Skip to main content

Cytochrome P450s in Plants

  • Chapter
Cytochrome P450

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Croteau, R., T.M. Kutchan, and N.G. Lewis (2000). Natural products (secondary metabolites). In B.B. Buchanan, W. Gruissem and R.L. Jones, (eds), Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, Rockville, MD, pp. 1250–1318.

    Google Scholar 

  2. Dixon, R.A. (2001). Natural products and plant disease resistance. Nature 411, 843–847.

    PubMed  CAS  Google Scholar 

  3. Kutchan, T.M. (2001). Ecological arsenal and developmental dispatcher. The paradigm of secondary metabolism. Plant Physiol. 125, 58–60.

    PubMed  CAS  Google Scholar 

  4. Morant, M., S. Bak, B.L. Moller, and D. Werck-Reichart (2003). Plant cytochromes P450: Tools for pharmacology, plant protection and phytoremediation. Curr. Opin. Biotech. 14, 1–12.

    Google Scholar 

  5. Volker, S., P. Joern, and W. Boland (1999). Biosynthesis of furanocoumarins: Mevalonate independent prenylation of umbelliferone in Apium graveolens (Apiaceae) Phytochemistry 50, 1141–1145.

    Google Scholar 

  6. Li, X., M.A. Schuler, and M.R. Berenbaum (2002). Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 419, 712–715.

    PubMed  CAS  Google Scholar 

  7. Daborn, P.J., J.L. Yen, M.R. Bogwitz, G.L. Goff, E. Feil, S. Jeffers et al. (2002). A single P450 allele associated with insecticide resistance in Drosophila. Science 297, 2253–2256.

    PubMed  CAS  Google Scholar 

  8. Mikkelsen, M.D., B.L. Petersen, C.E. Olsen, and B. Halkier (2002). Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22, 269–275.

    Google Scholar 

  9. Wittstock, U. and B.A. Halkier (2002). Glucosinolate research in the Arabidopsis era. Trends Plant Sci. 7, 263–270.

    PubMed  CAS  Google Scholar 

  10. Wang, E., R. Wang, J. DeParisis, J.H. Loughrin, S. Gan, and G.J. Wagner (2001). Suppression of a P450 hydroxylase gene in plant trichome glands enhances natural-product-based aphid resistance. Nat. Biotechnol. 19, 371–374.

    PubMed  CAS  Google Scholar 

  11. Pauli, H.H. and T.M. Kutchan (1998). Molecular cloning and functional heterologous expression of two alleles encoding (S)-N-methylcoclaurine 3′-hydroxylase (CYP80B1), a new methyl jasmonate-inducible cytochrome P-450-dependent mono-oxygenase of benzylisoquinoline alkaloid biosynthesis. Plant J. 13, 793–801.

    PubMed  CAS  Google Scholar 

  12. Unterlinner, B., R. Lenz, and T.M. Kutchan (1999). Molecular cloning and functional expression of codeinone reductase—the penultimate enzyme in morphine biosynthesis in the opium poppy Papaver somniferum. Plant J. 18, 465–475.

    PubMed  CAS  Google Scholar 

  13. Huang, F.C. and T.M. Kutchan (2000). Distribution of morphinan and benzo[c]phenanthridine alkaloid gene transcript accumulation in Papaver somniferum. Phytochemistry 53, 555–564.

    PubMed  CAS  Google Scholar 

  14. Dixon, R.A. and D. Ferreira (2002). Genistein. Phytochemistry 60, 205–211.

    PubMed  CAS  Google Scholar 

  15. Steele, C.L., M. Gijzen, D. Qutob, and R.A. Dixon (1999). Molecular characterization of the enzyme catalysing the aryl migration reaction of isoflavonoid biosynthesis in soybean. Arch. Biochem. Biophys. 367, 146–150.

    PubMed  CAS  Google Scholar 

  16. The Arabidopsis initiative (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815.

    Google Scholar 

  17. Clough, S.J. and A.F. Bent (1998). Floral dip: A simplified method for Agrobacterium—mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743.

    PubMed  CAS  Google Scholar 

  18. Schuler, M.A. and D. Werck-Reichhart (2003). Functional genomics of P450s. Annu. Rev. Plant Biol. 54, 629–667.

    PubMed  CAS  Google Scholar 

  19. Cytochrome P450 homepage: http://drnelson.utmem.edu/LAtalk.html

    Google Scholar 

  20. Cytochrome P450 homepage: http://drnelson.utmem.edu/biblioD.html

    Google Scholar 

  21. The Arabidopsis P450, cytochrome b5, P450 reductase, and Glycosyltransferase Family 1 Site at PlaCe: http://biobase.dk/P450/p450.shtml

    Google Scholar 

  22. Werck-Reichart, D., S. Bak, and S. Paquette (2002). Cytochromes P450. In C.R. Somerville and E.M. Meyerowitz (eds), The Arabidopsis book. American Society of Plant Biologists, Rockville, MD (www.aspb.org/publications/arabidopsis).

    Google Scholar 

  23. Goff, S.A., D. Ricke, T.H. Lan, G. Presting, R.L. Wang, M. Dunn et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp japonica). Science 296, 92–100.

    PubMed  CAS  Google Scholar 

  24. Yu, J., S. Hu, J. Wang, G.K.S. Wong, S. Li, B. Liu et al. (2002). A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science 296, 79–92.

    PubMed  CAS  Google Scholar 

  25. Cytochrome P450 homepage: http://drnelson.utmem.edu/rice.color.sept12.html

    Google Scholar 

  26. Nelson, D.R., L. Koymans, and T. Kamataki (1996). P450 superfamily: Update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics 6, 1–42.

    PubMed  CAS  Google Scholar 

  27. Yoshida, Y., Y. Aoyama, M. Noshiro, and O. Gotoh (2000). Sterol 14-demethylase P450 (CYP51) provides a breakthrough for the discussion on the evolution of cytochrome P450 gene superfamily. Biochem. Biophys. Res. Comm. 273, 799–804.

    PubMed  CAS  Google Scholar 

  28. Durst, F. and D.R. Nelson (1995). Diversity and evolution of plant P450 and P450-reductases. Drug Metabol. Drug Interact. 12, 189–206.

    PubMed  CAS  Google Scholar 

  29. Paquette, S.M., S. Bak, and R. Feyereisen (2000). Intron-exon organization and phylogeny in a large superfamily, the paralogous cytochrome P450 genes of Arabidopsis thaliana. DNA Cell Biol. 19, 307–317.

    PubMed  CAS  Google Scholar 

  30. Kushiro, M., T. Nakano, K. Sato, K. Yamagishi, T. Asami, A. Nakano et al. (2001). Obtusifoliol 14a-demethylase (CYP51) antisense Arabidopsis shows slow growth and long life. Biochem. Biophys. Res. Comm. 285, 98–104.

    PubMed  CAS  Google Scholar 

  31. Neff, M.M., S.M. Nguyen, E.J. Malancharuvil, S. Fujioka, T. Noguchi, H. Seto et al. (1999). BAS1 a gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc. Natl. Acad. Sci. USA 96, 15316–15323.

    PubMed  CAS  Google Scholar 

  32. Bell-Lelong, D.A., J.C. Cusumano, K. Meyer, and C. Chapple (1997). Cinnamate-4-hydroxylase expression in Arabidopsis. Regulation in response to development and the environment. Plant Physiol. 113, 729–738.

    PubMed  CAS  Google Scholar 

  33. Laudert, D., U. Pfannenschmidt, F. Lottspeich, H. Hollander-Czytko, and E.W. Weiler (1996). Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol. Biol. 31, 323–335.

    PubMed  CAS  Google Scholar 

  34. Staswick, P.E. (1999). Sequence of an alene oxide synthase cDNA from Arabidopsis thaliana. Plant Physiol. 121, 312.

    Google Scholar 

  35. Bate, N.J., S. Sivasankar, C. Moxon, J.M.C. Riley, J.E. Thompson, and S.J. Rothstein (1998). Molecular characterization of an Arabidopsis gene encoding hydroperoxide lyase, a cytochrome P-450 that is wound inducible. Plant Physiol. 117, 1393–1400.

    PubMed  CAS  Google Scholar 

  36. Schoenbohm, C., S. Martens, C. Eder, G. Forkmann, and B. Weisshaar (2000). Identification of the Arabidopsis thaliana flavonoid 3′hydroxylase gene and functional expression of the encoded P450 enzymes. Biol. Chem. 381, 749–753.

    PubMed  CAS  Google Scholar 

  37. Wittstock, U. and B. Halkier (2000). Cytochrome P450 CYP79A2 from Arabidopsis thaliana L. catalyzes the conversion of L-phenylalanine to phenylacetaldoxime in the biosynthesis of benzyl-glucosinolate. J. Biol. Chem. 275, 14659–14666.

    PubMed  CAS  Google Scholar 

  38. Mikkelsen, M.D., C.H. Hansen, U. Wittstock, and B.A. Halkier (2000). Cytochrome P450CYP79B2 from Arabidopsis catalyzes the conversion of tryptophan to indole-3-acetaldoxime, a precursor of indole glucosinolates and indole-3-acetic-acid. J. Biol. Chem. 275, 33712–33717.

    PubMed  CAS  Google Scholar 

  39. Hansen, C.H., U. Wittstock, C.E. Olsen, A.J. Hick, J.A. Pickett, and B.A. Halkier (2001). Cytochrome P450 CYP79F1 from Arabidopsis catalyzes the conversion of dihomomethionine and trihomomethionine to the corresponding aldoximes in the biosynthesis of aliphatic glucosinolates. J. Biol. Chem. 276, 11078–11085.

    PubMed  CAS  Google Scholar 

  40. Reintanz, B., M. Lehnen, M. Reichelt, J. Gershenzon, M. Kowalczyk, G. Sandberg et al. (2001). bus, a bushy Arabidopsis CYP79F1 knockout mutant with abolished synthesis of short-chain aliphatic glucosinolates. Plant Cell 13, 351–367.

    PubMed  CAS  Google Scholar 

  41. Chen, S., E. Glawischnig, K. Jøgensen, P. Naur, B. Jøgensen, C.E. Olsen et al. (2003). CYP79F1 CYP79F2 have distinct functions in the biosynthesis of aliphatic glucosinolates in Arabidopsis. Plant J. 33, 923–937.

    PubMed  CAS  Google Scholar 

  42. Barlier, I., M. Kowalczyk, A. Marchant, K. Ljung, R. Bhalerao, M. Bennett et al. (2000). The SUR2 gene of Arabidopsis thaliana encodes the cytochrome P450 CYP83B1, a modulator of auxin homeostasis. Proc. Natl. Acad. Sci. USA 97, 14819–14824.

    PubMed  CAS  Google Scholar 

  43. Bak, S. and R. Feyereisen (2001). The involvement of two P450 enzymes, CYP83B1 CYP83A1, in homeostasis and glucosinolate biosynthesis. Plant Physiol. 127, 108–118.

    PubMed  CAS  Google Scholar 

  44. Hansen, C.H., L. Du, P. Naur, C.E. Olsen, K.B. Axelsen, A.J. Hick et al. (2001). CYP83B1 is the oxime metabolizing enzyme in the glucosinolate pathway in Arabidopsis. J. Biol. Chem. 276, 24790–24796.

    PubMed  CAS  Google Scholar 

  45. Meyer, K., J. Cusumano, C. Somerville, and C. Chapple (1996). Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc. Natl. Acad. Sci. USA 93, 6869–6874.

    PubMed  CAS  Google Scholar 

  46. Shimada, Y., S. Fujioka, N. Miyaushi, M. Kushiro, S. Takatsuto, T. Nomura et al. (2001). Brassinosteroid 6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol. 126, 770–779.

    PubMed  CAS  Google Scholar 

  47. Benveniste, I., N. Tijet, F. Ada, G. Phillipps, J.P. Salan, and F. Durst (1998). CYP86A1 from Arabidopsis thaliana encodes a cytochrome P450-dependent fatty acid omega-hydroxylase. Biochem. Biophys. Res. Commun. 243, 688–693.

    PubMed  CAS  Google Scholar 

  48. Wellesen, K., F. Durst, F. Pinot, I. Benveniste, K. Nettesheim, E. Wisman et al. (2001). Functional analysis of the LACERATA gene of Arabidopsis provides evidence for different roles of fatty acid ω-hydroxylation in development. Proc. Natl. Acad. Sci. USA 98, 9694–9699.

    PubMed  CAS  Google Scholar 

  49. Helliwell, C.A., P.M. Chandler, A. Poole, E.S. Dennis, and W.J. Peacock (2001). The CYP88A cytochrome P450, ent-kaurenoic acid oxidase, catalyzes three steps of the gibberellin biosynthetic pathway. Proc. Natl. Acad. Sci. USA 98, 2065–7080.

    PubMed  CAS  Google Scholar 

  50. Szekeres M., K. Németh, Z. Konz-Kálman, J. Mathur, A. Kauschmann, T. Altman et al. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation deetiolation in Arabidopsis. Cell 85, 171–182.

    PubMed  CAS  Google Scholar 

  51. Choe, S., B.P. Dilkes, S. Fujioka, S. Takatsuto, A. Sakurai, K.A. Feldman (1998). The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22a-hydroxyaltion steps in brassinoid biosynthesis. Plant Cell 10, 231–243.

    PubMed  CAS  Google Scholar 

  52. Schoch, G., S. Goepfert, M. Morant, A. Hehn, D. Meyer, P. Ullmann et al. (2001). CYP98A3 from Arabidopsis thaliana is a 3′-hydroxylase of phenolic esters, a missing link in the phenylpropanoid pathway. J. Biol. Chem. 276, 36566–36574.

    PubMed  CAS  Google Scholar 

  53. Helliwell, C.A., C.C. Sheldon, M.R. Olive, A.R. Walker, J.A.D. Zeevaart, W.J. Peacock et al. (1998). Cloning of the Arabidopsis ent-kaurene oxidase gene GA3. Proc. Natl. Acad. Sci. USA 95, 9019–9024.

    PubMed  CAS  Google Scholar 

  54. Teusch, H.G., M.P. Hasenfratz, A. Lesot, C. Stoltz, J.M. Garnier, J.M. Jeltsch et al. (1993). Isolation sequence of a cDNA encoding the Jerusalem artichoke cinnamate 4-hydroxylase, a major plant cytochrome P450 involved in the general phenylpropanoid pathway. Proc. Natl. Acad. Sci. USA 90, 4102–4106.

    Google Scholar 

  55. Mizutani, M., E. Ward, J. DiMaio, D. Ohta, J. Ryals, R. Sato (1993). Molecular cloning and sequencing of a cDNA encoding mung bean cytochrome P450 (P450C4H) possessing cinnamate 4-hydroxylase activity. Biochem. Biophys. Res. Commun. 190, 875–880.

    PubMed  CAS  Google Scholar 

  56. Fahrendorff, T. and R.A. Dixon (1993). Molecular cloning of the elicitor-inducible cinnamic acid 4-hydroxylase cytochrome P450 from alfalfa. Arch. Biochem. Biophys. 305, 509–515.

    Google Scholar 

  57. Logemann, E., M. Parniske, and K. Hallbrock (1995). Modes of expression and common structural features of the complete phenylalanine ammonialyase gene family in parsley. Proc. Natl. Acad. Sci. USA 92, 5905–5909.

    PubMed  CAS  Google Scholar 

  58. Ge, L. and V.L. Chiang (1996). A full length cDNA encoding trans-cinnamate 4-hydroxylase from developing xylem of Populus tremuloides. Plant Physiol. 112, 861.

    Google Scholar 

  59. Ro, D.K., N. Mah, B.E. Ellis, and C.J. Douglas (2001). Functional characterization and subcellular localization of poplar (Populus trichocarpa × Populus deltoids) cinnamate 4-hydroxylase. Plant Physiol. 126, 317–329.

    PubMed  CAS  Google Scholar 

  60. Batard, Y., A. Hehn, S. Nedelkina M. Schalk, K. Pallet, H. Schaller et al. (2000). Increasing expression of P450 and P450-reductase proteins from monocots in heterologous systems. Arch. Biochem. Biophys. 379, 161–169.

    PubMed  CAS  Google Scholar 

  61. Overkamp, S. and W. Barz (1999). Isolation of a full length cDNA encoding trans-cinnamate 4-hydroxylase from chickpea. Plant Physiol. 120, 635.

    Google Scholar 

  62. Song, W.C., C.D. Funk, and A.R. Brash (1993). Molecular cloning of an allene oxide synthase: A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides. Proc. Natl. Acad. Sci. USA 90, 8519–8523.

    PubMed  CAS  Google Scholar 

  63. Maucher, H., B. Hause, I. Feussner, J. Ziegler, and C. Wasternack (2000). Allene oxide synthases of barley (Hordeum vulgare cv. Salome): Tissues specific regulation in seedling development. Plant J. 21, 199–213.

    PubMed  CAS  Google Scholar 

  64. Howe, G.A., G.I. Lee, A. Itoh, L. Li, and A.E. DeRocher (2000). Cytochrome P450-dependent metabolism of oxylipids in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase. Plant Physiol. 123, 711–724.

    PubMed  CAS  Google Scholar 

  65. Siminszky, B., F.T. Corbin, E.R. Ward, T.J. Fleischmann, and R.E. Dewey (1999). Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc. Natl. Acad. Sci. USA 96, 1750–1755.

    PubMed  CAS  Google Scholar 

  66. Fiehn, O., J. Kopka, P. Dormann, T. Altmann, R.N. Trethewey, and L. Willmitzer (2000). Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161.

    PubMed  CAS  Google Scholar 

  67. Sumner, L.W., P. Mendes, and R.A. Dixon (2003). Plant metabolomics: Large-scale phytochemistry in the functional genomics era. Phytochemistry 62, 817–836.

    PubMed  CAS  Google Scholar 

  68. Schwab, W. (2003). Metabolome diversity: Too few genes, too many metabolites. Phytochemistry 62, 837–849.

    PubMed  CAS  Google Scholar 

  69. Koncz, C., K. Nóneth, G.P. Rélel, and J. Schell (1992). T-DNA insertional mutagenesis in Arabidopsis. Plant Mol. Biol. 20, 963–976.

    PubMed  CAS  Google Scholar 

  70. Feldmann, K. (1992). T-DNA insertion mutagenesis in Arabidopsis: Seed infection/transformation. In C. Koncz, N.-H. Chua and J. Schell (eds), Methods in Arabidopsis Research. World Scientific, Singapore, pp. 274–289.

    Google Scholar 

  71. Krysan, P.J., J.C. Young, and M.R. Sussman (1999). T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11, 2283–2290.

    PubMed  CAS  Google Scholar 

  72. Koorneef, M., H.C. Dresselhuys, and K.S. Ramulu (1982). The genetic identification of translocation in Arabidopsis. Arab. Inf. Serv. 19, 93–99.

    Google Scholar 

  73. Haughn, G.W., J. Smith, B. Mazur, and C. Somerville (1988). Transformation with a mutant Arabidopsis acetolactate synthase gene renders tobacco resistance to sulfonylurea herbicides. Mol. Gen. Genet. 211, 266–271.

    CAS  Google Scholar 

  74. Shirley, B.W., S. Hanley, and H.M. Goodman (1992). Effects of ionizing radiation on a plant genome: Analysis of two Arabidopsis transparent testa mutations. Plant Cell 4, 333–347.

    PubMed  CAS  Google Scholar 

  75. Hemm, M.R., M.O. Ruegger, and C. Chapple (2003). The Arabidopsis ref2 mutant is defective in the gene encoding CYP83A1 and shows both phenylpropanoid and glucosinolate phenotypes. Plant Cell 15, 179–194.

    PubMed  CAS  Google Scholar 

  76. Weigel, D., J.H. Ahn, M.A. Blázquez, J.O. Borevitz, S.K. Christensen, C. Fankhouser et al. (2000). Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013.

    PubMed  CAS  Google Scholar 

  77. Barnes, H.J. (1996). Maximizing expression of eucaryote cytochrome P450s in Escherichia coli. In Methods in Enzymology, vol. 272. Academic Press, San Diego, CA, pp. 3–14.

    Google Scholar 

  78. Jones, P.R., M.D. Andersen, J.S. Nielsen, P.B. Høj, and B.L. Møller (2000). The biosynthesis, degradation, transport and possible function of cyanogenic glucosides. In J.T. Romeo (ed.), Recent Advances in Phytochemistry “Evolution of metabolic pathways”. Elsevier Science Ltd., pp. 191–247.

