Skip to main content

Removal of Early Parasite Forms from Circulation as a Mechanism of Resistance Against Malaria in Widespread Red Blood Cell Mutations

  • Chapter
Malaria: Genetic and Evolutionary Aspects

Part of the book series: Emerging Infectious Diseases of the 21st Century ((EIDC))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwal, A., Guindo, A., Cissoko Y. et al. (2000). Hemoglobin C associated with protection from severe malaria in the Dogon of Mali, a West African population with a low prevalence of hemoglobin S. Blood, 96, 2358–2363.

    Google Scholar 

  • Akide-Ndunge, O., Ayi, K., and Arese, P. (2003). The Haldane malaria hypothesis: Facts, artifacts, and a prophecy. Redox Rep., 8, 311–317.

    Article  Google Scholar 

  • Al-Ali, A.K. (2002). Pyridine nucleotide redox potential in erythrocytes of Saudi subjects with sickle-cell disease. Acta Haematol., 108, 19–22.

    Article  Google Scholar 

  • Allen, S.J., O’Donnell, A., Alexander, N.D. et al. (1997). Alpha+-thalassemia protects children against disease caused by other infections as well as malaria. Proc. Natl. Acad. Sci. USA. 94, 14736–14741.

    Article  Google Scholar 

  • Allen, S.J., O’Donnell, A., Alexander, N.D. et al. (1999). Prevention of cerebral malaria in children in Papua New Guinea by southeast Asian ovalocytosis band 3. Am. J. Trop. Med. Hyg., 60, 1056–1060.

    Google Scholar 

  • Allison, A.C. (1954). Protection afforded by sickle-cell trait against subtertian malaria infection. Br. Med. J., i, 290–294.

    Google Scholar 

  • Allison, A.C. (1956). The sickle-cell and haemoglobin C genes in some African populations. Ann. Hum. Genet. 21, 67–89.

    Google Scholar 

  • Allison, A.C. (1964). Polymorphism and natural selection in human populations. Cold Spring Harbor Symp. Quant. Biol., 29, 137–149.

    Google Scholar 

  • Allison, A.C. and Clyde, D.F. (1961). Malaria in African children with deficient glucose-6-phosphate dehydrogenase. Br. Med. J., i, 1346–1348.

    Google Scholar 

  • Ayi, K., Turrini, F., Piga, A., and Arese, P. (2004). Enhanced phagocytosis of ring-parasitized mutant erythrocytes: a common mechanism that may explain protection against falciparum malaria in sickle trait and beta-thalassemia trait. Blood, 104, 3364–3371

    Article  Google Scholar 

  • Beet, E.A. (1947). Sickle-cell disease in Northern Rhodesia. E. Afr. Med. J., 24, 212–222.

    Google Scholar 

  • Bianco-Silvestroni, I. (2002) Storia della microcitemia in Italia. G. Fioriti Editore, Roma.

    Google Scholar 

  • Bookchin, R.M. and Lew, V.L. (2002). Sickle red cell dehydration: Mechanisms and interventions. Curr. Opin. Hematol., 9, 107–110.

    Article  Google Scholar 

  • Brockelman, C.R., Wongstattayanont, B., Tan-Ariya, P., and Fucharoen, S. (1987). Thalassemic erythrocytes inhibit in vitro growth of Plasmodium falciparum. J. Clin. Microbiol., 25, 56–60.

    Google Scholar 

  • Bunyaratvej, A., Butthep, P., Yuthavong, Y. et al. (1986). Increased phagocytosis of Plasmodium falciparum: Infected erythrocytes with haemoglobin E by peripheral blood monocytes. Acta Haematol., 76, 155–158.

    Article  Google Scholar 

  • Cappadoro, M., Giribaldi, G., O’Brien, E. et al. (1998). Early phagocytosis of glucose-6-phosphate dehydrogenase (G6PD)-deficient erythrocytes parasitized by Plasmodium falciparum may explain malaria protection in G6PD deficiency. Blood, 92, 2527–2534.

    Google Scholar 

  • Cappellini, M.D., Tavazzi, D., Duca, L. et al. (1999). Metabolic indicators of oxidative stress correlate with haemichrome attachment to membrane, band 3 aggregation and eythrophagocytosis in beta-thalassaemia intermedia. Br. J. Haematol., 104, 504–512.

    Article  Google Scholar 

  • Carcassi, U., Ceppellini, R., and Pitzus, F. (1957). Frequenza della talassemia in quattro popolazioni sarde e suoi rapporti con la distribuzione dei gruppi sanguigni e della malaria. Boll. Ist. Sieroterap. Milan, 36, 207–218.

    Google Scholar 

  • Ceppellini R. (1955). Negative correlation between altitude above see level and incidence of thalassemia in four Sardinian villages. Cold Spring Harbor Symp. Quant. Biol., 20, 252.

    Google Scholar 

  • Chotivanich, K., Udomsangpetch, R., Pattanapanyasat, K. et al. (2002). Hemoglobin E: a balanced polymorphism protective against high parasitemias and thus severe P falciparum malaria. Blood, 100, 1172–1176.

    Google Scholar 

  • Destro-Bisol, G., Giardina, B., Sansonetti, B., and Spedini, G. (1996). Interaction between oxidized hemoglobin and the cell membrane: A common basis for several falciparum malaria-linked genetic traits. Yearb. Phys. Anthropol., 39, 137–159.

    Article  Google Scholar 

  • Flint, J., Harding, R.M., Clegg, J.B., and Boyce, A.J. (1993). Why are some genetic diseases common? Distinguishing selection from other processes by molecular analysis of globin gene variants. Hum. Genet., 91, 91–117.

    Article  Google Scholar 

  • Flint, J., Hill, A.V.S. Bowden, D.K., Oppenheimer, S.J. et al. (1986). High frequencies of α-thalassaemia are the result of natural selection by malaria. Nature, 321, 744–750.

    Article  Google Scholar 

  • Foo, L.C., Rekhraj, V., Chiang, G.L., and Mak, J.W. (1992). Ovalocytosis protects against severe malaria parasitaemia in the Malay aborigines. Am. J. Trop. Med. Hyg., 47, 271–275.

    Google Scholar 

  • Friedman, M.J. (1978). Erythrocytic mechanism of sickle cell resistance to malaria. Proc. Natl. Acad. Sci. USA, 75, 1994–1997.

    Article  Google Scholar 

  • Giribaldi, G., Ulliers, D., Mannu, F. et al. (2001). Growth of Plasmodium falciparum induces stage-dependent haemichrome formation, oxidative aggregation of band 3, membrane deposition of complement and antibodies, and phagocytosis of parasitized erythrocytes. Br. J. Haematol., 113, 492–499.

    Article  Google Scholar 

  • Greene, L.S. (1993). G6PD deficiency as protection against falciparum malaria: An epidemiologic critique of population and experimental studies, Year. Phys. Anthropol., 36, 153–178.

    Article  Google Scholar 

  • Haldane, J.B.S. (1949a). Disease and evolution. Ric. Sci., 19(Suppl.), 68–76.

    Google Scholar 

  • Haldane, J.B.S. (1949b). The rate of mutation of human genes. Hereditas, 35(Suppl.), 267–273.

    Google Scholar 

  • Hebbel, R.P. (1990) The sickle erythrocyte in double jeopardy: Autoxidation and iron decompartmentalization. Semin. Hematol., 27, 51–69.

    Google Scholar 

  • Hill, A.V.S. (2001). The genomics and genetics of human infectious disease susceptibility. Ann. Rev. Genomics Hum. Genet., 2, 373–300.

    Article  Google Scholar 

  • Ho M., and White N.J. (1999). Molecular mechanisms of cytoadherence in malaria. Am. J. Physiol., 276, C1231–C1242.

    Google Scholar 

  • Hutagalung, R., Wilairatana, P., Looareesuwan, S., Brittenham, G.M. et al. (2000). Influence of hemoglobin E trait on the antimalarial effect of artemisinin derivatives. J. Infect. Dis., 181, 1513–1516.

    Article  Google Scholar 

  • Ifediba, C.T., Stern, A., Ibrahim, A., Rieder, F.R. (1985). Plasmodium falciparum in vitro: Diminished growth in haemoglobin H disease erythrocytes. Blood, 65, 452–455.

    Google Scholar 

  • Jones, T.R. (1997). Quantitative aspects of the relationship between the sickle-cell gene and malaria. Parasitol. Today, 13, 107–111.

    Article  Google Scholar 

  • Kaminsky, R., Krüger, N., Hempelmann, E., and Bommer, W. (1986). Reduced development of Plasmodium falciparum in β-thalassemic erythrocytes. Z. Parasitenkd., 72, 553–556.

    Article  Google Scholar 

  • Kannan, R., Labotka, R., and Low, P.S. (1988). Isolation and characterization of the hemichromestabilized membrane protein aggregates from sickle erythrocytes. J. Biol. Chem., 263, 13766–13773.

    Google Scholar 

  • Krugliak, M., Zhang, J., and Ginsburg, H. (2002). Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol., 119, 249–256.

    Article  Google Scholar 

  • Laser, H. and Klein, R. (1979). Haemoglobin S and P. falciparum malaria. Nature, 280, 613–614.

    Article  Google Scholar 

  • Lehmann, H. and Cutbush, M. (1952). Sickle cell trait in southern India. Br. Med. J., 6, 404–405.

    Google Scholar 

  • Lell B., May, B, J., Schmidt-Ott, R.J. et al. (1999). The role of red blood cell polymorphisms in resistance and susceptibility to malaria. Clin. Infect. Dis., 28, 794–799.

    Google Scholar 

  • Liu, S.C., Palek, J., Yi, S.J. et al. (1995). Molecular basis of altered red blood cell membrane properties in Southeast Asian ovalocytosis: Role of band 3 protein in band 3 oligomerization and retention by the membrane skeleton. Blood, 86, 349–358.

    Google Scholar 

  • Livingstone, F.B. (1971). Malaria and human polymorphisms. Ann. Rev. Genet., 5, 33–64.

    Article  Google Scholar 

  • Low, P.S., Waugh, S.M., Zinke, K., and Drenckhahn, D. (1985). The role of hemoglobin denaturation and band 3 clustering in red blood cell aging. Science, 227, 531–533.

    Google Scholar 

  • Lutz, H.U. (1990). Erythrocyte clearance. In: J.R. Harris (ed), Blood Cells: Subcellular Biochemistry, Vol. 17, Erythroid Cells. Plenum Press, New York, pp. 81–120.

    Google Scholar 

  • Luzzatto, L., Nwachuku-Jarrett, E.S., and Reddy, S. (1970). Increased sickling of parasitized erythrocytes as mechanism of resistance against malaria in the sickle-cell trait. Lancet, i, 319–322.

    Article  Google Scholar 

  • Luzzatto, L., Sodeinde, O., and Martini, G. (1983). Genetic variation in the host and adaptive phenomena in Plasmodium falciparum infection. Ciba Foundation Symp., 94, 159–173.

    Google Scholar 

  • Luzzatto, L., Usanga, E.A., and Reddy, S. (1969). Glucose-6-phosphate dehydrogenase deficient red cells: Resistance to infection by malarial parasites. Science, 164, 839–842.

    Google Scholar 

  • Luzzi, G.A., Merry, A.H., Newbold, C.I., Marsh, K., and Pasvol, G. (1991). Protection by alpha-thalassemia against Plasmodium falciparum malaria: Modified surface antigen expression rather than impaired growth or cytoadherence. Immunol. Lett., 30, 233–240.

    Article  Google Scholar 

  • Luzzi, G.A., Torii, M., Aikawa, M., and Pasvol, G. (1990). Unrestricted growth of Plasmodium falciparum in microcytic erythrocytes in iron deficiency and thalassaemia. Br. J. Haematol., 74, 519–524.

    Google Scholar 

  • Mackey, J.P. and Vivarelli, F. (1954). Sickle-cell anaemia (Letter). Br. Med. J., i, 276.

    Article  Google Scholar 

  • Mannu, F., Arese, P., Cappellini, M.D. et al. (1995). Role of hemichrome binding to erythrocyte membrane in the generation of band 3 alterations in beta thalassemia intermedia erythrocytes. Blood, 86, 2014–2020.

    Google Scholar 

  • Modiano, D., Luoni, G., Sirima, B.S., et al. (2001). Haemoglobin C protects against clinical Plasmodium falciparum malaria. Nature, 414, 305–308.

    Article  Google Scholar 

  • Modiano, G., Morpurgo, G., Terrenato, L. et al. (1991). Protection against malaria morbidity: nearfixation of alpha-thalassemia gene in a Nepalese population. Am. J. Hum. Genet., 48, 390–397.

    Google Scholar 

  • Mockenhaupt, F.P., Ehrhardt, S., Gellert, S., et al. (2004). α+-thalassemia projects from severe malaria in African children. Blood, 104, 2003–2006.

    Article  Google Scholar 

  • Mynt, O., Upston, J.M., Gero, A.M., and O’Sullivan, W.J. (1993). Reduced transport of adenosine in erythrocytes from patients with beta-thalassaemia. Int. J. Parasitol., 23, 303–307.

    Article  Google Scholar 

  • O’Donnell, A., Allen, S.J., Mgone, C.S. et al. (1998). Red cell morphology and malaria anaemia in children with Southeast-Asian ovalocytosis band 3 in Papua New Guinea. Br. J. Haematol., 101, 407–412.

    Article  Google Scholar 

  • Pasvol, G. (1980). The interaction between sickle haemoglobin and the malarial parasite Plasmodium falciparum. Trans. R. Soc. Trop. Med. Hyg., 74, 701–705.

    Article  Google Scholar 

  • Pasvol, G., Weatherall, D.J., and Wilson, R.J.M. (1978). Cellular mechanism for the protective effect of haemoglobin S against P. falciparum malaria. Nature, 274, 701–703.

    Article  Google Scholar 

  • Pattanapanyasat, K., Yongvanitchit, K., Tongtawe, P. et al. (1999). Impairment of Plasmodium falciparum growth in thalassemic red blood cells: Further evidence by using biotin labeling and flow cytometry. Blood, 93, 2116–3119.

    Google Scholar 

  • Roberts, D.J., Harris, T., and Williams, T. (2004). The influence of inherited traits on malaria infection. In: R. Bellamy (ed), Susceptibility to Infectious Diseases: The Importance of Host Genetics. Cambridge University Press, Cambridge, UK, pp. 139–184.

    Google Scholar 

  • Roberts, D.J., Williams, T.N., and Pain, A. (2005). Genetics of resistance to malaria on the Indian subcontinent. In: D. Kumar (ed), Genetris of Disease on the Indian subcontinent, in press.

    Google Scholar 

  • Roth, Jr, E.F., Raventos-Suarez, C., Rinaldi, A., and Nagel, R.L. (1983). Glucose-6-phosphate dehydrogenase deficiency inhibits in vitro growth of Plasmodium falciparum. Proc. Natl. Acad. Sci. USA, 80, 298–299.

    Article  Google Scholar 

  • Ruwende, C., Khoo, S.C., Snow, R.W., et al. (1995). Natural selection of hemi-and heterozygotes for G6PD deficiency in Africa by resistance to severe malaria. Nature, 376, 246–249.

    Article  Google Scholar 

  • Sallares, R. (2001). Malaria and Rome: A History of Malaria in Ancient Italy. Oxford University Press, Oxford.

    Google Scholar 

  • Schrier, S.L. (1994). Thalassemia. Pathophysiology of red cell changes. Annu. Rev. Med., 45, 211–217.

    Article  Google Scholar 

  • Schwarzer, E., Turrini, F., Ulliers, D. et al. (1992). Impairment of macrophage functions after ingestion of Plasmodium falciparum-infected erythrocytes or isolated malarial pigment. J. Exp. Med., 176, 1033–1041.

    Article  Google Scholar 

  • Scorza, T., Magez, S., Brys, L., and De Baetselier, P. (1999). Hemozoin is a key factor in the induction of malaria-associated immunosuppression. Parasite Immunol., 21, 545–554.

    Article  Google Scholar 

  • Senok, A.C., Nelson, E.A.S., Li, K., and Oppenheimer, S.J. (1997). Thalassemia trait, red blood cell age and oxidant stress: Effects on Plasmodium falciparum growth and sensitivity to artemisinin. Trans. R. Soc. Trop. Med. Hyg., 91, 585–589.

    Article  Google Scholar 

  • Serjeantson, S. Bryson, K., Amato, D., and Babona, D. (1977). Malaria and hereditary ovalocytosis. Hum. Genet., 37, 161–167.

    Article  Google Scholar 

  • Siniscalco, M., Bernini, L., Filippi, G. et al. (1966). Population genetics of haemoglobin variants, thalassaemia and glucose-6-phosphate dehydrogenase deficiency, with particular reference to the malaria hypothesis. Bull. WHO, 34, 379–93.

    Google Scholar 

  • Siniscalco, M., Bernini, L., Latte, B., and Motulsky, A.G. (1961). Favism and thalassemia in Sardinia and their relationship to malaria. Nature, 190, 1175–1180.

    Google Scholar 

  • Spielman, A. and D’Antonio, M. (2001). Mosquito. A Natural History of Our Most Persistent and Deadly Foe. Faber and Faber, London.

    Google Scholar 

  • Tilley, L., Nash, G.B., Jones, G.L., and Sawyer, W.H. (1991). Decreased rotational diffusion of band 3 in Melanesian ovalocytes from Papua, New Guinea. J. Membr. Biol., 121, 59–66.

    Article  Google Scholar 

  • Ting, Y.L.T., Naccarato, S., Qualtieri, A. et al. (1994). In vivo metabolic studies of glucose, ATP and 2,3-DPG in beta-thalassaemia intermedia, heterozygous beta-thalassaemic and normal erythrocytes: 13C and 31P MRS studies. Br. J. Haematol., 88, 547–554.

    Google Scholar 

  • Turrini, F., Arese, P., Yuan, J., and Low, P.S. (1991). Clustering of integral membrane proteins of the human erythrocyte membrane stimulates autologous IgG binding, complement deposition, and phagocytosis. J. Biol. Chem., 266, 23611–23617.

    Google Scholar 

  • Turrini, F., Ginsburg, H., Bussolino, F. et al. (1992). Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: Involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood, 80, 801–808.

    Google Scholar 

  • Udomsangpetch, R., Sueblinvong, T., Pattanapanyasat, K., Dharmkrongat, A., Kittikalayawong, A., and Webster, H.K. (1993). Alteration in cytoadherence and rosetting of Plasmodium falciparum-infected thalassemic red blood cells. Blood, 82, 3752–3759.

    Google Scholar 

  • Urban, B.C. and Roberts, D.J. (2002). Malaria, monocytes, macrophages and myeloid dendritic cells: sticking of infected erythrocytes switches off host cells. Curr. Opin. Immunol., 14, 458–465.

    Article  Google Scholar 

  • Weatherall, D.J. (1997). Thalassemia and malaria, revisited. Ann. Trop. Med. Parasitol., 91, 885–890.

    Article  Google Scholar 

  • Weatherall, D.J. (1998). Pathophysiology of thalassaemia. Baillières Clin. Haematol., 11, 127–146.

    Google Scholar 

  • Willcox, M., Björkman, A., Brohult, J. et al. (1983). A case-control study in northern Liberia of Plasmodium falciparum malaria in haemoglobin S and beta-thalassaemia trait. Ann. Trop. Med. Parasitol., 77, 239–246.

    Google Scholar 

  • Williams, T.N., Maitland, K., Bennett, S. et al. (1996). High incidence of malaria in α-thalassaemic children. Nature, 383, 522–525.

    Article  Google Scholar 

  • Williams, T.N., Wambua, S., Uyoga, S. et al. (2005). Both heterozygous and homozygous alpha + thalassemias project against severe and fatal Plasmodium falciparum malaria on the coast of Kenya, Blood, 106, 368–371

    Article  Google Scholar 

  • Winograd, E. and Sherman, I.W. (1989a). Characterization of a modified red cell membrane protein expressed on erythrocytes infected with the human malaria parasite Plasmodium falciparum: possible role as a cytoadherence mediating protein. J. Cell. Biol., 108, 23–30.

    Article  Google Scholar 

  • Winograd, E. and Sherman, I.W. (1989b). Naturally occurring anti-band 3 autoantibodies recognize a high molecular weight protein on the surface of Plasmodium falciparum infected erythrocytes. Biochem. Biophys. Res. Commun., 160, 1357–1363.

    Article  Google Scholar 

  • Winograd, E., Greenan, J.R.T., and Sherman, I.W. (1987). Expression of senescent antigen on erythrocytes infected with a knobby variant of the human malaria parasite Plasmodium falciparum. Proc. Natl. Acad. Sc. USA, 84, 1931–1935.

    Article  Google Scholar 

  • Yenchitsomanus, P., Summers, K.M., Board, P.G. et al. (1986). Alpha-thalassemia in Papua New Guinea. Hum. Genet., 74, 432–437.

    Article  Google Scholar 

  • Yuthavong, Y., Butthep, P., Bunyaratvej, A., and Fucharoen, S. (1987). Inhibitory effect of beta0-thalassemia/hamoglobin E erythrocytes on Plasmodium falciparum growth in vitro. Trans. R. Soc. Trop. Med. Hyg., 81, 903–906.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Arese, P., Ayi, K., Skorokhod, A., Turrini, F. (2006). Removal of Early Parasite Forms from Circulation as a Mechanism of Resistance Against Malaria in Widespread Red Blood Cell Mutations. In: Malaria: Genetic and Evolutionary Aspects. Emerging Infectious Diseases of the 21st Century. Springer, Boston, MA. https://doi.org/10.1007/0-387-28295-5_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-28295-5_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28294-7

  • Online ISBN: 978-0-387-28295-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics