Skip to main content

Maximum Likelihood Methods for Detecting Adaptive Protein Evolution

  • Chapter
Statistical Methods in Molecular Evolution

Part of the book series: Statistics for Biology and Health ((SBH))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Anisimova, J. P. Bielawski, and Z. Yang. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol. Biol. Evol., 18:1585–1592, 2001.

    PubMed  CAS  Google Scholar 

  2. M. Anisimova, J. P. Bielawski, and Z. Yang. Accuracy and power of bayesian prediction of amino acid sites under positive selection. Mol. Biol. Evol., 19:950–958, 2002.

    PubMed  CAS  Google Scholar 

  3. M. Anisimova, R. Nielsen, and Z. Yang. Effect of recombination on the accuracy of likelihood methods for detecting positive selection at amino acid sites. Genetics, 164:1229–1236, 2003.

    PubMed  CAS  Google Scholar 

  4. J. P. Bielawski and Z. Yang. The role of selection in the evolution of the daz gene family. Mol. Biol. Evol., 18:523–529, 2001.

    PubMed  CAS  Google Scholar 

  5. J. P. Bielawski and Z. Yang. Maximum likelihood methods for detecting adaptive evolution after gene duplication. J. Struct. Funct. Genomics, 3:201–212, 2003.

    Article  PubMed  CAS  Google Scholar 

  6. K. A. Crandall, C. R. Kelsey, H. Imanichi, H. C. Lane, and N. P. Salzman. Parallel evolution of drug resistance in HIV: Failure of nonsynonymous/synonymous substitution rate ratio to detect selection. Mol. Biol. Evol., 16:372–382, 1999.

    PubMed  CAS  Google Scholar 

  7. J. Da Silva and A. L. Hughes. Conservation of cytotoxic t lymphocytes (CTL) epitopes as a host strategy to constrain parasitic adaptation: Evidence from the nef gene of human immunodeficiency virus 1 (HIV-1). Mol. Biol. Evol., 15:1259–1268, 1998.

    PubMed  Google Scholar 

  8. K. D. Dunn, J. P. Bielawski, and Z. Yang. Rates and patterns of synonymous substitutions in Drosophila: Implications for translational selection. Genetics, 157:295–305, 2001.

    PubMed  CAS  Google Scholar 

  9. T. K. Endo, K. Ikeo, and T. Gojobori. Large-scale search for genes on which positive selection may operate. Mol. Biol. Evol., 13:685–690, 1996.

    PubMed  CAS  Google Scholar 

  10. J. Felsenstein. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol., 15:368–376, 1981.

    Article  Google Scholar 

  11. G. B. Golding and A. M. Dean. The structural basis of molecular adaptation. Mol. Biol. Evol., 15:355–369, 1998.

    PubMed  CAS  Google Scholar 

  12. N. Goldman. Statistical tests of DNA substitution models. J. Mol. Evol., 36:182–198, 1993.

    Article  PubMed  CAS  Google Scholar 

  13. N. Goldman and Z. Yang. A codon based model of nucleotide substitution for protein-coding DNA sequences. Mol. Biol. Evol., 11:725–736, 1994.

    PubMed  CAS  Google Scholar 

  14. M. Hasegawa, H. Kishino, and T. Yano. Dating the human-ape splitting by a molecular clock using mitochondrial DNA. J. Mol. Evol., 22:160–174, 1985.

    Article  PubMed  CAS  Google Scholar 

  15. Y. Ina. Pattern of synonymous and nonsynonymous substitutions: An indicator of mechanisms of molecular evolution. J. Genet., 75:91–115, 1996.

    Article  CAS  Google Scholar 

  16. F. M. Jiggins, G. D. D. Hurst, and Z. Yang. Host-symbiont conflicts: Positive selection on the outer membrane protein of parasite but not mutualistic Rickettsiaceae. Mol. Biol. Evol., 19:1341–1349, 2002.

    PubMed  CAS  Google Scholar 

  17. M. Kimura and T. Ohta. On some principles governing molecular evolution. Proc. Natl. Acad. Sci. USA, 71:2848–2852, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. H. Kishino, T. Miyata, and M. Hasegawa. Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. J. Mol. Evol., 31:151–160, 1990.

    Article  CAS  Google Scholar 

  19. W.-H. Li, C.-I Wu, and C.-C. Luo. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitutions considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol., 2:150–174, 1985.

    PubMed  Google Scholar 

  20. Y.-J. Li and C.-M. Tsoi. Phylogenetic analysis of vertebrate lactate dehydrogenase (ldh) multigene families. J. Mol. Evol., 54:614–624, 2002.

    Article  PubMed  CAS  Google Scholar 

  21. W. Messier and C.-B. Stewart. Episodic adaptive evolution of primate lysozymes. Nature, 385:151–154, 1997.

    Article  PubMed  CAS  Google Scholar 

  22. T. Miyata and T. Yasunaga. Molecular evolution of mRNA: A method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its applications. J. Mol. Evol., 16:23–36, 1980.

    Article  PubMed  CAS  Google Scholar 

  23. S. V. Muse. Estimating synonymous and non-synonymous substitution rates. Mol. Biol. Evol., 13:105–114, 1996.

    PubMed  CAS  Google Scholar 

  24. S. V. Muse and B. S. Gaut. A likelihood approach for comparing synonymous and nonsynonymous nucleotide substitution rates, with applications to the chloroplast genome. Mol. Biol. Evol., 11:715–725, 1994.

    PubMed  CAS  Google Scholar 

  25. M. Nei and T. Gojobori. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Mol. Biol. Evol., 3:418–426, 1986.

    PubMed  CAS  Google Scholar 

  26. R. Nielsen and Z. Yang. Likelihood models for detecting positively selected amino acid sites and applications to the HIV-1 envelope gene. Genetics, 148:929–936, 1998.

    PubMed  CAS  Google Scholar 

  27. E. Padua, A. Jenkins, S. Brown, J. Bootman, M. T. Paixao, N. Almond, and N. Berry. Natural variation of the nef gene in human immunodeficiency virus type 2 infections in Portugal. J. Gen. Virol., 84:1287–1299, 2003.

    Article  PubMed  CAS  Google Scholar 

  28. U. Plikat, K. Nieselt-Struwe, and A. Meyerhans. Genetic drift can determine short-term human immunodeficiency virus type 1 nef quasispecies evolution in vivo. J. Virol., 71:4233–4240, 1997.

    PubMed  CAS  Google Scholar 

  29. T. R. Schmidt, M. Goodman, and L. I. Grossman. Molecular evolution of the cox7a gene family in primates. Mol. Biol. Evol., 16:619–626, 1999.

    PubMed  CAS  Google Scholar 

  30. S. Self and K. Y. Liang. Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions. J. Am. Stat. Assoc., 82:605–610, 1987.

    Article  MathSciNet  Google Scholar 

  31. P. M. Sharp. In search of molecular Darwinism. Nature, 385:111–112, 1997.

    Article  PubMed  Google Scholar 

  32. W. M. Switzer and S. Wiktor et al. Evidence of nef truncation in human immunodeficiency virus type 2 infection. J. Infect. Dis., 177:65–71, 1998.

    Article  PubMed  CAS  Google Scholar 

  33. M. Wayne and K. Simonsen. Statistical tests of neutrality in an age of weak selection. Trends Ecol. Evol., 13:236–240, 1998.

    Article  Google Scholar 

  34. W. Yang, J. P. Bielawski, and Z. Yang. Widespread adaptive evolution in the human immunodeficiency virus type 1 genome. J. Mol. Evol., 57(2):212–221, 2003.

    Article  PubMed  CAS  Google Scholar 

  35. Z. Yang. Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods. J. Mol. Evol., 39:306–314, 1994.

    Article  PubMed  CAS  Google Scholar 

  36. Z. Yang. PAML: A program package for phylogenetic analysis by maximum likelihood. Appl. Biosci., 13:555–556, 1997.

    CAS  Google Scholar 

  37. Z. Yang. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol. Biol. Evol., 15:568–573, 1998.

    PubMed  CAS  Google Scholar 

  38. Z. Yang and J. P. Bielawski. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol., 15:496–503, 2000.

    Article  PubMed  Google Scholar 

  39. Z. Yang and R. Nielsen. Estimating synonymous and nonsynonymous substitution rates under realistic evolutionary models. Mol. Biol. Evol., 17:32–43, 2000.

    PubMed  CAS  Google Scholar 

  40. Z. Yang, R. Nielsen, N. Goldman, and A.-M. K. Pedersen. Codonsubstitution models for heterogeneous selective pressure at amino acid sites. Genetics, 155:431–449, 2000.

    PubMed  CAS  Google Scholar 

  41. Z. Yang and W. J. Swanson. Codon-substitution models to detect adaptive evolution that account for heterogeneous selective pressures among site classes. Mol. Biol. Evol., 19:49–57, 2002.

    PubMed  Google Scholar 

  42. P. M. Zanotto, E. G. Kallis, R. F. Souza, and E. C. Holmes. Genealogical evidence for positive selection in the nef gene of HIV-1. Genetics, 153:1077–1089, 1999.

    PubMed  CAS  Google Scholar 

  43. J. Zhang, H. F. Rosenberg, and M. Nei. Positive Darwinian selection after gene duplication in primate ribonuclease genes. Proc. Natl. Acad. Sci. USA, 95:3708–3713, 1998.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bielawski, J.P., Yang, Z. (2005). Maximum Likelihood Methods for Detecting Adaptive Protein Evolution. In: Statistical Methods in Molecular Evolution. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-27733-1_5

Download citation

Publish with us

Policies and ethics