Skip to main content

Structural and Functional Regulation of Desmosomes

  • Chapter
Rise and Fall of Epithelial Phenotype

Abstract

Intercellular adhesion and communication in mammalian epithelial cells occurs via special ized junctional complexes, which include tight junctions, adherens junctions, desmosomes, and gap junctions (Fig. 1).[1] Desmosomes are unique among these junctions, as they are coupled to the intermediate filament (IF)-based cytoskeleton. These form stable complexes that facilitated the ultrastructural and biochemical characterization of desmosomes but also made progress in the molecular organization of these junctions more challenging.[2]–[5] Although the individual components that make up a desmosome are now fairly well established, we are just beginning to appreciate how desmosomes are assembled into highly regulated and dynamic adhesive units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farquhar MG, Palade GE. Junctional complexes in various epithelia. J Cell Biol 1963; 17:375–412.

    PubMed  CAS  Google Scholar 

  2. Skerrow CJ, Matoltsy AG. Chemical characterization of isolated epidermal desmosomes. J Cell Biol 1974; 63(2 Pt 1):524–530.

    PubMed  CAS  Google Scholar 

  3. Drochmans P, Freudenstein C, Wanson JC et al. Structure and biochemical composition of desmosomes and tonofilaments isolated from calf muzzle epidermis. J Cell Biol 1978; 79(2 Pt 1):427–443.

    PubMed  CAS  Google Scholar 

  4. Gorbsky G, Steinberg MS. Isolation of the intercellular glycoproteins of desmosomes. J Cell Biol 1981; 90(1):243–248.

    PubMed  CAS  Google Scholar 

  5. Mueller H, Franke WW. Biochemical and immunological characterization of desmoplakins I and II, the major polypeptides of the desmosomal plaque. J Mol Biol 1983; 163(4):647–671.

    PubMed  CAS  Google Scholar 

  6. White FH, Gohari K. Desmosomes in hamster cheek pouch epithelium: Their quantitative characterization during epithelial differentiation. J Cell Sci 1984; 66:411–429.

    PubMed  CAS  Google Scholar 

  7. Borrmann CM, Mertens C, Schmidt A et al. Molecular diversity of plaques of epithelial-adhering junctions. Ann NY Acad Sci 2000; 915:144–150.

    PubMed  CAS  Google Scholar 

  8. Nollet F, Kools P, van Roy F. Phylogenetic analysis of the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol 2000; 299(3):551–572.

    PubMed  CAS  Google Scholar 

  9. Hatzfeld M. The armadillo family of structural proteins. Int Rev Cytol 1999; 186:179–224.

    PubMed  CAS  Google Scholar 

  10. Leung CL, Green KJ, Liem RK. Plakins: A family of versatile cytolinker proteins. Trends Cell Biol 2002; 12(1):37–45.

    PubMed  CAS  Google Scholar 

  11. Kljuic A, Bazzi H, Sundberg JP et al. Desmoglein 4 in hair follicle differentiation and epidermal adhesion: Evidence from inherited hypotrichosis and acquired pemphigus vulgaris. Cell 2003; 113(2):249–260.

    PubMed  CAS  Google Scholar 

  12. Whittock NV, Bower C. Genetic evidence for a novel human desmosomal cadherin, desmoglein 4. J Invest Dermatol 2003; 120(4):523–530.

    PubMed  CAS  Google Scholar 

  13. Collins JE, Legan PK, Kenny TP et al. Cloning and sequence analysis of desmosomal glycoproteins 2 and 3 (desmocollins): Cadherin-like desmosomal adhesion molecules with heterogeneous cytoplasmic domains. J Cell Biol 1991; 113(2):381–391.

    PubMed  CAS  Google Scholar 

  14. Parker AE, Wheeler GN, Arnemann J et al. Desmosomal glycoproteins II and III. Cadherin-like junctional molecules generated by alternative splicing. J Biol Chem 1991; 266(16):10438–10445.

    PubMed  CAS  Google Scholar 

  15. Kljuic A, Christiano AM. A novel mouse desmosomal cadherin family member, desmoglein 1 gamma. Exp Dermatol 2003; 12(1):20–29.

    PubMed  CAS  Google Scholar 

  16. Pulkkinen L, Choi YW, Kljuic A et al. Novel member of the mouse desmoglein gene family: Dsg1-beta. Exp Dermatol 2003; 12(1):11–19.

    PubMed  CAS  Google Scholar 

  17. Blaschuk OW, Sullivan R, David S et al. Identification of a cadherin cell adhesion recognition sequence. Dev Biol 1990; 139(1):227–229.

    PubMed  CAS  Google Scholar 

  18. Noe V, Fingleton B, Jacobs K et al. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114 (Pt 1):111–118.

    PubMed  CAS  Google Scholar 

  19. Tselepis C, Chidgey M, North A et al. Desmosomal adhesion inhibits invasive behavior. Proc Natl Acad Sci USA 1998; 95(14):8064–8069.

    PubMed  CAS  Google Scholar 

  20. Runswick SK, O’Hare MJ, Jones L et al. Desmosomal adhesion regulates epithelial morphogenesis and cell positioning. Nat Cell Biol 2001; 3(9):823–830.

    PubMed  CAS  Google Scholar 

  21. Chitaev NA, Troyanovsky SM. Direct Ca2+-dependent heterophilic interaction between desmosomal cadherins, desmoglein and desmocollin, contributes to cell-cell adhesion. J Cell Biol 1997; 138(1):193–201.

    PubMed  CAS  Google Scholar 

  22. Troyanovsky RB, Klingelhofer J, Troyanovsky S. Removal of calcium ions triggers a novel type of intercadherin interaction. J Cell Sci 1999; 112 (Pt 23):4379–4387.

    PubMed  CAS  Google Scholar 

  23. Syed SE, Trinnaman B, Martin S et al. Molecular interactions between desmosomal cadherins. Biochem J 2002; 362 (Pt 2):317–327.

    PubMed  CAS  Google Scholar 

  24. Yap AS, Niessen CM, Gumbiner BM. The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 1998; 141(3):779–789.

    PubMed  CAS  Google Scholar 

  25. Thoreson MA, Anastasiadis PZ, Daniel JM et al. Selective uncoupling of pl20(ctn) from E-cadherin disrupts strong adhesion. J Cell Biol 2000; 148(1):189–202.

    PubMed  CAS  Google Scholar 

  26. Butz S, Kemler R. Distinct cadherin-catenin complexes in Ca(2+)-dependent cell-cell adhesion. FEBS Lett 1994; 355(2):195–200.

    PubMed  CAS  Google Scholar 

  27. Nathke IS, Hinck L, Swedlow JR et al. Defining interactions and distributions of cadherin and catenin complexes in polarized epithelial cells. J Cell Biol 1994; 125(6):1341–1352.

    PubMed  CAS  Google Scholar 

  28. Korman NJ, Eyre RW, Klaus-Kovtun V et al. Demonstration of an adhering-junction molecule (plakoglobin) in the autoantigens of pemphigus foliaceus and pemphigus vulgaris. N Engl J Med 1989; 321(10):631–635.

    PubMed  CAS  Google Scholar 

  29. Troyanovsky SM, Eshkind LG, Troyanovsky RB et al. Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and intermediate filament anchorage. Cell 1993; 72(4):561–574.

    PubMed  CAS  Google Scholar 

  30. Mathur M, Goodwin L, Cowin P. Interactions of the cytoplasmic domain of the desmosomal cadherin Dsg1 with plakoglobin. J Biol Chem 1994; 269(19):14075–14080.

    PubMed  CAS  Google Scholar 

  31. Troyanovsky SM, Troyanovsky RB, Eshkind LG et al. Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage. J Cell Biol 1994; 127(1):151–160.

    PubMed  CAS  Google Scholar 

  32. Troyanovsky SM, Troyanovsky RB, Eshkind LG et al. Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation. Proc Natl Acad Sci USA 1994; 91(23):10790–10794.

    PubMed  CAS  Google Scholar 

  33. Kowalczyk AP, Bornslaeger EA, Borgwardt JE et al. The amino-terminal domain of desmoplakin binds to plakoglobin and clusters desmosomal cadherin-plakoglobin complexes. J Cell Biol 1997; 139(3):773–784.

    PubMed  CAS  Google Scholar 

  34. Andl CD, Stanley JR. Central role of the plakoglobin-binding domain for desmoglein 3 incorporation into desmosomes. J Invest Dermatol 2001; 117(5):1068–1074.

    PubMed  CAS  Google Scholar 

  35. Bonne S, Gilbert B, Hatzfeld M et al. Defining desmosomal plakophilin-3 interactions. J Cell Biol 2003; 161(2):403–416.

    PubMed  CAS  Google Scholar 

  36. Hatzfeld M, Haffner C, Schulze K et al. The function of plakophilin 1 in desmosome assembly and actin filament organization. J Cell Biol 2000; 149(1):209–222.

    PubMed  CAS  Google Scholar 

  37. Rutman AJ, Buxton RS, Burdett ID. Visualisation by electron microscopy of the unique part of the cytoplasmic domain of a desmoglein, a cadherin-like protein of the desmosome type of cell junction. FEBS Lett 1994; 353(2):194–196.

    PubMed  CAS  Google Scholar 

  38. Garrod D, Chidgey M, North A. Desmosomes: Differentiation, development, dynamics and disease. Curr Opin Cell Biol 1996; 8(5):670–678.

    PubMed  CAS  Google Scholar 

  39. Ishii K, Green KJ. Cadherin function: Breaking the barrier. Curr Biol Jul 24 2001; 11(14):R569–572.

    CAS  Google Scholar 

  40. North AJ, Chidgey MA, Clarke JP et al. Distinct desmocollin isoforms occur in the same desmosomes and show reciprocally graded distributions in bovine nasal epidermis. Proc Natl Acad Sci USA 1996; 93(15):7701–7705.

    PubMed  CAS  Google Scholar 

  41. Kurzen H, Moll I, Moll R et al. Compositionally different desmosomes in the various compartments of the human hair follicle. Differentiation 1998; 63(5):295–304.

    PubMed  CAS  Google Scholar 

  42. Wan H, Dopping-Hepenstal PJ, Gratian MJ et al. Desmosomes exhibit site-specific features in human palm skin. Exp Dermatol 2003; 12(4):378–388.

    PubMed  CAS  Google Scholar 

  43. Wan H, Stone MG, Simpson C et al. Desmosomal proteins, including desmoglein 3, serve as novel negative markers for epidermal stem cell-containing population of keratinocytes. J Cell Sci 2003;Pt.

    Google Scholar 

  44. Wu H, Stanley JR, Cotsarelis G. Desmoglein isotype expression in the hair follicle and its cysts correlates with type of keratinization and degree of differentiation. J Invest Dermatol 2003; 120(6):1052–1057.

