Skip to main content

Radiative Decay Engineering (RDE)

  • Chapter

Part of the book series: Topics in Fluorescence Spectroscopy ((TIFS,volume 8))

Abstract

Fluorescence experiments are typically performed in sample geometries that are large relative to the size of the fluorophores and relative to the absorption and emission wavelengths. In this arrangement the fluorophores radiate into free space. Most of our knowledge and intuition about fluorescence is derived from the spectral properties observed in these free-space conditions. However, the presence of nearby metallic surfaces or particles can alter the free-space condition, which can result in dramatic spectral changes which are distinct from those observable in the absence of metal surfaces. Remarkably, metal surfaces can increase or decrease the radiative decay rates of fluorophores and increase the extent of resonance energy transfer (RET) (Figure 1).These effects are due to interactions of the excited-state fluorophores with free electrons in the metal, the so-called surface plasmon electrons, which polarize the metal and produce favorable effects on the fluorophore. The effects of metallic surfaces are complex and include quenching at short distances, spatial variation of the incident light field, and changes in the radiative decay rates (Figure 2). We refer to the use of fluorophore-metal interactions as radiative decay engineering (RDE) or metal enhanced fluorescence (MEF).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9. References

  1. K. H. Drexhage, Interaction of light with monomolecular dye lasers. In Progress in Optics, edited by Wolfe, E. (North-Holland, Amsterdam, 1974), pp. 161–232.

    Google Scholar 

  2. R. M. Amos, and W. L. Barnes, Modification of the spontaneous emission rate of Eir3+ ions close to a thin metal mirror, Phys. Rev. B 55(11), 7249–7254 (1997).

    Article  CAS  Google Scholar 

  3. W. L. Barnes, Fluorescence near interfaces: The role of photonic mode density, J. Modern Optics 45(4), 661–699 (1998).

    CAS  Google Scholar 

  4. R. M. Amos, and W. L. Barnes, Modification of spontaneous emission lifetimes in the presence of corrugated metallic surfaces, Phys. Rev. B 59(11), 7708–7714 (1999).

    Article  CAS  Google Scholar 

  5. J. R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications, Appl. Biochem. 298, 1–24 (2001).

    Article  CAS  Google Scholar 

  6. D. A. Weitz, S. Garoff, C. D. Hanson, and T. J. Gramila, Fluorescent lifetimes of molecules on silver-island films, Optics Letts. 7(2), 89–91 (1982)

    CAS  Google Scholar 

  7. S. Link, and M. A. El-Saved, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods, J. Phys. Chem. B 103, 8410–8426 (1999).

    Article  CAS  Google Scholar 

  8. S. Link, and M. A. El-Sayed, Shape and size dependence of radiative, nonradiative and photothermal properties of gold nanocrystals, Int. Rev. Phys. Chem. 19, 409–453 (2000).

    Article  CAS  Google Scholar 

  9. U. Kreibig, M. Vollmer, and J. P. Toennies, Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).

    Google Scholar 

  10. J. R. Lakowicz Principles of Fluorescence Spectroscopy (New York: Kluwer/Plenum, 1999), p. 698

    Google Scholar 

  11. S. Georghiou, Nordlund, M. Thomas and A. M. Saim, Picosecond fluorescence decay time measurements of nucleic acids at room temperature in aqueous solution Photochem. Photobiol. 41, 209–12 (1985)

    CAS  Google Scholar 

  12. S. Georghiou, T. D. Braddick, A. Philippetis and J. M. Beechem Large-amplitude picosecond anisotropy decay of the intrinsic fluorescence of double-stranded DNA Biophys. J. 70, 1909–22 (1996)

    Article  CAS  Google Scholar 

  13. R. F. Steiner and Y. Kubota, Fluorescent dye-nucleic acid complexes Excited States of Biopolymers ed R F Steiner (New York: Plenum, 1983), pp. 203–54.

    Google Scholar 

  14. S. Georghiou, Interaction of acridine drugs with DNA and nucleotides Photochem. Photobiol. 26, 59–68 (1977).

    CAS  Google Scholar 

  15. C. J. Murphy, Photophysical probes of DNA sequence directed structure and dynamics Advances in Photochemistry (New York: Wiley, 2001), pp. 145–217.

    Chapter  Google Scholar 

  16. I. Timtcheva, V. Maximova, T. Deligeorgiev, N. Gadjev, K. H. Drexhage and I. Petkova, Homodimeric monomethine cyanine dyes as fluorescent probes of biopolymers J. Photochem. Photobiol. B: Biol. 58, 130–5 (2000).

    Article  CAS  Google Scholar 

  17. J. R. Lakowicz, Y. Shen, S. D’Auria, J. Malicka, J. Fang, Z. Grcyzynski and I. Gryczynski, Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifet imes, and resonance energy transfer, Anal. Biochem. 301. 261–77 (2002).

    Article  CAS  Google Scholar 

  18. J. R. Lakowicz, B. Shen, Z. Gryczynski, S. D’Auria and I., Gryczynski Intrinsic fluorescence from DNA can be enhanced by metallic particles Biochem Biophys. Res. Commun. 286, 875–879 (2001).

    Article  CAS  Google Scholar 

  19. J. R. Lakowicz, J. Malicka and I. Gryczynski, I., Silver particles enhance emission of fluorescent DNA oligomers, Bio Techniques. 34, 62–68 (2001).

    Google Scholar 

  20. The human genome. Nature February 15, 2001, pp. 813–958.

    Google Scholar 

  21. The human genome. Science February 16, 2001, pp. 1177–1351.

    Google Scholar 

  22. J. Enderlein, D. L. Robbins, W. P. Ambrose, and R. A. Keller, Molecular shot noise, burst size distribution, and singlemolecule detection in fluid flow: Effects of multiple occupancy. J. Phys. Chem. A 102, 6089–6094 (1998)

    Article  CAS  Google Scholar 

  23. A. Van Orden, N. P. Machara, P.M. Goodwin, and R. A. Keller, Single-molecule identification in flowing sample streams by fluorescence burst size and intraburst fluorescence decay rate, Anal. Chem. 70(7), 1444–1451 (1998)

    Article  Google Scholar 

  24. J. V. Garcia-Ramos, and S. Sanches-Cortes, Metal colloids employed in the SERS of biomolecules: Activation when exciting in the visible and near-infrared regions. J. Mol. Struct. 405, 13–28 (1997).

    Article  CAS  Google Scholar 

  25. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, Nanosphere lithography: Tunable localized surface plasmon resonance spectra of nanoparticles. J. Phys. Chem. B 104, 10549–10556 (2000).

    Article  CAS  Google Scholar 

  26. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers. J. Am. Chem. Soc. 123, 1471–1482 (2001).

    Article  CAS  Google Scholar 

  27. D. Eck, C. A. Helm, N. J. Wagner, and K. A. Vaynberg, Plasmon resonance measurements of the adsorption and adsorption kinetics of a biopolymer onto gold nanocolloids. Langmuir 17(4), 957–960 (2001).

    Article  CAS  Google Scholar 

  28. M. Valina-Saba, G. Bauer, N. Stich, F. Pittner, and T. Schalkhammer, A self-assembled shell of 11-mercaptoundecanoic aminophenylboronic acids on gold nanoclusters. Mat. Sci. Eng. C 8-9, 205–209 (1999).

    Article  Google Scholar 

  29. J. Malicka, I. Gryczynski, Z. Gryczynski, J.R. Lakowicz, Effects of fluorophore-to-silver distance on the emission of cyanine-dye-labeled oligonucleotides, Anal. Biochem. 315, 57–66 (2003).

    Article  CAS  Google Scholar 

  30. J. R. Lakowicz, I. Gryczynski, Y. Shen, J. Malicka, Z. Gryczynski, Intensified fluorescence, Photonics. Spectra, 96–104 (2001).

    Google Scholar 

  31. J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles, J. Chem. Phys. 75, 1139–1152 (1981).

    Article  CAS  Google Scholar 

  32. H. Chew, Transition rates of atoms near spherical surfaces, J. Chem. Phys. 87, 1355–1360 (1987)

    Article  CAS  Google Scholar 

  33. P. C. Das, A. Puri, Energy flow and fluorescence near a small metal particle, Phys. Rev. B 65, 155416–155418 (2002)

    Article  CAS  Google Scholar 

  34. M. Moskovits, Surface-enhanced spectroscopy, Rev. Mod. Phys. 57 (1985) 783–826.

    Article  CAS  Google Scholar 

  35. A Wokaun, H.-P. Lutz, A.P. King, U.P. Wild, R.R. Ernst, Energy transfer in surface enhanced fluorescence, J. Chem. Phys. 79, 509–514 (1983)

    Article  CAS  Google Scholar 

  36. P. J. Tarcha, J. DeSaja-Gonzalez, S. Rodriquez-Llorente, R. Aroca, Surface-enhanced fluorescence on SiO2 coated silver island films, Appl. Spectrosc. 53 (1999) 43–48.

    Article  CAS  Google Scholar 

  37. A. E. German, G.A. Gachko, Dependence of the amplification of giant Raman scattering and fluorescence on the distance between an adsorbed molecule and a metal surface, J. Appl. Spectrosc. 68 (2001) 987–992.

    Article  CAS  Google Scholar 

  38. K. Sokolov, G. Chumanov, T.M. Cotton, Enhancement of molecular fluorescence near the surface of colloidal metal films, Anal. Chem. 70 (1998) 3898–3905.

    Article  CAS  Google Scholar 

  39. G. Laczko, I. Gryczynski, Z. Gryczynski, W. Wiczk, H. Malak, J.R. Lakowicz, A 10-GHz frequency-domain fluorometer, Rev. Sci. Instrum. 61, 2331–2337 (1990)

    Article  CAS  Google Scholar 

  40. Th. Forster, Intermolecular energy migration and fluorescence Ann Phys 2 55–75 (1948) (Transl. Knox R S, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627)

    Article  CAS  Google Scholar 

  41. J. R. Lakowicz, J. Malicka, S. D’Auria and I. Gryczynski, Release of the self-quenching of fluorescence near silver metallic surfaces, Anal. Biochem. 320, 13–20 (2003).

    Article  CAS  Google Scholar 

  42. M. Kerker, The optics of colloidal silver: Something old and something new. J. Colloid Interface Sci. 105, 297–314 (1985).

    Article  CAS  Google Scholar 

  43. M. Faraday, The Bakerian lecture, Experimental relations of gold (and other metals) to light. Philos. Trans. 147, 145–181 (1857).

    Article  Google Scholar 

  44. M. R. Philpott, Effect of surface plasmons on transitions in molecules. J. Chem. Phys. 62(5), 1812–1817 (1975).

    Article  CAS  Google Scholar 

  45. R. R. Chance, A. Prock, and R. Silbey, Molecular fluorescence and energy transfer near interfaces. Adv. Chem. Phys. 37, 1–65 (1978).

    Article  CAS  Google Scholar 

  46. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules absorbed on a rough silver surface. J. Chem. Phys. 78(9), 5324–5338 (1983)

    Article  CAS  Google Scholar 

  47. F. Schutt, J. Fischer, J. Kopitz, and F. G. Holz, Clin. Exp. Invest. 30(2), 110 (2002).

    Google Scholar 

  48. C. D. Geddes, A. Parfenov, and J. R. Lakowicz, Photodeposition of silver can result in metal-enhanced fluorescence, Applied Spectroscopy 57(5), 526–531 (2003).

    Article  CAS  Google Scholar 

  49. C. D. Geddes, A. Parfenov, D. Roll, J. Fang, and J. R. Lakowicz, Electrochemical and laser deposition of silver for use in metal-enhanced fluorescence, Langmuir 19(15), 6236–6241 (2003).

    Article  CAS  Google Scholar 

  50. C. D. Geddes, A. Parfenov, D. Roll, I. Gryczynski, J. Malicka and J. R. Lakowicz, Silver fractal-like structures for metal-enhanced fluorescence: Enhanced fluorescence intensities and increased probe photostabilities, J. Fluoresc. 13(3), 267–276 (2003).

    Article  CAS  Google Scholar 

  51. J. Marengo, R. A. Ucha, M. Martinez-Cartier, and J. R. Sampaolesi, Int. Ophthalmology 23, 413 (2001).

    Article  CAS  Google Scholar 

  52. H. Ishihara, H. Okawa, T. Iwakawa, N. Umegaki, T. Tsubo, and A. Matsuki, Anesthesia Analgesia 94, 781 (2002).

    Article  Google Scholar 

  53. S. G. Sakka, K. Reinhart, K. Wegscheider, and A. Meier-Hellmann, Chest 121, 559 (2002).

    Article  Google Scholar 

  54. P. Lanzetta, Retina. J. Ret VIT. Dis. 21, 563 (2001).

    CAS  Google Scholar 

  55. E. M. Sevick-Muraca, G. Lopez, J. S. Reynolds, T. L. Troy, and C. L. Hutchinson, Photochem. Photobiol 66, 55 (1997).

    CAS  Google Scholar 

  56. J. M. Devoisselle, S. Soulie, H. Maillols, T. Desmettre, and S. Mordon, Proc. SPIE-Int. Soc. Opt. Eng. 2980, 293 (1997).

    CAS  Google Scholar 

  57. J. M. Devoisselle, S. Soulie, S. Mordon, T. Desmettre, and H. Maillols, Proc. SPIE-Int. Soc. Opt. Eng. 2980, 453 (1997).

    CAS  Google Scholar 

  58. A. Becker, B. Riefke, B. Ebert, U. Sukowski, H. Rinneberg, W. Semmier, and K. Licha, Photochem. Photobiol. 72, 234 (2000).

    Article  CAS  Google Scholar 

  59. C. D. Geddes and J. R. Lakowicz, Metal-enhanced fluorescence, J. Fluoresc. 12(2), 121–129 (2002)

    Article  Google Scholar 

  60. R. Keir, E. Igata, M. Arundell, W. E. Smith, D. Graham, C. McHugh, and J. M. Cooper, SERRS: In situ substrate formation and improved detection using microfluidics. Anal. Chem. 74(7), 1505–1508 (2002).

    Article  CAS  Google Scholar 

  61. C. L. Haynes, A. D. McFarland, M. T. Smith, J. C. Hulteen, and R. P. Van Duyne, Angle-resolved nanosphere lithography: Manipulation of nanoparticle size, shape, and interparticle spacing. J. Phys. Chem. B 106, 1898–1902 (2002).

    Article  CAS  Google Scholar 

  62. F. Hua, T. Cui, and Y. Lvov, Lithographic approach to pattern self-assembled nanoparticle multilayers. Langmuir 18, 6712–6715 (2002).

    Article  CAS  Google Scholar 

  63. V. Fleury, W. A. Watters, L. Allam, and T. Devers, Rapid electroplating of insulators, Nature 416, 716–719 (2002).

    Article  CAS  Google Scholar 

  64. M. Fleischmann, P. J. Hendra, and A. J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Letts. 26(2), 163–166 (1974)

    Article  CAS  Google Scholar 

  65. E. Roth, G. A. Hope, D. P. Schweinsberg, W. Kiefer, and P. M. Fredericks, Simple technique for measuring surface-enhanced fourier transform Raman spectra of organic compounds. Appl. Spec. 47(11), 1794–1800 (1993)

    Article  CAS  Google Scholar 

  66. A. M. Michaels, J. Jiang, and L. Brus, Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B. 104, 11965–11971 (2000).

    Article  CAS  Google Scholar 

  67. A. M. Michaels, M. Nirmal, and L. E. Brus Surface enhanced Raman spectroscopy of individual rhodamine 6G molecules on large Ag nanocrystals. J. Am. Chem. Soc. 121, 9932–9939 (1999).

    Article  CAS  Google Scholar 

  68. W. C. Bell and M. L. Myrick, J. Colloid Interface Sci. 242, 300 (2001).

    Article  CAS  Google Scholar 

  69. G. Rodriguez-Gattomo, D. Diaz, L. Rendon, and G. O. Hernandez-Segura, J. Phys. Chem. B 106, 2482 (2002).

    Article  CAS  Google Scholar 

  70. J. P. Abid, A. W. Wark, P. F. Breve, and H. H. Girault, Chem. Commun. 7, 792 (2002).

    Article  CAS  Google Scholar 

  71. I. Pastoriza-Santos, C. Serra-Rodriguez, and L. M. Liz-Marzan, J. Collloid Interface Sci. 221, 236 (2002).

    Article  CAS  Google Scholar 

  72. K. Asian, J. R. Lakowicz, and C. D. Geddes, Deposition of silver nanorods on to glass substrates and applications in metal-enhanced fluorescence, J. Phys. Chem B (submitted).

    Google Scholar 

  73. J. Malicka, I. Gryczynski, C. D. Geddes, and J.R. Lakowicz, Metal-enhanced emission from indocyanince green: an new approach to in vivo imaging, J. Biomedical Optics. 8(3), 472–478 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Geddes, C.D., Asian, K., Gryczynski, I., Malicka, J., Lakowicz, J.R. (2005). Radiative Decay Engineering (RDE). In: Geddes, C.D., Lakowicz, J.R. (eds) Radiative Decay Engineering. Topics in Fluorescence Spectroscopy, vol 8. Springer, Boston, MA. https://doi.org/10.1007/0-387-27617-3_14

Download citation

Publish with us

Policies and ethics