Nordling S et al. Expression of tenascin-C in intraductal carcinoma of human breast: relationship to invasion. Eur J Cancer 1998; 34:1687–1692.

    PubMed  CAS  Google Scholar 

  138. Tuominen H, Pöllänen R, Kallioinen M. Multicellular origin of tenascin in skin tumors-an in situ hybridization study. J Cutan Pathol 1997; 24:590–596.

    PubMed  CAS  Google Scholar 

  139. Dandachi N, Hauser-Kronberger C, More E et al. Co-expression of tenascin-C and vimentin in human breast cancer cells indicates phenotypic transdifferentiation during tumour progression: correlation with histopathological parameters, hormone receptors, and oncoproteins. J Pathol 2001; 193:181–189.

    PubMed  CAS  Google Scholar 

  140. Wirl G, Hermann M, Ekblom P et al. Mammary epithelial cell differentiation in vitro is regulated by an interplay of EGF action and tenascin-C downregulation. J Cell Sci 1995; 108:2445–2456.

    PubMed  CAS  Google Scholar 

  141. Yoshida T, Ishihara A, Hirokawa Y et al. Tenascin in breast cancer development-is epithelial tenascin a marker for poor prognosis ? Cancer Lett 1995; 90:65–73.

    PubMed  CAS  Google Scholar 

  142. Pinkus GS, Kurtin PJ. Epithelial membrane antigen-a diagnostic discriminant in surgical pathology: immunohistochemical profile in epithelial, mesenchymal, and hematopoietic neoplasms using paraffin sections and monoclonal antibodies. Hum Pathol 1985; 16:929–940.

    PubMed  CAS  Google Scholar 

  143. Frisch SM. E1a induces the expression of epithelial characteristics. J Cell Biol 1994; 127:1085–1096.

    PubMed  CAS  Google Scholar 

  144. Frisch SM. The epithelial cell default-phenotype hypothesis and its implications for cancer. BioEssays 1997; 19:705–709.

    PubMed  CAS  Google Scholar 

  145. Strutz F, Okada H, Lo CW et al. Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 1995; 130:393–405.

    PubMed  CAS  Google Scholar 

  146. Hulboy DL, Matrisian LM, Crawford HC. Loss of JunB activity enhances stromelysin 1 expression in a model of the epithelial-to-mesenchymal transition of mouse skin tumors. Mol Cell Biol 2001; 21:5478–5487.

    PubMed  CAS  Google Scholar 

  147. Martorana AM, Zheng G, Crowe TC et al. Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Cancer Res 1998; 58:4970–4979.

    PubMed  CAS  Google Scholar 

  148. Ahmad A, Hanby A, Dublin E et al. Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression. Am J Pathol 1998; 152:721–728.

    PubMed  CAS  Google Scholar 

  149. Nakopoulou L, Panayotopoulou EG, Giannopoulou I et al. Stromelysin-3 protein expression in invasive breast cancer: relation to proliferation, cell survival and patients’ outcome. Mod Pathol 2002; 15:1154–1161.

    PubMed  Google Scholar 

  150. Buisson A-C, Gilles C, Polette M et al. Wound repair-induced expression of a stromelysins is associated with the acquisition of a mesenchymal phenotype in human respiratory epithelial cells. Lab Invest 1996; 74:658–669.

    PubMed  CAS  Google Scholar 

  151. Gilles C, Polette M, Seiki M et al. Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 1997; 76:651–660.

    PubMed  CAS  Google Scholar 

  152. Lochter A, Galosy S, Muschler J et al. Matrix metalloproteinase stromelysin-1 triggers a cascade of molecular alterations that leads to stable epithelial-to-mesenchymal conversion and a premalignant phenotype in mammary epithelial cells. J Cell Biol 1997; 139:1861–1872.

    PubMed  CAS  Google Scholar 

  153. Sternlicht MD, Lochter A, Sympson CJ et al. The stromal proteinase MMP3/stromelysin-l promotes mammary carcinogenesis. Cell 1999; 98:137–146.

    PubMed  CAS  Google Scholar 

  154. Wright JH, McDonnell S, Portella G et al. A switch from stromal to tumor cell expression of stromelysin-1 mRNA associated with the conversion of squamous to spindle carcinomas during mouse skin tumor progression. Mol Carcinog 1994; 10:207–215.

    PubMed  CAS  Google Scholar 

  155. Escot C, Zhao Y, Puech C et al. Cellular localisation by in situ hybridisation of cathepsin D, stromelysin 3, and urokinase plasminogen activator RNAs in breast cancer. Breast Cancer Res Treat 1996; 38:217–226.

    PubMed  CAS  Google Scholar 

  156. Wells WA. Is transdifferentiation in trouble? J Cell Biol 2002; 157:15–18.

    PubMed  CAS  Google Scholar 

  157. Guarino M, Micheli P, Pallotti F et al. Pathological relevance of epithelial and mesenchymal phenotype plasticity. Pathol Res Pract 1999; 195:379–389.

    PubMed  CAS  Google Scholar 

  158. George E, Manivel JC, Dehner LP et al. Malignant mixed müllerian tumors. An immunohistochemical study of 47 cases, with histogenetic considerations and clinical correlation. Hum Pathol 1991; 22:215–223.

    PubMed  CAS  Google Scholar 

  159. Wick MR, Ritter JH, Humphrey PA. Sarcomatoid carcinomas of the lung. A clinicopathologic review. Am J Clin Pathol 1997; 108:40–53.

    PubMed  CAS  Google Scholar 

  160. Torenbeek R, Blomjous CEM, de Bruin PC et al. Sarcomatoid carcinoma of the urinary bladder. Clinicopathologic analysis of 18 cases with immunohistochemical and electron microscopic findings. Am J Surg Pathol 1994; 18:241–249.

    Article  PubMed  CAS  Google Scholar 

  161. Wargotz ES, Norris HJ. Metaplastic carcinomas of the breast. III. Carcinosarcoma. Cancer 1989; 64:1490–1499.

    PubMed  CAS  Google Scholar 

  162. Bleiweiss IJ, Huvos AG, Lara J et al. Carcinosarcoma of the submandibular salivary gland. Immunohistochemical findings. Cancer 1992; 69:2031–2035.

    PubMed  CAS  Google Scholar 

  163. Ikegami H, Iwasaki H, Ohjimi Y et al. Sarcomatoid carcinoma of the urinary bladder: a clinicopathologic and immunohistochemical analysis of 14 patients. Hum Pathol 2000; 31:332–340.

    PubMed  CAS  Google Scholar 

  164. Sneige N, Yaziji H, Mandavilli SR et al. Low-grade (fibromatosis-like) spindle cell carcinoma of the breast. Am J Surg Pathol 2001; 25:1009–1016.

    PubMed  CAS  Google Scholar 

  165. Mount SL, Lee KR, Taatjes DJ. Carcinosarcoma (malignant mixed mullerian tumor) of the uterus with a rhabdoid tumor component. An immunohistochemical, ultrastructural, and immunoelectron microscopic case study. Am J Clin Pathol 1995; 103:235–239.

    PubMed  CAS  Google Scholar 

  166. Ishida T, Tateishi M, Kaneko S et al. Carcinosarcoma and spindle cell carcinoma of the lung. Clinicopathologic and immunohistochemical studies. J Thorac Cardiovasc Surg 1990; 100:844–852.

    PubMed  CAS  Google Scholar 

  167. Wick MR, Swanson PE. Carcinosarcomas: current perspectives and an historical review of nosological concepts. Semin Diagn Pathol 1993; 10:118–127.

    PubMed  CAS  Google Scholar 

  168. Sreenan JJ, Hart WR. Carcinosarcomas of the female genital tract. A pathologic study of 29 metastatic tumors: further evidence for the dominant role of the epithelial component and the conversion theory of histogenesis. Am J Surg Pathol 1995; 19:666–674.

    Article  PubMed  CAS  Google Scholar 

  169. Bitterman P, Chun B, Kurman RJ. The significance of epithelial differentiation in mixed mesodermal tumors of the uterus. A clinicopathologic and immunohistochemical study. Am J Surg Pathol 1990; 14:317–328.

    Article  PubMed  CAS  Google Scholar 

  170. Silverberg SG, Major FJ, Blessing JA et al. Carcinosarcoma (malignant mixed mesodermal tumor) of the uterus. A Gynecologic Oncology Group pathologic study of 203 cases. Int J Gynecol Pathol 1990; 9:1–19.

    PubMed  CAS  Google Scholar 

  171. Wang X, Mori I, Tang W et al. Metaplastic carcinoma of the breast: p53 analysis identified the same point mutation in the three histologic components. Mod Pathol 2001; 14:1183–1186.

    PubMed  CAS  Google Scholar 

  172. Holst VA, Finkelstein S, Colby TV et al. p53 and K-ras mutational genotyping in pulmonary carcinosarcoma, spindle cell carcinoma, and pulmonary blastoma: implications for histogenesis. Am J Surg Pathol 1997; 21:801–811.

    PubMed  CAS  Google Scholar 

  173. Abeln ECA, Smit VTHBM, Wessels JW et al. Molecular genetic evidence for the conversion hypothesis of the origin of malignant mixed mullerian tumours. J Pathol 1997; 183:424–431.

    PubMed  CAS  Google Scholar 

  174. Thompson L, Chang B, Barsky SH. Monoclonal origins of malignant mixed tumors (carcinosarcomas). Evidence for a divergent histogenesis. Am J Surg Pathol 1996; 20:277–285.

    PubMed  CAS  Google Scholar 

  175. Torenbeek R, Hermsen MAJA, Meijer GA et al. Analysis by comparative genomic hybridization of epithelial and spindle cell components in sarcomatoid carcinoma and carcinosarcoma: histogenetic aspects. J Pathol 1999; 189:338–343.

    PubMed  CAS  Google Scholar 

  176. Leong AS-Y, Stevens MW, Mukherjee TM. Malignant mesothelioma: cytologic diagnosis with histologic, immunohistochemical, and ultrastructural correlation. Semin Diagn Pathol 1992; 9:141–150.

    PubMed  CAS  Google Scholar 

  177. Oury TD, Hammar SP, Roggli VL. Ultrastructural features of diffuse malignant mesotheliomas. Hum Pathol 1998; 29:1382–1392.

    PubMed  CAS  Google Scholar 

  178. Krismann M, Müller K-M, Jaworska M et al. Molecular cytogenetic differences between histological subtypes of malignant mesotheliomas: DNA cytometry and comparative genomic hybridization of 90 cases. J Pathol 2002; 197:363–371.

    PubMed  CAS  Google Scholar 

  179. Nasu M, Ishikawa G. Ameloblastoma. Light and electron microscopic study. Virchows Arch A Pathol Anat Histopathol 1983; 399:163–175.

    PubMed  CAS  Google Scholar 

  180. Heikinheimo K, Sandberg M, Happonen R-P et al. Cytoskeletal gene expression in normal and neoplastic human odontogenic epithelia. Lab Invest 1991; 65:688–701.

    PubMed  CAS  Google Scholar 

  181. Thomas HF. Root formation. Int J Dev Biol 1995; 39:231–237.

    PubMed  CAS  Google Scholar 

  182. Papagerakis P, Peuchmaur M, Hotton D et al. Aberrant gene expression in epithelial cells of mixed odontogenic tumors. J Dent Res 1999; 78:20–30.

    PubMed  CAS  Google Scholar 

  183. Putz E, Witter K, Offner S et al. Phenotypic characteristics of cell lines derived from disseminated cancer cells in bone marrow of patients with solid epithelial tumors: establishment of working models for human micrometastases. Cancer Res 1999; 59:241–248.

    PubMed  CAS  Google Scholar 

  184. Iwano M, Plieth D, Danoff TM et al. Evidence that fibroblasts derive from epithelium during tissue fibrosis. J Clin Invest 2002; 110:341–350.

    PubMed  CAS  Google Scholar 

  185. Okada H, Danoff TM, Kalluri R et al. Early role of Fsp1 in epithelial-mesenchymal transformation. Am J Physiol 1997; 273:F563–F574.

    PubMed  CAS  Google Scholar 

  186. Fan J-M, Huang X-R, Ng Y-Y et al. Interleukin-1 induces tubular epithelial-myofibroblast transdifferentiation through a transforming growth factor-β 1-dependent mechanism in vitro. Am J Kidney Dis 2001; 37:820–831.

    PubMed  CAS  Google Scholar 

  187. Jinde K, Nikolic-Paterson DJ, Huang XR et al. Tubular phenotypic change in progressive tubulointerstitial fibrosis in human glomerulonephritis. Am J Kidney Dis 2001; 38:761–769.

    PubMed  CAS  Google Scholar 

  188. Rastaldi MP, Ferrario F, Giardino L et al. Epithelial-mesenchymal transition of tubular epithelial cells in human renal biopsies. Kidney Int 2002; 62:137–146.

    PubMed  Google Scholar 

  189. Yáñez-Mo M, Lara-Pezzi E, Selgas R et al. Peritoneal dialysis and epithelial-to-mesenchymal transition of mesothelial cells. N Engl J Med 2003; 348:403–413.

    PubMed  Google Scholar 

  190. Grisanti S, Guidry C. Transdifferentiation of retinal pigment epithelial cells from epithelial to mesenchymal phenotype. Invest Ophthalmol Vis Sci 1995; 36:391–405.

    PubMed  CAS  Google Scholar 

  191. Morales CP, Souza RF, Spechler SJ. Hallmarks of cancer progression in Barrett’s oesophagus. Lancet 2002; 360:1587–1589.

    PubMed  Google Scholar 

  192. Seery JP. Stem cells of the oesophageal epithelium. J Cell Sci 2002; 115:1783–1789.

    PubMed  Google Scholar 

  193. Epstein WL. Ultrastructural heterogeneity of epithelioid cells in cutaneous organized granulomas of diverse etiology. Arch Dermatol 1991; 127:821–826.

    PubMed  CAS  Google Scholar 

  194. Ashton-Key M, Cowley GP, Smith MEF. Cadherins in reactive lymph nodes and lymphomas: high expression in anaplastic large cell lymphomas. Histopathology 1996; 28:55–59.

    PubMed  CAS  Google Scholar 

  195. Kempson RL, Fletcher CDM, Evans HL et al. Tumors of the Soft Tissues. Atlas of Tumor Pathology, Third Series, Fascicle 30, Armed Forces Institute of Pathology, Washington, DC, 2001:484–492.

    Google Scholar 

  196. Chase DR, Enzinger FM, Weiss SW et al. Keratin in epithelioid sarcoma. An immunohistochemical study. Am J Surg Pathol 1984; 8:435–441.

    Article  PubMed  CAS  Google Scholar 

  197. Kempson RL, Fletcher CDM, Evans HL et al. Tumors of the Soft Tissues. Atlas of Tumor Pathology, Third Series, Fascicle 30, Armed Forces Institute of Pathology, Washington, DC, 2001:472–484.

    Google Scholar 

  198. Miettinen M, Limon J, Niezabitowski A et al. Patterns of keratin polypeptides in 110 biphasic, monophasic, and poorly differentiated synovial sarcomas. Virchows Arch 2000; 437:275–283.

    PubMed  CAS  Google Scholar 

  199. Zhuang Z, Merino MJ, Vortmeyer AO et al. Identical genetic changes in different histologic components of Wilms’ tumors. J Natl Cancer Inst 1997; 89:1148–1152.

    PubMed  CAS  Google Scholar 

  200. Pritchard-Jones K. Malignant origin of the stromal component of Wilms’ tumor. J Natl Cancer Inst 1997; 89:1089–1091.

    PubMed  CAS  Google Scholar 

  201. De Wever O, Mareel M. Role of tissue stroma in cancer cell invasion. J Pathol 2003; 200:429–447.

    PubMed  Google Scholar 

  202. Liotta LA, Kohn EC. The microenvironment of the tumour-host interface. Nature 2001; 411:375–379.

    PubMed  CAS  Google Scholar 

  203. Rønnov-Jessen L, Petersen OW, Bissell MJ. Cellular changes involved in conversion of normal to malignant breast: importance of the stromal reaction. Physiol Rev 1996; 76:69–125.

    PubMed  Google Scholar 

  204. Tuxhorn JA, Ayala GE, Rowley DR. Reactive stroma in prostate cancer progression. J Urol 2001; 166:2472–2483.

    PubMed  CAS  Google Scholar 

  205. Shao Z-M, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 2000; 19:4337–4345.

    PubMed  CAS  Google Scholar 

  206. Chiquet-Ehrismann R, Kalla P, Pearson CA. Participation of tenascin and transforming growth factor-β in reciprocal epithelial-mesenchymal interactions of MCF7 cells and fibroblasts. Cancer Res 1989; 49:4322–4325.

    PubMed  CAS  Google Scholar 

  207. Walker RA, Dearing SJ, Gallacher B. Relationship of transforming growth factor β1 to extracellular matrix and stromal infiltrates in invasive breast carcinoma. Br J Cancer 1994; 69:1160–1165.

    PubMed  CAS  Google Scholar 

  208. Rønnov-Jessen L, Petersen OW. Induction of α-smooth muscle actin by transforming growth factor-βi in quiescent human breast gland fibroblasts. Implications for myofibroblast generation in breast neoplasia. Lab Invest 1993; 68:696–707.

    PubMed  Google Scholar 

  209. Yoshida T, Matsumoto E-I, Hanamura N et al. Co-expression of tenascin and fibronectin in epithelial and stromal cells of benign lesions and ductal carcinomas in the human breast. J Pathol 1997; 182:421–428.

    PubMed  CAS  Google Scholar 

  210. Brown LF, Guidi AJ, Schnitt SJ et al. Vascular stroma formation in carcinoma in situ, invasive carcinoma, and metastatic carcinoma of the breast. Clin Cancer Res 1999; 5:1041–1056.

    PubMed  CAS  Google Scholar 

  211. Bertrand P, Girard N, Delpech B et al. Hyaluronan (hyaluronic acid) and hyaluronectin in the extracellular matrix of human breast carcinomas: comparison between invasive and non-invasive areas. Int J Cancer 1992; 52:1–6.

    PubMed  CAS  Google Scholar 

  212. Kauppila S, Stenbäck F, Risteli J et al. Aberrant type I and type III collagen gene expression in human breast cancer in vivo. J Pathol 1998; 186:262–268.

    PubMed  CAS  Google Scholar 

  213. Lagacé R, Grimaud J-A, Schürch W et al. Myofibroblastic stromal reaction in carcinoma of the breast: variations of collagenous matrix and structural glycoproteins. Virchows Arch A Pathol Anat Histopathol 1985; 408:49–59.

    PubMed  Google Scholar 

  214. Wood M, Fudge K, Mohler JL et al. In situ hybridization studies of metalloproteinases 2 and 9 and TIMP-1 and TIMP-2 expression in human prostate cancer. Clin Exp Metastasis 1997; 15:246–258.

    PubMed  CAS  Google Scholar 

  215. Poulsom R, Pignatelli M, Stetler-Stevenson WG et al. Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia. Am J Pathol 1992; 141:389–396.

    PubMed  CAS  Google Scholar 

  216. Masson R, Lefebvre O, Noel A et al. In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol 1998; 140:1535–1541.

    PubMed  CAS  Google Scholar 

  217. Orlandini M, Oliveiro S. In fibroblasts Vegf-D expression is induced by cell-cell contact mediated by cadherin-11. J Biol Chem 2001; 276:6576–6581.

    PubMed  CAS  Google Scholar 

  218. Nakamura T, Matsumoto K, Kiritoshi A et al. Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 1997; 57:3305–3313.

    PubMed  CAS  Google Scholar 

  219. Brouty-Boyé D, Mainguené C, Magnien V et al. Fibroblast-mediated differentiation in human breast carcinoma cells (MCF-7) grown as nodules in vitro. Int J Cancer 1994; 56:731–735.

    PubMed  Google Scholar 

  220. Olumi AF, Grossfeld GD, Hayward SW et al. Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59:5002–5011.

    PubMed  CAS  Google Scholar 

  221. Hayashi N, Cunha GR, Wong YC. Influence of male genital tract mesenchymes on differentiation of Dunning prostatic adenocarcinoma. Cancer Res 1990; 50:4747–4754.

    PubMed  CAS  Google Scholar 

  222. Thompson TC, Timme TL, Kadmon D et al. Genetic predisposition and mesenchymal-epithelial interactions in ras+myc-induced carcinogenesis in reconstituted mouse prostate. Mol Carcinog 1993; 7:165–179.

    PubMed  CAS  Google Scholar 

  223. Weaver VM, Petersen OW, Wang F et al. Reversion of the malignant phenotype of human breast cells in three-dimensional culture and in vivo by integrin blocking antibodies. J Cell Biol 1997; 137:231–245.

    PubMed  CAS  Google Scholar 

  224. Iacobuzio-Donahue CA, Ryu B, Hruban RH et al. Exploring the host desmoplastic response to pancreatic carcinoma. Gene expression of stromal and neoplastic cells at the site of primary invasion. Am J Pathol 2002; 160:91–99.

    PubMed  Google Scholar 

  225. Iacobuzio-Donahue CA, Argani P, Hempen PM et al. The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 2002; 62:5351–5357.

    PubMed  CAS  Google Scholar 

  226. Dvorak HF. Tumors: wounds that do not heal. N Engl J Med 1986; 315:1650–1659.

    Article  PubMed  CAS  Google Scholar 

  227. Wiseman BS, Werb Z. Stromal effects on mammary gland development and breast cancer. Science 2002; 296:1046–1049.

    PubMed  CAS  Google Scholar 

  228. Cunha GR, Hayward SW, Wang YZ. Role of stroma in carcinogenesis of the prostate. Differentiation 2002; 70:473–485.

    PubMed  Google Scholar 

  229. De Wever O, Mareel M. Role of myofibroblasts at the invasion front. Biol Chem 2002; 383:55–67.

    PubMed  Google Scholar 

  230. Schmitt-Gräff A, Desmoulière A, Gabbiani G. Heterogeneity of myofibroblast phenotypic features: an example of fibroblastic cell plasticity. Virchows Arch 1994; 425:3–24.

    PubMed  Google Scholar 

  231. Rønnov-Jessen L, Petersen OW, Koteliansky VE et al. The origin of the myofibroblasts in breast cancer. Recapitulation of tumor environment in culture unravels diversity and implicates converted fibroblasts and recruited smooth muscle cells. J Clin Invest 1995; 95:859–873.

    Article  PubMed  Google Scholar 

  232. Martin M, Pujuguet P, Martin F. Role of stromal myofibroblasts infiltrating colon cancer in tumor invasion. Pathol Res Pract 1996; 192:712–717.

    PubMed  CAS  Google Scholar 

  233. Tuxhorn JA, Ayala GE, Smith MJ et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin Cancer Res 2002; 8:2912–2923.

    PubMed  CAS  Google Scholar 

  234. Hayward SW, Cunha GR, Dahiya R. Normal development and carcinogenesis of the prostate. A unifying hypothesis. Ann NY Acad Sci 1996; 784:50–62.

    PubMed  CAS  Google Scholar 

  235. Petersen OW, Lind Nielsen H, Gudjonsson T et al. The plasticity of human breast carcinoma cells is more than epithelial to mesenchymal conversion. Breast Cancer Res 2001; 3:213–217.

    PubMed  CAS  Google Scholar 

  236. Petersen OW, Nielsen HL, Gudjonsson T et al. Epithelial to mesenchymal transition in human breast cancer can provide a nonmalignant stroma. Am J Pathol 2003; 162:391–402.

    PubMed  CAS  Google Scholar 

  237. Moinfar F, Man YG, Arnould L et al. Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 2000; 60:2562–2566.

    PubMed  CAS  Google Scholar 

  238. Kurose K, Hoshaw-Woodard S, Adeyinka A et al. Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 2001; 10:1907–1913.

    PubMed  CAS  Google Scholar 

  239. Wernert N, Löcherbach C, Wellmann A et al. Presence of genetic alterations in microdissected stroma of human colon and breast cancers. Anticancer Res 2001; 21:2259–2264.

    PubMed  CAS  Google Scholar 

  240. Schmidt A, Heid HW, Schäfer S et al. Desmosomes and cytoskeletal architecture in epithelial differentiation: cell type-specific plaque components and intermediate filament anchorage. Eur J Cell Biol 1994; 65:229–245.

    PubMed  CAS  Google Scholar 

  241. Hynes RO. Integrins: versatility, modulation, and signaling in cell adhesion. Cell 1992; 69:11–25.

    PubMed  CAS  Google Scholar 

  242. Sun H, Santoro SA, Zutter MM. Downstream events in mammary gland morphogenesis mediated by reexpression of the α2β1 integrin: the role of the α6 and β4 integrin subunits. Cancer Res 1998; 58:2224–2233.

    PubMed  CAS  Google Scholar 

  243. Wang Z, Symons JM, Goldstein SL et al. α3β1 integrin regulates epithelial cytoskeletal organization. J Cell Sci 1999; 112:2925–2935.

    PubMed  CAS  Google Scholar 

  244. Timpl R, Brown JC. Supramolecular assembly of basement membranes. BioEssays 1996; 18:123–132.

    PubMed  CAS  Google Scholar 

  245. Kosmehl H, Berndt A, Katenkamp D. Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 1996; 429:311–322.

    PubMed  CAS  Google Scholar 

  246. Tanimoto H, Shigemasa K, Sasaki M et al. Differential expression of matrix metalloprotease-7 in each component of uterine carcinosarcoma. Oncol Rep 2000; 7:1209–1212.

    PubMed  CAS  Google Scholar 

  247. Chambers AF, Matrisian LM. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 1997; 89:1260–1270.

    PubMed  CAS  Google Scholar 

  248. Johansson CB, Momma S, Clarke DL et al. Identification of a neural stem cell in the adult mammalian central nervous system. Cell 1999; 96:25–34.

    PubMed  CAS  Google Scholar 

  249. Heatley MK, Maxwell P, Toner PG. The immunophenotype of human decidua and extra-uterine decidual reactions. Histopathology 1996; 29:437–442.

    PubMed  CAS  Google Scholar 

  250. Proppe KH, Scully RE, Rosai J. Postoperative spindle cell nodules of genitourinary tract resembling sarcomas. A report of eight cases. Am J Surg Pathol 1984; 8:101–108.

    Article  PubMed  CAS  Google Scholar 

  251. Dubeau L. The cell of origin of ovarian epithelial tumors and the ovarian surface epithelium dogma: does the emperor have no clothes? Gynecol Oncol 1999; 72:437–742.

    PubMed  CAS  Google Scholar 

  252. Friedman SL. Molecular regulation of hepatic fibrosis, an integrated cellular response to tissue injury. J Biol Chem 2000; 275:2247–2250.

    PubMed  CAS  Google Scholar 

  253. Miettinen M, Lasota J. Gastrointestinal stromal tumors-definition, clinical, histological, immuno-histochemical, and molecular genetic features and differential diagnosis. Virchows Arch 2001; 438:1–12.

    PubMed  CAS  Google Scholar 

  254. Gray MH, Rosenberg AE, Dickersin GR et al. Cytokeratin expression in epithelioid vascular neoplasms. Hum Pathol 1990; 21:212–217.

    PubMed  CAS  Google Scholar 

  255. Nobukawa B, Fujii H, Hirai S et al. Breast carcinoma diverging to aberrant melanocytic differentiation. A case report with histopathologic and loss of heterozygosity analyses. Am J Surg Pathol 1999; 23:1280–1287.

    PubMed  CAS  Google Scholar 

  256. From L, Hanna W, Kahn HJ et al. Origin of the desmoplasia in desmoplastic malignant melanoma. Hum Pathol 1983; 14:1072–1080.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Van Marck, V.L., Bracke, M.E. (2005). Epithelial-Mesenchymal Transitions in Human Cancer. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_9

Download citation

Publish with us

Policies and ethics