    PubMed  CAS  Google Scholar 

  45. Allen E, Yu QC, Fuchs E. Mice expressing a mutant desmosomal cadherin exhibit abnormalities in desmosomes, proliferation, and epidermal differentiation. J Cell Biol 1996; 133(6):1367–1382.

    PubMed  CAS  Google Scholar 

  46. Elias PM, Matsuyoshi N, Wu H et al. Desmoglein isoform distribution affects stratum corneum structure and function. J Cell Biol 2001; 153(2):243–249.

    PubMed  CAS  Google Scholar 

  47. Merritt AJ, Berika MY, Zhai W et al. Suprabasal desmoglein 3 expression in the epidermis of transgenic mice results in hyperproliferation and abnormal differentiation. Mol Cell Biol 2002; 22(16):5846–5858.

    PubMed  CAS  Google Scholar 

  48. Amagai M. Autoimmunity against desmosomal cadherins in pemphigus. J Dermatol Sci 1999; 20(2):92–102.

    PubMed  CAS  Google Scholar 

  49. Amagai M, Matsuyoshi N, Wang ZH et al. Toxin in bullous impetigo and staphylococcal scalded-skin syndrome targets desmoglein 1. Nat Med 2000; 6(11):1275–1277.

    PubMed  CAS  Google Scholar 

  50. Amagai M, Yamaguchi T, Hanakawa Y et al. Staphylococcal exfoliative toxin B specifically cleaves desmoglein 1. J Invest Dermatol 2002; 118(5):845–850.

    PubMed  CAS  Google Scholar 

  51. Hanakawa Y, Schechter NM, Lin C et al. Molecular mechanisms of blister formation in bullous impetigo and staphylococcal scalded skin syndrome. J Clin Invest 2002; 110(1):53–60.

    PubMed  CAS  Google Scholar 

  52. Rickman L, Simrak D, Stevens HP et al. N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum Mol Genet 1999; 8(6):971–976.

    PubMed  CAS  Google Scholar 

  53. Hunt DM, Rickman L, Whittock NV et al. Spectrum of dominant mutations in the desmosomal cadherin desmoglein 1, causing the skin disease striate palmoplantar keratoderma. Eur J Hum Genet 2001; 9(3):197–203.

    PubMed  CAS  Google Scholar 

  54. Serre G, Mils V, Haftek M et al. Identification of late differentiation antigens of human cornified epithelia, expressed in reorganized desmosomes and bound to cross-linked envelope. J Invest Dermatol 1991; 97(6): 1061–1072.

    PubMed  CAS  Google Scholar 

  55. Simon M, Montezin M, Guerrin M et al. Characterization and purification of human corneodesmosin, an epidermal basic glycoprotein associated with corneocyte-specific modified des mosomes. J Biol Chem 1997; 272(50):31770–31776.

    PubMed  CAS  Google Scholar 

  56. Jonca N, Guerrin M, Hadjiolova K et al. Corneodesmosin, a component of epidermal corneocyte desmosomes, displays homophilic adhesive properties. J Biol Chem 2002; 277(7):5024–5029.

    PubMed  CAS  Google Scholar 

  57. Levy-Nissenbaum E, Betz RC, Frydman M et al. Hypotrichosis simplex of the scalp is associated with nonsense mutations in CDSN encoding corneodesmosin. Nat Genet 2003; 34(2): 151–153.

    PubMed  CAS  Google Scholar 

  58. Scheffers MS, van der Bent P, Prins F et al. Polycystin-1, the product of the polycystic kidney disease 1 gene, colocalizes with desmosomes in MDCK cells. Hum Mol Genet 2000; 9(18):2743–2750.

    PubMed  CAS  Google Scholar 

  59. Riggleman B, Wieschaus E, Schedl P. Molecular analysis of the armadillo locus: Uniformly distributed transcripts and a protein with novel internal repeats are associated with a Drosophila segment polarity gene. Genes Dev 1989; 3(1):96–113.

    PubMed  CAS  Google Scholar 

  60. Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 2000; 287(5458):1606–1609.

    PubMed  CAS  Google Scholar 

  61. Huber AH, Nelson WJ, Weis WI. Three-dimensional structure of the armadillo repeat region of beta-catenin. Cell 1997; 90(5):871–882.

    PubMed  CAS  Google Scholar 

  62. Chitaev NA, Leube RE, Troyanovsky RB et al. Troyanovsky SM. The binding of plakoglobin to desmosomal cadherins: Patterns of binding sites and topogenic potential. J Cell Biol 1996; 133(2):359–369.

    PubMed  CAS  Google Scholar 

  63. Wahl JK, Sacco PA, McGranahan-Sadler TM et al. Plakoglobin domains that define its association with the desmosomal cadherins and the classical cadherins: Identification of unique and shared domains. J Cell Sci 1996; 109 (Pt 5):1143–1154.

    PubMed  CAS  Google Scholar 

  64. Witcher LL, Collins R, Puttagunta S et al. Desmosomal cadherin binding domains of plakoglobin. J Biol Chem 1996; 271(18): 10904–10909.

    PubMed  CAS  Google Scholar 

  65. Chen X, Bonne S, Hatzfeld M et al. Protein binding and functional characterization of plakophilin 2. Evidence for its diverse roles in desmosomes and beta-catenin signaling. J Biol Chem 2002; 277(12):10512–10522.

    PubMed  CAS  Google Scholar 

  66. Sacco PA, McGranahan TM, Wheelock MJ et al. Identification of plakoglobin domains required for association with N-cadherin and alpha-catenin. J Biol Chem 1995; 270(34):20201–20206.

    PubMed  CAS  Google Scholar 

  67. Palka HL, Green KJ. Roles of plakoglobin end domains in desmosome assembly. J Cell Sci 1997; 110 (Pt 19):2359–2371.

    PubMed  CAS  Google Scholar 

  68. Lewis JE, Wahl 3rd, Sass KM et al. Cross-talk between adherens junctions and desmosomes depends on plakoglobin. J Cell Biol 1997; 136(4):919–934.

    PubMed  CAS  Google Scholar 

  69. Parker HR, Li Z, Sheinin H, Lauzon G et al. Plakoglobin induces desmosome formation and epidermoid phenotype in N-cadherin-expressing squamous carcinoma cells deficient in plakoglobin and E-cadherin. Cell Motil Cytoskeleton 1998; 40(1):87–100.

    PubMed  CAS  Google Scholar 

  70. Bierkamp C, McLaughlin KJ, Schwarz H et al. Embryonic heart and skin defects in mice lacking plakoglobin. Dev Biol 1996; 180(2):780–785.

    PubMed  CAS  Google Scholar 

  71. Ruiz P, Brinkmann V, Ledermann B et al. Targeted mutation of plakoglobin in mice reveals essential functions of desmosomes in the embryonic heart. J Cell Biol 1996; 135(1):215–225.

    PubMed  CAS  Google Scholar 

  72. Bierkamp C, Schwarz H, Huber O et al. Desmosomal localization of beta-catenin in the skin of plakoglobin null-mutant mice. Development 1999; 126(2):371–381.

    PubMed  CAS  Google Scholar 

  73. Caldelari R, de Bruin A, Baumann D et al. A central role for the armadillo protein plakoglobin in the autoimmune disease pemphigus vulgaris. J Cell Biol 2001; 153(4):823–834.

    PubMed  CAS  Google Scholar 

  74. Charpentier E, Lavker RM, Acquista E et al. Plakoglobin suppresses epithelial proliferation and hair growth in vivo. J Cell Biol 2000; 149(2):503–520.

    PubMed  CAS  Google Scholar 

  75. McKoy G, Protonotarios N, Crosby A et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet 2000; 355(9221):2119–2124.

    PubMed  CAS  Google Scholar 

  76. Smith EA, Fuchs E. Defining the interactions between intermediate filaments and desmosomes. J Cell Biol 1998; 141(5):1229–1241.

    PubMed  CAS  Google Scholar 

  77. Bornslaeger EA, Godsel LM, Corcoran CM et al. Plakophilin 1 interferes with plakoglobin binding to desmoplakin, yet together with plakoglobin promotes clustering of desmosomal plaque complexes at cell-cell borders. J Cell Sci 2001; 114 (Pt 4):727–738.

    PubMed  CAS  Google Scholar 

  78. Kowalczyk AP, Hatzfeld M, Bornslaeger EA et al. The head domain of plakophilin-1 binds to desmoplakin and enhances its recruitment to desmosomes. Implications for cutaneous disease. J Biol Chem 1999; 274(26):18145–18148.

    PubMed  CAS  Google Scholar 

  79. Hofmann I, Mertens C, Brettel M et al. Interaction of plakophilins with desmoplakin and intermediate filament proteins: An in vitro analysis. J Cell Sci 2000; 113 (Pt 13):2471–2483.

    PubMed  CAS  Google Scholar 

  80. McGrath JA, McMillan JR, Shemanko CS et al. Mutations in the plakophilin 1 gene result in ectodermal dysplasia/skin fragility syndrome. Nat Genet 1997; 17(2):240–244.

    PubMed  CAS  Google Scholar 

  81. Moll I, Kurzen H, Langbein L et al. The distribution of the desmosomal protein, plakophilin 1, in human skin and skin tumors. J Invest Dermatol 1997; 108(2): 139–146.

    PubMed  CAS  Google Scholar 

  82. South AP, Wan H, Stone MG et al. Lack of plakophilin 1 increases keratinocyte migration and reduces desmosome stability. J Cell Sci 2003; 116 (Pt 16):3303–14.

    PubMed  CAS  Google Scholar 

  83. Koeser J, Troyanovsky SM, Grund C et al. De novo formation of desmosomes in cultured cells upon transfection of genes encoding specific desmosomal components. Exp Cell Res 2003; 285(1):114–130.

    PubMed  CAS  Google Scholar 

  84. Muller J, Ritt DA, Copeland TD et al. Functional analysis of C-TAK1 substrate binding and identification of PKP2 as a new C-TAK1 substrate. Embo J 2003; 22(17):4431–4442.

    PubMed  Google Scholar 

  85. Mertens C, Hofmann I, Wang Z et al. Nuclear particles containing RNA polymerase III complexes associated with the junctional plaque protein plakophilin 2. Proc Natl Acad Sci USA 2001; 98(14):7795–7800.

    PubMed  CAS  Google Scholar 

  86. Hatzfeld M, Nachtsheim C. Cloning and characterization of a new armadillo family member, p0071, associated with the junctional plaque: Evidence for a subfamily of closely related proteins. J Cell Sci 1996; 109 (Pt 11):2767–2778.

    PubMed  CAS  Google Scholar 

  87. Hatzfeld M, Green KJ, Sauter H. Targeting of p0071 to desmosomes and adherens junctions is mediated by different protein domains. J Cell Sci 2003; 116 (Pt 7):1219–1233.

    PubMed  CAS  Google Scholar 

  88. Calkins CC, Hoepner BL, Law CM et al. The Armadillo family protein p0071 is a VE-cadherin-and desmoplakin-binding protein. J Biol Chem 2003; 278(3):1774–1783.

    PubMed  CAS  Google Scholar 

  89. Deguchi M, Iizuka T, Hata Y et al. PAPIN. A novel multiple PSD-95/Dlg-A/ZO-1 protein interacting with neural plakophilin-related armadillo repeat protein/delta-catenin and p0071. J Biol Chem 2000; 275(38):29875–29880.

    PubMed  CAS  Google Scholar 

  90. Izawa I, Nishizawa M, Tomono Y et al. ERBIN associates with p0071, an armadillo protein, at cell-cell junctions of epithelial cells. Genes Cells 2002; 7(5):475–485.

    PubMed  CAS  Google Scholar 

  91. Jaulin-Bastard F, Arsanto JP, Le Bivic A et al. Interaction between Erbin and a Catenin-related protein in epithelial cells. J Biol Chem 2002; 277(4):2869–2875.

    PubMed  CAS  Google Scholar 

  92. Ruhrberg C, Watt FM. The plakin family: Versatile organizers of cytoskeletal architecture. Curr Opin Genet Dev 1997; 7(3):392–397.

    PubMed  CAS  Google Scholar 

  93. Angst BD, Nilles LA, Green KJ. Desmoplakin II expression is not restricted to stratified epithelia. J Cell Sci 1990; 97(Pt 2):247–257.

    PubMed  CAS  Google Scholar 

  94. O’Keefe EJ, Erickson HP, Bennett V. Desmoplakin I and desmoplakin II. Purification and characterization. J Biol Chem 1989; 264(14):8310–8318.

    PubMed  CAS  Google Scholar 

  95. North AJ, Bardsley WG, Hyam J et al. Molecular map of the desmosomal plaque. J Cell Sci 1999; 112(Pt 23):4325–4336.

    PubMed  CAS  Google Scholar 

  96. Choi HJ, Park-Snyder S, Pascoe LT et al. Structures of two intermediate filament-binding fragments of desmoplakin reveal a unique repeat motif structure. Nat Struct Biol 2002; 9(8):612–620.

    PubMed  CAS  Google Scholar 

  97. Nikolic B, Mac Nulty E, Mir B et al. Basic amino acid residue cluster within nuclear targeting sequence motif is essential for cytoplasmic plectin-vimentin network junctions. J Cell Biol 1996; 134(6):1455–1467.

    PubMed  CAS  Google Scholar 

  98. DiColandrea T, Karashima T, Maatta A et al. Subcellular distribution of envoplakin and periplakin: Insights into their role as precursors of the epidermal cornified envelope. J Cell Biol 2000; 151(3):573–586.

    PubMed  CAS  Google Scholar 

  99. Fontao L, Favre B, Riou S et al. Interaction of the Bullous Pemphigoid Antigen 1 (BP230) and Desmoplakin with Intermediate Filaments Is Mediated by Distinct Sequences within Their COOH Terminus. Mol Biol Cell 2003; 14(5):1978–1992.

    PubMed  CAS  Google Scholar 

  100. Bornslaeger EA, Corcoran CM, Stappenbeck TS et al. Breaking the connection: Displacement of the desmosomal plaque protein desmoplakin from cell-cell interfaces disrupts anchorage of intermediate filament bundles and alters intercellular junction assembly. J Cell Biol 1996; 134(4):985–1001.

    PubMed  CAS  Google Scholar 

  101. Huen AC, Park JK, Godsel LM et al. Intermediate filament-membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. J Cell Biol 2002; 159(6):1005–1017.

    PubMed  CAS  Google Scholar 

  102. Gallicano GI, Kouklis P, Bauer C et al. Desmoplakin is required early in development for assembly of desmosomes and cytoskeletal linkage. J Cell Biol 1998; 143(7):2009–2022.

    PubMed  CAS  Google Scholar 

  103. Gallicano GI, Bauer C, Fuchs E. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 2001; 128(6):929–941.

    PubMed  CAS  Google Scholar 

  104. Kowalczyk AP, Navarro P, Dejana E et al. VE-cadherin and desmoplakin are assembled into dermal microvascular endothelial intercellular junctions: A pivotal role for plakoglobin in the recruitment of desmoplakin to intercellular junctions. J Cell Sci 1998; 111(Pt 20):3045–3057.

    PubMed  CAS  Google Scholar 

  105. Vasioukhin V, Bowers E, Bauer C et al. Desmoplakin is essential in epidermal sheet formation. Nat Cell Biol 2001; 3(12):1076–1085.

    PubMed  CAS  Google Scholar 

  106. Armstrong DK, McKenna KE, Purkis PE et al. Haploinsufficiency of desmoplakin causes a striate subtype of palmoplantar keratoderma. Hum Mol Genet 1999; 8(1):143–148.

    PubMed  CAS  Google Scholar 

  107. Whittock NV, Ashton GH, Dopping-Hepenstal PJ et al. Striate palmoplantar keratoderma resulting from desmoplakin haploinsufficiency. J Invest Dermatol 1999; 113(6):940–946.

    PubMed  CAS  Google Scholar 

  108. Norgett EE, Hatsell SJ, Carvajal-Huerta L et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet 2000; 9(18):2761–2766.

    PubMed  CAS  Google Scholar 

  109. Rampazzo A, Nava A, Malacrida S et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 2002; 71(5):1200–1206.

    PubMed  CAS  Google Scholar 

  110. Svitkina TM, Verkhovsky AB, Borisy GG. Plectin sidearms mediate interaction of intermediate filaments with microtubules and other components of the cytoskeleton. J Cell Biol 1996; 135(4):991–1007.

    PubMed  CAS  Google Scholar 

  111. Fuchs P, Zorer M, Rezniczek GA et al. Unusual 5′ transcript complexity of plectin isoforms: Novel tissue-specific exons modulate actin binding activity. Hum Mol Genet 1999; 8(13):2461–2472.

    PubMed  CAS  Google Scholar 

  112. Sun D, Leung CL, Liem RK. Characterization of the microtubule binding domain of microtubule actin crosslinking factor (MACF): Identification of a novel group of microtubule associated proteins. J Cell Sci 2001; H4 (Pt 1):161–172.

    Google Scholar 

  113. Eger A, Stockinger A, Wiche G et al. Polarisation-dependent association of plectin with desmoplakin and the lateral submembrane skeleton in MDCK cells. J Cell Sci 1997; 110(Pt 11):1307–1316.

    PubMed  CAS  Google Scholar 

  114. Nievers MG, Kuikman I, Geerts D et al. Formation of hemidesmosome-like structures in the absence of ligand binding by the (alpha)6(beta)4 integrin requires binding of HD1/plectin to the cytoplasmic domain of the (beta)4 integrin subunit. J Cell Sci 2000; 113(Pt 6):963–973.

    PubMed  CAS  Google Scholar 

  115. Andra K, Lassmann H, Bittner R et al. Targeted inactivation of plectin reveals essential function in maintaining the integrity of skin, muscle, and heart cytoarchitecture. Genes Dev 1997; 11(23):3143–3156.

    PubMed  CAS  Google Scholar 

  116. Pulkkinen L, Smith FJ, Shimizu H et al. Homozygous deletion mutations in the plectin gene (PLEC1) in patients with epidermolysis bullosa simplex associated with late-onset muscular dystrophy. Hum Mol Genet 1996; 5(10):1539–1546.

    PubMed  CAS  Google Scholar 

  117. Ruhrberg C, Hajibagheri MA, Simon M et al. Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J Cell Biol 1996; 134(3):715–729.

    PubMed  CAS  Google Scholar 

  118. Ruhrberg C, Hajibagheri MA, Parry DA et al. Periplakin, a novel component of cornified envelopes and desmosomes that belongs to the plakin family and forms complexes with envoplakin. J Cell Biol 1997; 139(7):1835–1849.

    PubMed  CAS  Google Scholar 

  119. Marekov LN, Steinert PM. Ceramides are bound to structural proteins of the human foreskin epidermal cornified cell envelope. J Biol Chem 1998; 273(28):17763–17770.

    PubMed  CAS  Google Scholar 

  120. Karashima T, Watt FM. Interaction of periplakin and envoplakin with intermediate filaments. J Cell Sci 2002; 115(Pt 24):5027–5037.

    PubMed  CAS  Google Scholar 

  121. Maatta A, DiColandrea T, Groot K et al. Gene targeting of envoplakin, a cytoskeletal linker protein and precursor of the epidermal cornified envelope. Mol Cell Biol 2001; 21(20):7047–7053.

    PubMed  CAS  Google Scholar 

  122. Ouyang P, Sugrue SP. Identification of an epithelial protein related to the desmosome and intermediate filament network. J Cell Biol 1992; 118(6):1477–1488.

    PubMed  CAS  Google Scholar 

  123. Ouyang P, Sugrue SP. Characterization of pinin, a novel protein associated with the desmosome-intermediate filament complex. J Cell Biol Nov 1996; 135(4):1027–1042.

    CAS  Google Scholar 

  124. Shi J, Sugrue SP. Dissection of protein linkage between keratins and pinin, a protein with dual location at desmosome-intermediate filament complex and in the nucleus. J Biol Chem 2000; 275(20):14910–14915.

    PubMed  CAS  Google Scholar 

  125. Shi Y, Tabesh M, Sugrue SP. Role of cell adhesion-associated protein, pinin (DRS/memA), in corneal epithelial migration. Invest Ophthalmol Vis Sci 2000; 41(6):1337–1345.

    PubMed  CAS  Google Scholar 

  126. Wang P, Lou PJ, Leu S et al. Modulation of alternative premRNA splicing in vivo by pinin. Biochem Biophys Res Commun 2002; 294(2):448–455.

    PubMed  CAS  Google Scholar 

  127. Wacker IU, Rickard JE, De Mey JR et al. Accumulation of a microtubule-binding protein, pp170, at desmosomal plaques. J Cell Biol 1992; 117(4):813–824.

    PubMed  CAS  Google Scholar 

  128. Tsukita S. Desmocalmin: A calmodulin-binding high molecular weight protein isolated from desmosomes. J Cell Biol 1985; 101(6):2070–2080.

    PubMed  CAS  Google Scholar 

  129. Fairley JA, Scott GA, Jensen KD et al. Characterization of keratocalmin, a calmodulin-binding protein from human epidermis. J Clin Invest 1991; 88(1):315–322.

    PubMed  CAS  Google Scholar 

  130. Hieda Y, Tsukita S. A new high molecular mass protein showing unique localization in desmosomal plaque. J Cell Biol 1989; 109(4 Pt 1):1511–1518.

    PubMed  CAS  Google Scholar 

  131. Shtivelman E, Bishop JM. The human gene AHNAK encodes a large phosphoprotein located primarily in the nucleus. J Cell Biol 1993; 120(3):625–630.

    PubMed  CAS  Google Scholar 

  132. Masunaga T, Shimizu H, Ishiko A et al. Desmoyokin/AHNAK protein localizes to the nondesmosomal keratinocyte cell surface of human epidermis. J Invest Dermatol 1995; 104(6):941–945.

    PubMed  CAS  Google Scholar 

  133. Borgonovo B, Cocucci E, Racchetti G et al. Regulated exocytosis: A novel, widely expressed system. Nat Cell Biol 2002; 4(12):955–962.

    PubMed  CAS  Google Scholar 

  134. Nagafuchi A, Shirayoshi Y, Okazaki K et al. Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA. Nature 1987; 329(6137):341–343.

    PubMed  CAS  Google Scholar 

  135. Amagai M, Karpati S, Klaus-Kovtun V et al. Extracellular domain of pemphigus vulgaris antigen (desmoglein 3) mediates weak homophilic adhesion. J Invest Dermatol 1994; 102(4):402–408.

    PubMed  CAS  Google Scholar 

  136. Chidgey MA, Clarke JP, Garrod DR. Expression of full-length desmosomol glycoproteins (desmocollins) is not sufficient to confer strong adhesion on transfected L929 cells. J Invest Dermatol 1996; 106(4):689–695.

    PubMed  CAS  Google Scholar 

  137. Kowalczyk AP, Borgwardt JE, Green KJ. Analysis of desmosomal cadherin-adhesive function and stoichiometry of desmosomal cadherin-plakoglobin complexes. J Invest Dermatol 1996; 107(3):293–300.

    PubMed  CAS  Google Scholar 

  138. Marcozzi C, Burdett ID, Buxton RS et al. Coexpression of both types of desmosomal cadherin and plakoglobin confers strong intercellular adhesion. J Cell Sci 1998;111 (Pt 4):495–509.

    PubMed  CAS  Google Scholar 

  139. Hennings H, Michael D, Cheng C et al. Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 1980;19(1):245–254.

    PubMed  CAS  Google Scholar 

  140. Watt FM, Mattey DL, Garrod DR. Calcium-induced reorganization of desmosomal components in cultured human keratinocytes. J Cell Biol 1984;99(6):2211–2215.

    PubMed  CAS  Google Scholar 

  141. Jones JC, Goldman RD. Intermediate filaments and the initiation of desmosome assembly. J Cell Biol 1985;101(2):506–517.

    PubMed  CAS  Google Scholar 

  142. Mattey DL, Garrod DR. Calcium-induced desmosome formation in cultured kidney epithelial cells. J Cell Sci 1986;85:95–111.

    PubMed  CAS  Google Scholar 

  143. Mattey DL, Garrod DR. Splitting and internalization of the desmosomes of cultured kidney epithelial cells by reduction in calcium concentration. J Cell Sci 1986;85:113–124.

    PubMed  CAS  Google Scholar 

  144. Penn EJ, Burdett ID, Hobson C et al. Structure and assembly of desmosome junctions: Biosynthesis and turnover of the major desmosome components of Madin-Darby canine kidney cells in low calcium medium. J Cell Biol 1987;105(5):2327–2334.

    PubMed  CAS  Google Scholar 

  145. Penn EJ, Hobson C, Rees DA et al. Structure and assembly of desmosome junctions: Biosynthesis, processing, and transport of the major protein and glycoprotein components in cultured epithelial cells. J Cell Biol 1987;105(1):57–68.

    PubMed  CAS  Google Scholar 

  146. Duden R, Franke WW. Organization of desmosomal plaque proteins in cells growing at low calcium concentrations. J Cell Biol 1988;107(3):1049–1063.

    PubMed  CAS  Google Scholar 

  147. Pasdar M, Nelson WJ. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: Temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. I. Biochemical analysis. J Cell Biol 1988;106(3):677–685.

    PubMed  CAS  Google Scholar 

  148. Pasdar M, Nelson WJ. Kinetics of desmosome assembly in Madin-Darby canine kidney epithelial cells: Temporal and spatial regulation of desmoplakin organization and stabilization upon cell-cell contact. II. Morphological analysis. J Cell Biol 1988;106(3):687–695.

    PubMed  CAS  Google Scholar 

  149. Pasdar M, Nelson WJ. Regulation of desmosome assembly in epithelial cells: Kinetics of synthesis, transport, and stabilization of desmoglein I, a major protein of the membrane core domain. J Cell Biol 1989;109(1):163–177.

    PubMed  CAS  Google Scholar 

  150. Penn EJ, Hobson C, Rees DA et al. The assembly of the major desmosome glycoproteins of Madin-Darby canine kidney cells. FEBS Lett 1989;247(1):13–16.

    PubMed  CAS  Google Scholar 

  151. Mattey DL, Burdge G, Garrod DR. Development of desmosomal adhesion between MDCK cells following calcium switching. J Cell Sci 1990;97 (Pt 4):689–704.

    PubMed  Google Scholar 

  152. Demlehner MP, Schafer S, Grund C et al. Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: A coordinated Sisyphus cycle. J Cell Biol 1995;131(3):745–760.

    PubMed  CAS  Google Scholar 

  153. Pasdar M, Krzeminski KA, Nelson WJ. Regulation of desmosome assembly in MDCK epithelial cells: Coordination of membrane core and cytoplasmic plaque domain assembly at the plasma membrane. J Cell Biol 1991;113(3):645–655.

    PubMed  CAS  Google Scholar 

  154. Leckband D. The structure of the C-cadherin ectodomain resolved. Structure (Camb) 2002;10(6):739–740.

    PubMed  CAS  Google Scholar 

  155. Kitajima Y, Aoyama Y, Seishima M. Transmembrane signaling for adhesive regulation of desmosomes and hemidesmosomes, and for cell-cell datachment induced by pemphigus IgG in cultured keratinocytes: Involvement of protein kinase C. J Investig Dermatol Symp Proc 1999;4(2):137–144.

    PubMed  CAS  Google Scholar 

  156. Sheu HM, Kitajima Y, Yaoita H. Involvement of protein kinase C in translocation of desmoplakins from cytosol to plasma membrane during desmosome formation in human squamous cell carcinoma cells grown in low to normal calcium concentration. Exp Cell Res 1989;185(1):176–190.

    PubMed  CAS  Google Scholar 

  157. van Hengel J, Gohon L, Bruyneel E et al. Protein kinase C activation upregulates intercellular adhesion of alpha-catenin-negative human colon cancer cell variants via induction of desmosomes. J Cell Biol 1997;137(5):1103–1116.

    PubMed  Google Scholar 

  158. Wallis S, Lloyd S, Wise I et al. The alpha isoform of protein kinase C is involved in signaling the response of desmosomes to wounding in cultured epithelial cells. Mol Biol Cell 2000;11(3):1077–1092.

    PubMed  CAS  Google Scholar 

  159. Stappenbeck TS, Lamb JA, Corcoran CM et al. Phosphorylation of the desmoplakin COOH terminus negatively regulates its interaction with keratin intermediate filament networks. J Biol Chem 1994;269(47):29351–29354.

    PubMed  CAS  Google Scholar 

  160. Pasdar M, Li Z, Chan H. Desmosome assembly and disassembly are regulated by reversible protein phosphorylation in cultured epithelial cells. Cell Motil Cytoskeleton 1995;30(2):108–121.

    PubMed  CAS  Google Scholar 

  161. Hoschuetzky H, Aberle H, Kemler R. Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 1994;127(5):1375–1380.

    PubMed  CAS  Google Scholar 

  162. Fuchs M, Muller T, Lerch MM et al. Association of human protein-tyrosine phosphatase kappa with members of the armadillo family. J Biol Chem 1996;271(28):16712–16719.

    PubMed  CAS  Google Scholar 

  163. Muller T, Choidas A, Reichmann E et al. Phosphorylation and free pool of beta-catenin are regulated by tyrosine kinases and tyrosine phosphatases during epithelial cell migration. J Biol Chem 1999;274(15):10173–10183.

    PubMed  CAS  Google Scholar 

  164. Gaudry CA, Palka HL, Dusek RL et al. Tyrosine-phosphorylated plakoglobin is associated with desmogleins but not desmoplakin after epidermal growth factor receptor activation. J Biol Chem 2001;276(27):24871–24880.

    PubMed  CAS  Google Scholar 

  165. Savagner P, Yamada KM, Thiery JP. The zinc-finger protein slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biol 1997;137(6):1403–1419.

    PubMed  CAS  Google Scholar 

  166. Brancolini C, Sgorbissa A, Schneider C. Proteolytic processing of the adherens junctions components beta-catenin and gamma-catenin/plakoglobin during apoptosis. Cell Death Differ 1998;5(12):1042–1050.

    PubMed  CAS  Google Scholar 

  167. Weiske J, Schoneberg T, Schroder W et al. The fate of desmosomal proteins in apoptotic cells. J Biol Chem 2001;276(44):41175–41181.

    PubMed  CAS  Google Scholar 

  168. Kowalczyk AP, Stappenbeck TS, Parry DA et al. Structure and function of desmosomal transmembrane core and plaque molecules. Biophys Chem 1994;50(1–2):97–112.

    PubMed  CAS  Google Scholar 

  169. Kljuic A, Gilead L, Martinez-Mir A et al. A nonsense mutation in the desmoglein 1 gene underlies striate keratoderma. Exp Dermatol 2003;12(4):523–527.

    PubMed  CAS  Google Scholar 

  170. McGrath JA, Hoeger PH, Christiano AM et al. Skin fragility and hypohidrotic ectodermal dysplasia resulting from ablation of plakophilin 1. Br J Dermatol 1999;140(2):297–307.

    PubMed  CAS  Google Scholar 

  171. Whittock NV, Wan H, Morley SM et al. Compound heterozygosity for nonsense and mis-sense mutations in desmoplakin underlies skin fragility/woolly hair syndrome. J Invest Dermatol 2002;118(2):232–238.

    PubMed  CAS  Google Scholar 

  172. Alcalai R, Metzger S, Rosenheck S et al. A recessive mutation in desmoplakin causes arrhythmogenic right ventricular dysplasia, skin disorder, and woolly hair. J Am Coll Cardiol 2003;42(2):319–327.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Getsios, S., Godsel, L.M., Green, K.J. (2005). Structural and Functional Regulation of Desmosomes. In: Rise and Fall of Epithelial Phenotype. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28671-3_10

Download citation

Publish with us

Policies and ethics