    Google Scholar 

  79. Omura, T. and R. Sato (1964). The carbon monoxide-binding pigment of liver microsomes. II. Solubilization, purification, and properties. J. Biol. Chem. 239, 2379–2385.

    PubMed  CAS  Google Scholar 

  80. Jefcoate, C.R. (1978). Measurement of substrate and inhibitor binding to microsomal cytochrome P-450 by optical-difference spectroscopy. In J.P. Klinman (ed.), Methods in Enzymology, vol. 52. Academic Press, San Diego, CA, p. 258.

    Google Scholar 

  81. Bozak, K.R., H. Yu, R. Sirevåg, and R.E. Christoffersen (1990). Sequence analysis of ripening-related cytochrome P450 cDNAs from avocado fruit. Proc. Natl. Acad. Sci. USA 87, 3904–08.

    PubMed  CAS  Google Scholar 

  82. Pompon, D., B. Louerat, A. Bronine and P. Urban (1996). Yeast expression of animal and plant P450 in optimized redox environments. In E.F. Johnson (ed.), Methods in Enzymology, vol. 272. Academic Press, San Diego, CA, pp. 51–64.

    Google Scholar 

  83. Bozak, K.R., D.P. Okeefe, and R. Christoffersen (1992). Expression of a ripening-related avocado (Persea-americana) cytochrome P450 in yeast. Plant Physiol. 100, 1976–1981.

    PubMed  CAS  Google Scholar 

  84. Gabriac, B., D. Werck-Reichart, H. Teutsch, and F. Durst (1991). Purification and immunocharacterization of a plant cytochrome-P450—the cinnamic acid 4-hydroxylase. Arch. Biochem. Biophys. 288, 302–309.

    PubMed  CAS  Google Scholar 

  85. Kochs, G., D. Werck-Reichhart, and H. Grisebach (1992). Further characterization of cytochrome-P450 involved in phytoalexin synthesis in soybean: cytochrome-P450 cinnamate 4-hydroxylase and 3,9-dihydroxypterocarpan 6a-hydroxylase. Arch. Biochem. Biophys. 293, 187–194.

    PubMed  CAS  Google Scholar 

  86. Sibbesen, O., B. Koch, B. Halkier, and B.L. Møller (1994). Isolation of a heme-thiolate enzyme cytochrome P450Tyr, which catalyzes the committed step in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L) Moench. Proc. Natl. Acad. Sci. USA 91, 9740–9744.

    PubMed  CAS  Google Scholar 

  87. Sibbesen, O., B. Koch, B.A. Halkier, and B.L. Møller (1995). Cytochrome P450Tyr is a multifunctional heme-thiolate enzyme catalyzing the conversion of L-tyrosine to p-hydroxyphenylacetaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L) Moench. J. Biol. Chem. 270, 3506–3511.

    PubMed  CAS  Google Scholar 

  88. Koch, B., O. Sibbesen, B.A. Halkier, I. Svendsen, and Møller B.L. (1995). The primary sequence of cytochrome P450Tyr, the multifunctional N-hydroxylase catalyzing conversion of L-tyrosine to p-hydroxyphenylacltaldoxime in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L) Moench. Arch. Biochem. Biophys. 323, 177–186.

    PubMed  CAS  Google Scholar 

  89. Halkier, B.A., H.L. Nielsen, B. Koch, and B.L. Møller (1995). Purification and characterization of recombinant cytochrome P450tyr expressed at high levels in Escherichia coli. Arch. Biochem. Biophys. 322, 369–377.

    PubMed  CAS  Google Scholar 

  90. Andersen, M.D., P.K. Busk, I. Svendsen, and B.L. Møller (2000). Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. J. Biol. Chem. 275, 1966–1975.

    PubMed  CAS  Google Scholar 

  91. Nielsen, J.S. and B.L. Møller (2000). Cloning and expression of cytochrome P450 enzymes catalysing the conversion of tyrosine to p-hydrophenylacetaldoxime in the biosynthesis of cyanogenic glucosides in Triglochin maritima. Plant Physiol. 122, 1311–1321.

    PubMed  CAS  Google Scholar 

  92. Udvardi, M.K., J.D. Metzger, V. Krishnapillai, W.J. Peacock, and E.S. Dennis (1994). Cloning and nucleotide sequence of a full length cDNA from Thlaspi arvense that encodes a cytochrome P450. Plant Physiol. 104, 755–756.

    Google Scholar 

  93. Grove, M.D., G.F. Spencer, W.K. Rohwedder, N.B. Mandava, J.F. Worley, J.D. Warthen et al. (1979). A unique plant growth promoting steroid from Brassica napus pollen. Nature 281, 216–217.

    CAS  Google Scholar 

  94. Bishop, G.J. and T. Yokota (2001). Plant steroid hormones, brassinosteroids: Current highlights of molecular aspects on their synthesis/metabolism, transport, perception response. Plant Cell Physiol. 42, 114–120.

    PubMed  CAS  Google Scholar 

  95. Bancos, S., T. Nomura, T. Sato, G. Molnar, G.J. Bishop, C.M. Koncz et al. (2002). Regulation of transcript levels of the Arabidopsis cytochrome P450 genes involved in brassinosteroid biosynthesis. Plant Physiol. 130, 504–513.

    PubMed  CAS  Google Scholar 

  96. Bajguz, A. and A. Tretyn (2003). The chemical characteristics distribution of brassinosteroids in plants. Phytochemistry 62, 1027–1046.

    PubMed  CAS  Google Scholar 

  97. Thummel, C.S. and J. Chory (2002). Steroid in plants and insects—common themes, different pathways. Genes Dev. 16, 3113–3129.

    PubMed  CAS  Google Scholar 

  98. Li, J., J. Wen, K.A. Lease, J.T. Doke, F.E. Tax and J.C. Walker (2002). BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signalling. Cell 110, 213–222.

    PubMed  CAS  Google Scholar 

  99. Nakashita, H., M. Yasuda, Nitta, T., T. Asami S. Fujioka, Y. Arai et al. (2003). Brassinosteroid functions in a broad range of disease resistance in tobacco rice. Plant J. 33, 887–898.

    PubMed  CAS  Google Scholar 

  100. Fujioka, S. and A. Sakurai (1997). Biosynthesis and metabolism of brassinosteroids. Physiol. Plant. 100, 710–715.

    CAS  Google Scholar 

  101. Fujioka, S. and A. Sakurai (1997). Brassinosteroids. Nat. Prod. Rep. 14, 1–10.

    PubMed  CAS  Google Scholar 

  102. Nogushi, T., S. Fujioka, S. Choe, S. Takatsuto, F.E. Tax, S. Yoshida et al. (2000). Biosynthetic pathways of brassinolide in Arabidopsis. Plant Physiol. 124, 201–209.

    Google Scholar 

  103. Kahn, R.A., S. Bak, C.E. Olsen, I. Svendsen, B.L. Møller (1996). Isolation and reconstitution of the heme-thiolate protein obtusifoliol 14α-methylase from Sorghum bicolor (L). Moench. J. Biol. Chem. 271, 32944–32950.

    PubMed  CAS  Google Scholar 

  104. Bak, S., R.A. Kahn, C.E. Olsen and B.A. Halkier. (1997). Cloning and expression in Escherichia coli of the obtusifoliol 14α-demethylase of Sorghum bicolor (L.) Moench, a cytochrome P450 ortologous to the sterol 14α-demethylase (CYP51) from fungi and mammals. Plant J. 11, 191–201.

    PubMed  CAS  Google Scholar 

  105. Cabello-Hurtado, F., A. Zimmerlin, A. Rahier, M. Taton, R. DeRose, S. Nedelkina et al. (1997). Cloning functional expression in yeast of a cDNA coding for an obtusifoliol 14α-demethylase (CYP51) in wheat. Biochem. Biophys. Res. Commun. 230, 381–385.

    PubMed  CAS  Google Scholar 

  106. Cabello-Hurtado, F., M. Taton, N. Forthoffer, R. Kahn, S. Bak, A. Rahier et al. (1999). Optimized expression and catalytic properties of a wheat obtusifoliol 14α-demethylase (CYP51) expressed in yeast. Complementation of erg11Delta yeast mutants by plant CYP51. Eur. J. Biochem. 262, 435–446.

    PubMed  CAS  Google Scholar 

  107. Fujii-Kuriyama, Y., Mizukami, Y. Kawajiri, K. Sogawa, M. Muramatsu (1982). Primary structure of a cytochrome P450; Coding nucleotide sequence of phenobarbital-inducible cytochrome P450 cDNA from rat liver. Proc. Natl. Acad. Sci. USA 79, 2793–97.

    PubMed  CAS  Google Scholar 

  108. Mathur, J., G. Molnar, S. Fujioka, S. Takatsuto, A. Sakurai, T. Yokata et al. (1998). Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant. J. 14, 593–602.

    PubMed  CAS  Google Scholar 

  109. Bishop, G.J., T. Nomura, T. Yokota, K. Harrison, T. Nogushi, S. Fujioka et al. (1999). Tomato dwarf enzymes catalyzes C-6 oxidation in brassinosteroid biosynthesis. Proc. Natl. Acad. Sci. USA 96, 1761–1766.

    PubMed  CAS  Google Scholar 

  110. Conn, E.E. (1980). Cyanogenic compounds. Ann. Rev. Plant Physiol. 31, 433–451.

    CAS  Google Scholar 

  111. Lechtenberg, M. and A. Nahrstedt (1995). Cyanogenic glucosides. In Ikan (ed.), Naturally Occurring Glucosides. John Wiley & sons Ltd., Chichester, UK, pp. 147–191.

    Google Scholar 

  112. Møller, B.L. and D.S. Seigler (1999). Biosynthesis of cyanogenic glycosides, cyanolipids, and related compounds. In B.K. Singh (ed.), Plant Amino Acids. Marcel Dekker Inc., New York, pp. 563–609.

    Google Scholar 

  113. Seigler, D. (1998). Cyanogenic glucosides and cyanolipids. In D. Seigler (ed.), Plant Secondary Metabolism. Kluwer academic Press, Norwell, MA, pp. 273–299.

    Google Scholar 

  114. Tylleskär, T., M. Banea, N. Bikangi, R.D. Cooke, N.H. Poulter, and H. Rosling (1992). Cassava cyanogens and konzo, an upper motoneuron disease found in Africa. Lancet 339, 208–221.

    PubMed  Google Scholar 

  115. Swantson, J.S., W.T.B. Thomas, W. Powell, G.R. Young, P.E. Lawrence, L. Ramsey et al. (1999). Using molecular markers to determine barley most suitable for malt whisky distilling. Mol. Breed. 5, 103–109.

    Google Scholar 

  116. Jones, D.A. (1998). Why are so many plants cyanogenic? Phytochemistry 47, 155–162.

    PubMed  CAS  Google Scholar 

  117. Koukol, J., P. Mijanich E.E. Conn (1962). The metabolism of aromatic compounds in higher plants. VI: Studies on the biosynthesis of dhurrin, the cyanogenic glucoside of Sorghum vulgare. J. Biol. Chem. 237, 3223–3228.

    PubMed  CAS  Google Scholar 

  118. Uribe, E.G. and E.E. Conn (1966). The metabolism of aromatic compounds in higher plants. VII The origin of the nitrile nitrogen atom of dhurrin (B-D-glucopyranosyloxy-L.p-hydroxymandeloni-trile). J. Biol. Chem. 241, 92–94.

    PubMed  CAS  Google Scholar 

  119. Farnden, K.J.F., M.A. Rosen and D.R. Liljegren (1973). Aldoximes and nitriles as intermediates in the biosynthesis of cyanogenic glucosides. Phytochemistry 12, 2673–2677.

    CAS  Google Scholar 

  120. Conn, E.E. and G.W. Butler (1969). The biosynthesis of cyanogenic glucosides and other simple nitrogen compounds. In B. Harborne and T. Swain (eds), Perspectives in Phytochemistry. Academic Press, London and New York, pp. 47–74.

    Google Scholar 

  121. McFarlane, I.J., E.M. Lees and E.E. Conn (1975). The in vitro biosynthesis of dhurrin, the cyanogenic glucoside of Sorghum bicolor J. Biol. Chem. 250, 4708–4714.

    CAS  Google Scholar 

  122. Møller, B.L. and E.E. Conn (1980). The biosynthesis of cyanogenic glucosides in higher plants. N-hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum biocolour (Linn) Moench. J. Biol. Chem. 254, 8575–8583.

    Google Scholar 

  123. Kahn, R.A., S. Bak, I. Svendsen, B.A. Halkier and B.L. Moller (1997). Isolation and reconstitution of cytochrome P450ox and in vitro reconstitution of the entire biosynthetic pathway of the cyanogenic glucoside dhurrin from sorghum. Plant Physiol. 115, 1661–1670.

    PubMed  CAS  Google Scholar 

  124. Halkier, B.A., J. Lykkesfeldt and B.L. Møller (1991). 2-Nitro-3(p-hydroxyphenyl)propionate and aci-1-nitro-2-(p-hydroxyphenyl)ethane, two intermediates in the biosynthesis of the cyanogenic glucoside dhurrin in Sorghum bicolor (L) Moench. Proc. Natl. Acad. Sci. USA 88, 487–491.

    PubMed  CAS  Google Scholar 

  125. Bak, S., R.A. Kahn, H.L. Nielsen and B.L. Møller (1998). Cloning of three A-type cytochromes P450, CYP71E1, CYP98, and CYP99 form Sorghum bicolor (L) Moench by a PCR approach and identification by expression in Escherichia coli of CYP71E1 as a multifunctional cytochrome P450 in the biosynthesis of the cyanogenic glucoside dhurrin. Plant Mol. Biol. 36, 393–405.

    PubMed  CAS  Google Scholar 

  126. Halkier, B.A. and B.L. Møller (1990). The biosynthesis of cyanogenic glucosides in higher plants. Identification of three hydroxylation steps in the biosynthesis of dhurrin in Sorghum bicolor (L) Moench and the involvement of 1-aci-nitro-2-(p-hydroxyphenyl)ethane as an intermediate. J. Biol. Chem. 265, 21114–21121.

    PubMed  CAS  Google Scholar 

  127. Kahn, R.A., T. Fahrendorf, B.A. Halkier, and B.L. Møller (1999). Substrate specificity of the cytochrome P450 enzymes CYP79A1 and CYP71E1 involved in the biosynthesis in Sorghum bicolor. Arch. Biochem. Biophys. 363, 9–18.

    PubMed  CAS  Google Scholar 

  128. Jones, P.R., B.L., Möller, and P.B. Høj (1999). The UDP-glucose: p-hydroxymandelonitrile-o-glucosyltransferase that catalyzes the last step in synthesis of the cyanogenic glucoside dhurrin in Sorgum bicolor. J. Biol. Chem 274, 35483–35491.

    PubMed  CAS  Google Scholar 

  129. Tattersall, D.B., S. Bak, P.R. Jones, C.E. Olsen, J.K. Nielsen, and M.L. Hansen (2001). Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293, 1826–1828.

    PubMed  CAS  Google Scholar 

  130. Paquette, S.M., B.L. Møller, and S. Bak (2003). On the origin of family 1 plant glycosyltransferases. Phytochemistry 62, 399–413.

    PubMed  CAS  Google Scholar 

  131. Bak, S., C.E. Olsen, B.A. Halkier, and B.L. Møller (2000). Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis. Plant Physiol. 123, 1437–1448.

    PubMed  CAS  Google Scholar 

  132. Winkel-Shirley, B. (2001). Flavonoid biosynthesis: A colourful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126, 485–493.

    PubMed  CAS  Google Scholar 

  133. Rasmussen, S. and R.A. Dixon (1999). Transgenemediated and elicitor-induced pertubation of metabolic channelling at the entry point into the phenylpropanoid pathway. Plant Cell 11, 1537–1551.

    PubMed  CAS  Google Scholar 

  134. Burbulis, I.E. and B. Winkel-Shirley (1999). Interactions among enzymes of the Arabidopsis flavonoid biosynthetic pathway. Proc. Natl. Acad. Sci. USA 96, 12929–12934.

    PubMed  CAS  Google Scholar 

  135. Winkel-Shirley, B. (1999). Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Plant Physiol. 107, 142–149.

    CAS  Google Scholar 

  136. Chalfie, M., Y. Tu, G. Euskirchen, W.W. Ward, and D.C. Prasher (1994). Green fluorescent protein as a marker for gene-expression. Science 263, 802–805.

    PubMed  CAS  Google Scholar 

  137. Chalfie, I. and S. Kain (1998). Green fluorescent protein. Properties, Applications and Protocols. Wiley-Liss Inc; New York, p. 385.

    Google Scholar 

  138. Hosel, W. and A. Nahrstedt (1980). In vitro biosynthesis of the cyanogenic glucoside taxiphyllin in Triglochin maritima. Arch. Biochem. Biophys. 203, 753–757.

    PubMed  CAS  Google Scholar 

  139. Nielsen, J. and B.L. Møller (1999). Biosynthesis of cyanogenic glucosides in Triglochin maritima and the involvement of cytochrome P450 enzymes. Arch. Biochem. Biophys. 368, 121–130.

    PubMed  CAS  Google Scholar 

  140. Koch, B., V.S. Nielsen, B.A. Halkier, C.E. Olsen, and B.L. Møller (1992). The biosynthesis of cyanogenic glucosides in seedlings of cassava (Manihot esculenta Crantz.). Arch. Biochem. Biophys. 292, 141–150.

    PubMed  CAS  Google Scholar 

  141. Lykkesfeldt, J., B.L. Moller (1994). Cyanogenic glucosides in casava, Manihot esculenta Crantz. Acta Chem. Scand. 48, 178–180.

    CAS  Google Scholar 

  142. Lykkesfeldt, J. and B.L. Moller (1995). On the absence of 2-(2′-cyclopentenyl)glycine-derived cyanogenic glycosides in cassava, Manihot esculenta Crantz. Acta Chem. Scand. 49, 540–542.

    CAS  Google Scholar 

  143. Collinge, D. and M.A. Hughes (1982). In vitro characterization of the Ac locus in white clover (Trifolium repens L). Arch. Biochem. Biophys. 218, 38–45.

    PubMed  CAS  Google Scholar 

  144. Collinge, D. and M.A. Hughes (1984). Evidence that linamarin and lotaustralin, the two cyanogenic glucosides of Trifolium repens L., are synthesized by a single set of microsomal enzymes controlled by the Ac/ac locus. Plant Sci. Lett. 34, 119–125.

    CAS  Google Scholar 

  145. Hahlbrock, K. and E.E. Conn (1971). Evidence for the formation of linamarin and lotaustralin in flax seedlings by the same glycosyltransferase. Phytochemistry 10, 1019–1023.

    CAS  Google Scholar 

  146. Nielsen, K.A., C.E. Olsen, K. Pontoppidan, and B.L. Moller (2002). Leucine-derived cyano glucosides in barley. Plant Physiol. 129, 1066–1075.

    PubMed  CAS  Google Scholar 

  147. Halkier, B.A. and L. Du (1997). The biosynthesis of glucosinolates. Trends Plant Sci. 2, 425–431.

    Google Scholar 

  148. Bak, S., C.E. Olsen, B.L. Petersen, B.L. Moller, and B.A. Halkier (1999). Metabolic engineering of p-hydroxybenzylglucosinolate in Arabidopsis by expression of the cyanogenic CYP79A1 from Sorghum bicolor. Plant. J. 20, 663–671.

    PubMed  CAS  Google Scholar 

  149. Frey, M., P. Chomet, E. Glaswischnig, C. Stettner, S. Grn, A. Winkmair et al. (1997). Analysis of a chemical plant defense mechanism in grasses. Science 277, 696–699.

    PubMed  CAS  Google Scholar 

  150. Gierl, A. and M. Frey (2001). Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213, 493–498.

    PubMed  CAS  Google Scholar 

  151. Frey, M., K. Huber, W.J. Park, D. Sicker, P. Lindberg, R.B. Meeley et al. (2003). A 2-oxoglutarate-dependent dixoygenase is integrated in DIM-BOA-biosynthesis. Phytochemistry 62, 371–376.

    PubMed  CAS  Google Scholar 

  152. Glawischnig, E., S. Grn, M. Frey, A. Gierl (1999). Cytochrome P450 monooxygenases of DIBOA biosynthesis. Specificity and conservation among grasses. Phytochemistry 50, 925–930.

    PubMed  CAS  Google Scholar 

  153. Nomura, T., A. Ishihara, H. Imaishi, T.R. Endo, H. Ohkawa, and H. Iwamura (2002). Molecular characterization and chromosomal localization of cytochrome P450 genes involved in the biosynthesis of cyclic hydroxamic acids in hexaploid wheat. Mol. Gen. Genet. 267, 210–217.

    CAS  Google Scholar 

  154. Frey, M., C. Stettner, P.W. Pare, E.A. Schmelz, J.H. Tumlinson, and A. Gierl (2000). An herbivore elicitor activates the gene for indole emission in maize. Proc. Natl. Acad. Sci. USA 97, 14801–14806.

    PubMed  CAS  Google Scholar 

  155. Persans, M.W., J. Wang, and M.A. Schuler (2001). Characterization of maize cytochrome P450 monooxygenases induced in response to safeners and bacterial pathogens. Plant Physiol. 125, 1126–1138.

    PubMed  CAS  Google Scholar 

  156. Zhou, N., T.L. Tootle, and J. Glazebrook (1999). Arabidopsis PAD3, a gene required for camalexin biosynthesis encodes a putative cytochrome P450 monooxygenase. Plant Cell 11, 2419–2428.

    PubMed  CAS  Google Scholar 

  157. Schroeder, G., E. Unterbusch, M. Kaltenbach, J. Schmidt, D. Strack, V. De Luca et al. (1999). Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis: Tabersonine 6-hydroxylase. FEBS Lett. 458, 97–102.

    Google Scholar 

  158. Fits, L. and J. Memelink (2000). ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297.

    PubMed  Google Scholar 

  159. Irmler, S., G. Schrder, B. St-Pierre, N.P. Crouch, M. Hotze, J. Schmidt et al. (2000). Indole alkaloid biosynthesis in Catharanthus roseus: New enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J. 24, 797–804.

    PubMed  CAS  Google Scholar 

  160. Aerts, R.J., D. Gisi, E. De Carolis, V. De Luca, and T.W. Bauman (1994). Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 5, 635–643.

    CAS  Google Scholar 

  161. Ralston, L., S.T. Kwon, M. Schoenbeck, J. Ralston, D.J. Schenk, R.M. Coates et al. (2001). Cloning, heterologous expression, functional characterization of 5-epi-aristolochene-1,3-dihydroxylase from tobacco (Nicotiane tabacum). Arch. Biochem. Biophys. 393, 222–235.

    PubMed  CAS  Google Scholar 

  162. Greenhagen, B.T., P. Griggs, S. Takahashi, L. Ralston, and J. Chappell (2003). Probing sesquiterpene hydroxylase activities in a coupled assay with terpene synthases. Arch. Biochem. Biophys. 409, 385–394.

    PubMed  CAS  Google Scholar 

  163. O’Donohue, M.J., H. Gousseau, J.C. Huet, D. Tepfer, and J.C. Pernollet (1995). Chemical synthesis, expression and mutagenesis of a gene encoding betacryptogein, an elicitin produced by Phytophteracryptogea. Plant Mol. Biol. 27, 577–586.

    PubMed  CAS  Google Scholar 

  164. Latunde-Dada, A.O., F. Hurtado-Cabello, N. Czittish, L. Didierjean, C. Schopfer, N. Hertkorn et al. (2001). Flavonoid 6-hydroxylase from soybean (Glycine max L.) a novel plant P-450 monooxygenase. J. Biol. Chem. 276, 1688–1695.

    PubMed  CAS  Google Scholar 

  165. Lupien, S., F. Karp, M. Wildung, R. Croteau (1999). Regiospecific cytochrome P450 limonene hydroxylases from mint (Mentha) species. cDNA isolation, characterization, and functional expression of (-)-4S-limonene-3-hydroxylase and (-)-4S-limonene-6-hydroxylase. Arch. Biochem. Biophys. 368, 181–192.

    PubMed  CAS  Google Scholar 

  166. Haudenschild, C., M. Schalk, F. Karp and R. Croteau (2000). Functional expression of regiospecific cytochrome P450 limonene hydroxylases from Mint (Mentha spp.) in Escherichia coli and Saccharomyces cerevisiae. Arch. Biochem. Biophys. 379, 127–136.

    PubMed  CAS  Google Scholar 

  167. Wüst, M., D.B. Little, M. Schalk, and R. Croteau (2001). Hydroxylation of limonene enantiomers and analogs by recombinant (-)-limonene 3-and 6-hydroxylases from mint (mentha) species: Evidence for catalysis within sterically constrained active sites. Arch. Biochem. Biophys. 387, 125–136.

    PubMed  Google Scholar 

  168. Fitzpatrick, L.A. (2003). Soy isoflavones: Hope or hype? Maturitas 44(suppl), S21–S29.

    PubMed  CAS  Google Scholar 

  169. Liu, C.J., J.W. Blount, C.L. Steele, and R.A. Dixon (2002). Bottlenecks for metabolic engineering of isoflavone glycoconjugates in Arabidopsis. Proc. Natl. Acad. Sci. USA 99, 14578–14583.

    PubMed  CAS  Google Scholar 

  170. Akashi, T., T. Aoki, and S. Ayabe (1999). Cloning and functional expression of a cytochrome P450 cDNA encoding 2-hydroxy-isoflavanone synthase involved in biosynthesis of the isoflavonoid skeleton in licorice. Plant Physiol. 121, 821–828.

    PubMed  CAS  Google Scholar 

  171. Jung, W., O. Yu, S.M.C. Lau, D.P. O’Keefe, J. Odell, G. Fader et al. (2000). Identification expression of isoflavone synthase, the key enzyme for biosynthesis of isoflavones in legumes. Nat. Biotech. 18, 208–212.

    CAS  Google Scholar 

  172. Yu, O., W. Jung, J. Shi, R.A. Croes, G.M. Fader, S. McGonigle et al. (2000). Production of the isoflavones genistein daidzein in non-legume dicot and monocot tissues. Plant Physiol. 124, 718–793.

    Google Scholar 

  173. Koornneef, M. (1990). Mutations affecting the testa color in Arabidopsis. Arab. Inf. Serv. 27, 1–4.

    Google Scholar 

  174. Ohio State University Arabidopsis Biological Resource Center: www.biosci.ohio-state.edu/∼plantbio/Facilities/abrc/abrchome.htm

    Google Scholar 

  175. Shirley, B.W., W.L. Kubasek, G. Storz, E. Bruggemann, M. Koornneef, F.M. Ausubel et al. (1995). Analysis of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J. 8, 659–671.

    PubMed  CAS  Google Scholar 

  176. Liu, C.J. and R.A. Dixon (2001). Elicitor-induced association of isoflavone O-methyltransferase with endomembranes prevents the formation of 7-O-methylation of daidzein during isoflavonoid phytoalexins biosynthesis. Plant Cell 13, 2643–2658.

    PubMed  CAS  Google Scholar 

  177. Mondolo, L.V., F.Q. Cunha, M.R. Braga, I. Salgado (2002). Nitric oxide synthase-mediated phytoalexin accumulating in soybean cotelydons in response to the Diaporthe phaseolorum f. sp. Meridionalis elicitor. Plant Physiol. 130, 1288–1297.

    Google Scholar 

  178. Li, H., C.S. Raman, P. Martasek, B.S.S. Masters, and T. Poulos (2001). Crystallographic studies on endothelial nitric oxide synthase complexed with nitric oxide and mechanism-based inhibitors. Biochemistry 40, 5399–5406.

    PubMed  CAS  Google Scholar 

  179. Akashi, T., Y. Sawada, N. Shimada, N. Sakurai, T. Aoki, and S. Ayabe (2003). cDNA cloning and biochemical characterization of S-adenosyl-L-methionine:2,4,7′-trihydroxyisoflavanone 4′-O-methyltransferase, a critical enzyme of the legume isoflavonoid phytoalexin pathway. Plant Cell Physiol. 44, 103–112.

    PubMed  CAS  Google Scholar 

  180. Chou, W.M. and T.M. Kutchan (1998). Enzymatic oxidations in the biosynthesis of complex alkaloids. Plant J. 15, 289–300.

    PubMed  CAS  Google Scholar 

  181. Rueffer, M. and M.H. Zenk (1994). Canadine synthase from Thalictrum tuberosum cell cultures catalyzes the formation of the methylenedioxy bridge in berberine synthesis. Phytochemistry 36, 1219–1223.

    CAS  Google Scholar 

  182. De-Eknamkul, W., T. Tanahashi, and M.H. Zenk (1992). Enzymatic 10-hydroxylation and 10-O-methylation of dihydrosanguinarine in dihydrochelirubine formation by Eschscholtia. Phytochemistry 31, 2713–2717.

    CAS  Google Scholar 

  183. Kammerer, L., W. De Eknamkul, and M.H. Zenk (1994). Enzymatic 12-hydroxylation and 12-O-methylation of dihydrochelirubine in dihydromacarpine formation by Thalictrum bulgaricum. Phytochemistry 36, 1409–1416.

    CAS  Google Scholar 

  184. Blechert, S., W. Brodschelm, S. Holder, L. Kammerer, T.M. Kutchan, M.J. Mueller et al. (1995). The octadecanoic pathway: Signal molecules for the regulation of secondary pathways. Proc. Natl. Acad. Sci. USA 92, 4099–4105.

    PubMed  CAS  Google Scholar 

  185. Kutchan, T. and J. Schrder (2002). Selected cell cultures and induction methods for cloning and assaying cytochromes P450 in alkaloid pathways. Meth. Enzymol. 357, 370–381. (E.F. Johnson and M.R. Waterman, ed.)

    Google Scholar 

  186. Grothe, T., R. Lenz and T. Kutchan (2001). Molecular characterization of the salutaridionol 7-O-acetyltransferase involved in morphine biosynthesis in opium poppy Papaver somniferum. J. Biol. Chem. 276, 30717–30723.

    PubMed  CAS  Google Scholar 

  187. Petersen, B.L., E. Andréson, S. Bak, N. Agerbirk, and B.A. Halkier (2001). Characterization of transgenic Arabidopsis thaliana with metabolically engineered high levels of p-hydroxybenzylglucosinolate. Planta 212, 612–618.

    PubMed  CAS  Google Scholar 

  188. Zhao, Y., A.K. Hull, N.R. Gupta, K.A. Goss, J. Alonso, J.R. Ecker et al. (2002). Tro-dependent auxin biosynthesis in Arabidopsis: involvement of cytochrome P450s CYP79B2 CYP79B3. Gen. Devel. 16, 3100–3112.

    CAS  Google Scholar 

  189. Bak, S., F.E. Tax, K.A. Feldman, D.W. Galbraith, and R. Feyereisen (2001). CYP83B1, a cytochrome P450 at the metabolic branchpoint in auxin and indole glucosinolate biosynthesis in Arabidopsis thaliana. Plant Cell 13, 101–111.

    PubMed  CAS  Google Scholar 

  190. Harbourne, J.B. and H. Baxter (1999). The Handbook of Natural Flavonoids, vol. 1 Wiley, Chichester, UK.

    Google Scholar 

  191. Sefton, M.A., I.L. Francis, and P.J. Williams (1993). The volative composition of chardonnay juices. A study by flavour precursor analysis. Am. J. Enol. Vitil 44, 359–370.

    CAS  Google Scholar 

  192. Sefton, M.A., I.L. Francis, and P.J. Willians (1994). Free and bound volative secondary metabolities of Vitis vivifera grape cv Sauvignon blanc. J. Food Sci. 59, 142–147.

    CAS  Google Scholar 

  193. Frick, S. and T.M. Kutchan (1999). Molecular cloning and functional expression of O-methyltransferases common to isoquinoline alkakoid and phenylpropanoid biosynthesis Plant J. 17, 329–339.

    PubMed  CAS  Google Scholar 

  194. Hansen, K.S., C. Kristensen, D.B. Tattersall, P.R. Jones, C.E. Olsen, S. Bak et al. (2003). The in vitro substrate regiospecificity of UGT85B1, the cyanohydrin glucosyltransferase from Sorghum bicolor. Phytochemistry. 64, 143–151.

    PubMed  CAS  Google Scholar 

  195. Bell, C.A., R.A. Dixon, A.D. Farmer, R. Flores, J. Inman, R.A. Gonzales et al. (2000). The medicago genome initiative: A model legume database. Nucleic Acid Res. 29, 1–4.

    Google Scholar 

  196. Huhman, D.V. and L.W. Sumner (2002). Metabolic profiling of saponins in Medicago sativa and Medicago truncatula using HPLC coupled to an electrospray ion-trap mass spectrometer. Phytochemistry 59, 347–360.

    PubMed  CAS  Google Scholar 

  197. Suzuki, H., L. Achinine, R. Xu, S.P.T. Matsuda, and R.A. Dixon (2002). A genomics approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. Plant J. 32, 1033–1048.

    PubMed  CAS  Google Scholar 

  198. Nelson, D.R. and H.W. Strobel (1988). On the membrane topology of vertebrate cytochrome P-450 Proteins. J. Biol. Chem. 263, 6038–6050.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Nielsen, K.A., Møller, B.L. (2005). Cytochrome P450s in Plants. In: Ortiz de Montellano, P.R. (eds) Cytochrome P450. Springer, Boston, MA. https://doi.org/10.1007/0-387-27447-2_12

Download citation

  • DOI: https://doi.org/10.1007/0-387-27447-2_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48324-0

  • Online ISBN: 978-0-387-27447-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics