Skip to main content

Basic Concepts

  • Chapter
Nanoscale Transistors

1.14 Summary

Several key concepts that will be used in later chapters have been reviewed. The concept of carrier confinement, the relation of 1, 2, and 3D carrier densities to the Fermi level, and the notion of directed moments are especially important. Understanding how the eigenstates are populated in a ballistic device and appreciating the difference between semiclassical and quantum treatments are also important. Finally, the idea of a quantum conductance, 2q2/h, will play an important role in our development of models for nanotransistors, for which a wave picture can be used. Understanding when to use a wave approach and when a particle picture is needed is important for interpreting experiments and for exploring new devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 1 References

  1. S. Datta, Electronic Conduction in Mesoscopic Systems, Cambridge University Press, Cambridge, UK, 1996.

    Google Scholar 

  2. R. F. Pierret, Advanced Semiconductor Fundamentals, Addison-Wesley, Reading, Massachusetts, 1987.

    Google Scholar 

  3. S. Datta, Quantum Phenomena, Addison-Wesley, 1989.

    Google Scholar 

  4. M. S. Lundstrom, Fundamentals of Carrier Transport, 2nd Ed., Cambridge University Press, Cambridge, UK, 2000.

    Google Scholar 

  5. F. Assad, Z. Ren, D. Vasileska, S. Datta, and M. S. Lundstrom, “On the Performance Limits of Silicon MOSFETs: A Theoretical Study,” IEEE Trans. Electron Dev., 47, pp. 232–240, 2000.

    Article  CAS  Google Scholar 

  6. J. S. Blakemore, “Approximations for Fermi-Dirac Integrals, Especially the Functions F1/2(ν) to Describe Electron Density in a Semiconductor,” Solid-State Electron., 25, pp. 1067, 1982.

    Article  CAS  Google Scholar 

  7. Z. Ren, R. Venugopal, S. Goasguen, S. Datta, and M.S. Lundstrom “nanoMOS 2.5: A Two-Dimensional Simulator for Quantum Transport in Double-Gate MOSFETs,” IEEE Trans. Electron. Dev., special issue on Nanoelectronics, 50, pp. 1914–1925, 2003.

    Article  CAS  Google Scholar 

  8. S. Datta, Quantum Transport Atom to Transistor, Cambridge University Press, Cambridge, UK. 2005.

    Google Scholar 

  9. R. Venugopal, M. Paulsson, S. Goasguen, S. Datta, and M. Lundstrom, “A Simple Quantum Mechanical Treatment of Scattering in Nanosacle Transistors,” J. of Appl. Phys., 93, pp. 5613–5625, 2003.

    Article  CAS  Google Scholar 

  10. K. Likharev, “Electronics Below 10 nm,” in: Nano and Giga Challenges in Microelectronics, ed. by J. Greer et al., Elsevier, Amsterdam, pp. 27–68, 2003.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2006). Basic Concepts. In: Nanoscale Transistors. Springer, Boston, MA. https://doi.org/10.1007/0-387-28003-0_1

Download citation

  • DOI: https://doi.org/10.1007/0-387-28003-0_1

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28002-8

  • Online ISBN: 978-0-387-28003-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics