Skip to main content

Structure and Function of the CBP/p300 TAZ Domains

  • Chapter
Zinc Finger Proteins

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The TAZ (transcriptional adapter zinc binding) domains in the transcriptional coactivators CBP/p300 are zinc-binding motifs that are primarily involved in protein-protein recognition. The activation domains of more than 30 transcription factors have been reported to bind to the TAZ domains, and each TAZ domain generally binds a different subset of transcription factors. Structurally, the TAZ domains contain three zinc binding sites and four alpha helices that are packed against each other to form a hydrophobic core. Each zinc atom is bound to one histidine and three cysteine residues that are located at the end of one helix, in the interconnecting loop, and at the beginning of a second helix, forming a characteristic HCCC-type zinc binding motif. In the absence of zinc, the proteins are unfolded. The role of the zinc atoms is to organize and stabilize the four amphipathic helices into a global fold, which then serves as the site of protein-protein interaction. The TAZ1 domains of CBP and p300 binds other proteins mostly by hydrophobic interactions in the grooves and canyons created by the helical interfaces. The first three helices of TAZ1 and TAZ2 are structurally homologous; the fourth helix, however, is in a different relative orientation. This major structural difference between the two domains appears to play an important role in determining the protein-binding specificity of the TAZ domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chrivia JC, Kwok RP, Lamb N et al. Phosphorylated CREB binds specifically to nuclear protein CBP. Nature 1993; 365:855–859.

    Article  PubMed  CAS  Google Scholar 

  2. Eckner R, Ewen ME, Newsome D et al. Molecular cloning and functional analysis of the adenovirus E1A-associated 300-kD protein (p300) reveals a protein with properties of a transcriptional adaptor. Genes Devel 1994; 8:869–884.

    PubMed  CAS  Google Scholar 

  3. Blobel GA. CBP and p300: Versatile coregulators with important roles in hematopoietic gene expression. J Leukoc Biol 2002; 71:545–556.

    PubMed  CAS  Google Scholar 

  4. Janknecht R. The versatile functions of the transcriptional coactivators p300 and CBP and their roles in disease. Histol Histopathol 2002; 17:657–668.

    PubMed  CAS  Google Scholar 

  5. Chan HM, La Thangue NB. p300/CBP proteins: HATs for transcriptional bridges and scaffolds. J Cell Sci 2001; 114:2363–2373.

    PubMed  CAS  Google Scholar 

  6. Grossman SR. p300/CBP/p53 interaction and regulation of the p53 response. Eur J Biochem 2001; 268:2773–2778.

    Article  PubMed  CAS  Google Scholar 

  7. McManus KJ, Hendzel MJ. CBP, a transcriptional coactivator and acetyltransferase. Biochem Cell Biol 2001; 79:253–266.

    Article  PubMed  CAS  Google Scholar 

  8. Goodman RH, Smolik S. CBP/p300 in cell growth, transformation, and development. Genes Devel 2000; 14:1553–1577.

    PubMed  CAS  Google Scholar 

  9. Goto NK, Zor T, Martinez-Yamout M et al. Cooperativity in transcription factor binding to the coactivator CREB-binding protein (CBP). The mixed lineage leukemia protein (MLL) activation domain binds to an allosteric site on the Kix domain. J Biol Chem 2002; 277:43168–43174.

    Article  PubMed  CAS  Google Scholar 

  10. Radhakrishnan I, Pérez-Alvarado GC, Parker D et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: A model for activator:Coactivator interactions. Cell 1997; 91:741–752.

    Article  PubMed  CAS  Google Scholar 

  11. Zor T, Mayr BM, Dyson HJ et al. Roles of phosphorylation and helix propensity in the binding of the KIX domain of CREB-binding protein by constitutive (c-Myb) and inducible (CREB) activators. J Biol Chem 2002; 277:42241–42248.

    Article  PubMed  CAS  Google Scholar 

  12. Demarest SJ, Martinez-Yamout M, Chung J et al. Mutual synergistic folding in recruitment of CBP/p300 by p160 nuclear receptor coactivators. Nature 2002; 415:549–553.

    Article  PubMed  CAS  Google Scholar 

  13. Borrow J, Stanton Jr VP, Andresen JM et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat Genet 1996; 14:33–41.

    Article  PubMed  CAS  Google Scholar 

  14. Ponting CP, Blake DJ, Davies KE et al. ZZ and TAZ: New putative zinc fingers in dystrophin and other proteins. Trends Biochem Sci 1996; 21:11–13.

    Article  PubMed  CAS  Google Scholar 

  15. Pandey R, Muller A, Napoli CA et al. Analysis of histone acetyltransferase and histone deacetylase families of Arabidopsis thaliana suggests functional diversification of chromatin modification among multicellular eukaryotes. Nucleic Acids Res 2002; 30:5036–5055.

    Article  PubMed  CAS  Google Scholar 

  16. Chakravarti D, Ogryzko V, Kao HY et al. A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell 1999; 96:393–403.

    Article  PubMed  CAS  Google Scholar 

  17. Dames SA, Martinez-Yamout M, De Guzman RN et al. Structural basis for Hif-1 alpha /CBP recognition in the cellular hypoxic response. Proc Natl Acad Sci USA 2002; 99:5271–5276.

    Article  PubMed  CAS  Google Scholar 

  18. Freedman SJ, Sun ZY, Poy F et al. Structural basis for recruitment of CBP/p300 by hypoxia-inducible factor-1alpha. Proc Natl Acad Sci USA 2002; 99:5367–5372.

    Article  PubMed  CAS  Google Scholar 

  19. Freedman SJ, Sun ZY, Kung AL et al. Structural basis for negative regulation of hypoxia-inducible factor-1alpha by CITED2. Nat Struct Biol 2003; 10:504–512.

    Article  PubMed  CAS  Google Scholar 

  20. De Guzman RN, Martinez-Yamout M, Dyson HJ et al. Interaction of the TAZ1 domain of CREB-binding protein with the activation domain of CITED2: Regulation by competition between intrinsically unstructured ligands for nonIdentical binding sites. J Biol Chem 2004; 279:3042–3049.

    Article  PubMed  Google Scholar 

  21. De Guzman RN, Liu HY, Martinez-Yamout M et al. Solution structure of the TAZ2 (CH3) domain of the transcriptional adaptor protein CBP. J Mol Biol 2000; 303:243–253.

    Article  PubMed  CAS  Google Scholar 

  22. Dial R, Sun ZY, Freedman SJ. Three conformational states of the p300 CH1 domain define its functional properties. Biochemistry 2003; 42:9937–9945.

    Article  PubMed  CAS  Google Scholar 

  23. Semenza GL. HIF-1 and human disease: One highly involved factor. Genes Devel 2000; 14:1983–1991.

    PubMed  CAS  Google Scholar 

  24. Semenza GL. Hypoxia-inducible factor 1: Oxygen homeostasis and disease pathophysiology. Trends Mol Med 2001; 7:345–350.

    Article  PubMed  CAS  Google Scholar 

  25. Pugh CW, Ratcliffe PJ. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat Med 2003; 9:677–684.

    Article  PubMed  CAS  Google Scholar 

  26. Arany Z, Huang LE, Eckner R et al. An essential role for p300/CBP in the cellular response to hypoxia. Proc Natl Acad Sci USA 1996; 93:12969–12973.

    Article  PubMed  CAS  Google Scholar 

  27. Bhattacharya S, Michels CL, Leung MK et al. Functional role of p35srj, a novel p300/CBP binding protein, during transactivation by HIF-1. Genes Devel 1999; 13:64–75.

    PubMed  CAS  Google Scholar 

  28. Lando D, Peet DJ, Whelan DA et al. Asparagine hydroxylation of the HIF transactivation domain: A hypoxic switch. Science 2002; 295:858–861.

    Article  PubMed  CAS  Google Scholar 

  29. McNeill LA, Hewitson KS, Claridge TD et al. Hypoxia-inducible factor asparaginyl hydroxylase (FIH-1) catalyses hydroxylation at the beta-carbon of asparagine-803. Biochem J 2002; 367:571–575.

    Article  PubMed  CAS  Google Scholar 

  30. Avantaggiati M, Ogryzko V, Gardner K et al. Recruitment of p300/CBP in p53-dependent signal pathways. Cell 1997; 89:1175–1184.

    Article  PubMed  CAS  Google Scholar 

  31. Gu W, Shi XL, Roeder RG. Synergistic activation of transcription by CBP and p53. Nature 1997; 387:819–823.

    Article  PubMed  CAS  Google Scholar 

  32. Lee CW, Sorensen TS, Shikama N et al. Functional interplay between p53 and E2F through coactivator p300. Oncogene 1998; 16:2695–2710.

    Article  PubMed  CAS  Google Scholar 

  33. Lill NL, Grossman SR, Ginsberg D et al. Binding and modulation of p53 by p300/CBP coactivators. Nature 1997; 387:823–827.

    Article  PubMed  CAS  Google Scholar 

  34. Scolnick DM, Chehab NH, Stavridi ES et al. CREB-binding protein and p300/CBP-associated factor are transcriptional coactivators of the p53 tumor suppressor protein. Cancer Res 1997; 57:3693–3696.

    PubMed  CAS  Google Scholar 

  35. Kussie PH, Gorina S, Marechal V et al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 1996; 274:948–953.

    Article  PubMed  CAS  Google Scholar 

  36. Stein RW, Corrigan M, Yaciuk P et al. Analysis of E1A-mediated growth regulation functions: Binding of the 300-kilodalton cellular product correlates with E1A enhancer repression function and DNA synthesis-inducing activity. J Virol 1990; 64:4421–4427.

    PubMed  CAS  Google Scholar 

  37. Arany Z, Newsome D, Oldread E et al. A family of transcriptional adaptor proteins targeted by the E1A oncoprotein. Nature 1995; 374:81–84.

    Article  PubMed  CAS  Google Scholar 

  38. Lundblad JR, Kwok RPS, Laurance ME et al. Adenoviral E1A-associated protein p300 as a functional homologue of the transcriptional coactivator CBP. Nature 1995; 374:85–88.

    Article  PubMed  CAS  Google Scholar 

  39. Blobel GA, Nakajima T, Eckner R et al. CREB-binding protein cooperates with transcription factor GATA-1 and is required for erythroid differentiation. Proc Natl Acad Sci USA 1998; 95:2061–2066.

    Article  PubMed  CAS  Google Scholar 

  40. Yuan W, Condorelli G, Caruso M et al. Human p300 protein is a coactivator for the transcription factor MyoD. J Biol Chem 1996; 271:9009–9013.

    Article  PubMed  CAS  Google Scholar 

  41. Bannister AJ, Kouzarides T. CBP-induced stimulation of c-Fos activity is abrogated by E1A. EMBO J 1995; 14:4758–4762.

    PubMed  CAS  Google Scholar 

  42. Lee JS, Galvin KM, See RH et al. Relief of YY1 transcriptional repression by adenovirus E1A is mediated by E1A-associated protein p300. Genes Devel 1995; 9:1188–1198.

    PubMed  CAS  Google Scholar 

  43. Trouche D, Cook A, Kouzarides T. The CBP coactivator stimulates E2F1/DP1 activity. Nucleic Acids Res 1996; 24:4139–4145.

    Article  PubMed  CAS  Google Scholar 

  44. Yang X-J, Ogryzko VV, Nishikawa J et al. A p300/CBP-associated factor that competes with the adenoviral oncoprotein E1A. Nature 1996; 382:319–324.

    Article  PubMed  CAS  Google Scholar 

  45. Huang SM, Qiu Y, Stein RW et al. P300 functions as a transcriptional coactivator for the TAL1/SCL oncoprotein. Oncogene 1999; 18:4958–4967.

    Article  PubMed  CAS  Google Scholar 

  46. Zeng X, Li X, Miller A et al. The N-terminal domain of p73 interacts with the CH1 domain of p300/CREB binding protein and mediates transcriptional activation and apoptosis. Mol Cell Biol 2000; 20:1299–1310.

    Article  PubMed  CAS  Google Scholar 

  47. Abraham SE, Lobo S, Yaciuk P et al. p300, and p300-associated proteins, are components of TATA-binding protein (TBP) complexes. Oncogene 1993; 8:1639–1647.

    PubMed  CAS  Google Scholar 

  48. Dallas PB, Yaciuk P, Moran E. Characterization of monoclonal antibodies raised against p300: Both p300 and CBP are present in intracellular TBP complexes. J Virol 1997; 71:1726–1731.

    PubMed  CAS  Google Scholar 

  49. Kwok RPS, Lundblad JR, Chrivia JC et al. Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 1994; 370:223–226.

    Article  PubMed  CAS  Google Scholar 

  50. Yang C, Shapiro LH, Rivera M et al. A role for CREB binding protein and p300 transcriptional coactivators in Ets-1 transactivation functions. Mol Cell Biol 1998; 18:2218–2229.

    PubMed  CAS  Google Scholar 

  51. Jayaraman G, Srinivas R, Duggan C et al. p300/cAMP-responsive element-binding protein interactions with Ets-1 and Ets-2 in the transcriptional activation of the human stromelysin promoter. J Biol Chem 1999; 274:17342–17352.

    Article  PubMed  CAS  Google Scholar 

  52. Gerritsen ME, Williams AJ, Neish AS et al. CREB-binding protein p300 are transcriptional coactivators of p65. Proc Natl Acad Sci USA 1997; 94:2927–2932.

    Article  PubMed  CAS  Google Scholar 

  53. Zhong H, Voll RE, Ghosh S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol Cell Biol 1998; 1:661–671.

    CAS  Google Scholar 

  54. Kishimoto M, Okimura Y, Yagita K et al. Novel function of the transactivation domain of a pituitary-specific transcription factor, Pit-1. J Biol Chem 2002; 277:45141–45148.

    Article  PubMed  CAS  Google Scholar 

  55. Bhattacharya S, Eckner R, Grossman S et al. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-α. Nature 1996; 383:344–347.

    Article  PubMed  CAS  Google Scholar 

  56. Dell H, Hadzopoulou-Cladaras M. CREB-binding protein is a transcriptional coactivator for hepatocyte nuclear factor-4 and enhances apolipoprotein gene expression. J Biol Chem 1999; 274:9013–9021.

    Article  PubMed  CAS  Google Scholar 

  57. Doucas V, Tini M, Egan DA et al. Modulation of CREB binding protein function by the promyelocytic (PML) oncoprotein suggests a role for nuclear bodies in hormone signaling. Proc Natl Acad Sci USA 1999; 96:2627–2632.

    Article  PubMed  CAS  Google Scholar 

  58. Zimmermann H, Degenkolbe R, Bernard HU et al. The human papillomavirus type 16 E6 oncoprotein can down-regulate p53 activity by targeting the transcriptional coactivator CBP/p300. J Virol 1999; 73:6209–6219.

    PubMed  CAS  Google Scholar 

  59. Eckner R, Ludlow JW, Lill NL et al. Association of p300 and CBP with simian virus 40 large T antigen. Mol Cell Biol 1996; 16:3454–3464.

    PubMed  CAS  Google Scholar 

  60. Waltzer L, Bienz M. A function of CBP as a transcriptional coactivator during Dpp signalling. EMBO J 1999; 18:1630–1641.

    Article  PubMed  CAS  Google Scholar 

  61. Swanson DJ, Adachi M, Lewis EJ. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J Biol Chem 2000; 275:2911–2923.

    Article  PubMed  CAS  Google Scholar 

  62. Cho S, Tian Y, Benjamin TL. Binding of p300/CBP coactivators by polyoma large T antigen. J Biol Chem 2001; 276:33533–33539.

    Article  PubMed  CAS  Google Scholar 

  63. Sisk TJ, Gourley T, Roys S et al. MHC class II transactivator inhibits IL-4 gene transcription by competing with NF-AT to bind the coactivator CREB binding protein (CBP)/p300. J Immunol 2000; 165:2511–2517.

    PubMed  CAS  Google Scholar 

  64. Suzuki T, Yoshida M. Tax protein of HTLV-1 inhibits CBP/p300-mediated transcription by interfering with recruitment of CBP/p300 onto DNA element of E-box or p53 binding site. Oncogene 1999; 18:4137–4143.

    Article  PubMed  CAS  Google Scholar 

  65. Hottiger MO, Nabel GJ. Interaction of human immunodeficiency virus type 1 Tat with the transcriptional coactivators p300 and CREB binding protein. J Virol 1998; 72:8252–8256.

    PubMed  CAS  Google Scholar 

  66. Ito M, Yu RN, Jameson JL. Steroidogenic factor-1 contains a carboxy-terminal transcriptional activation domain that interacts with steroid receptor coactivator-1. Mol Endocrinol 1998; 12:290–301.

    Article  PubMed  CAS  Google Scholar 

  67. Trouche D, Kouzarides T. E2F1 and E1A(12S) have a homologous activation domain regulated by RB and CBP. Proc Natl Acad Sci USA 1996; 93:1439–1442.

    Article  PubMed  CAS  Google Scholar 

  68. Lee JS, See RH, Deng T et al. Adenovirus E1A downregulates cJun-and JunB-mediated transcription by targeting their coactivator p300. Mol Cell Biol 1996; 16:4312–4326.

    PubMed  CAS  Google Scholar 

  69. Rossow KL, Janknecht R. Synergism between p68 RNA helicase and the transcriptional coactivators CBP and p300. Oncogene 2003; 22:151–156.

    Article  PubMed  CAS  Google Scholar 

  70. Nakajima T, Uchida C, Anderson S et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell 1997; 90:1107–1112.

    Article  PubMed  CAS  Google Scholar 

  71. Mink S, Haenig B, Klempnauer KH. Interaction and functional collaboration of p300 and C/EBPbeta. Mol Cell Biol 1997; 17:6609–6617.

    PubMed  CAS  Google Scholar 

  72. Qiu Y, Sharma A, Stein R. p300 mediates transcriptional stimulation by the basic helix-loop-helix activators of the insulin gene. Mol Cell Biol 1998; 18:2957–2964.

    PubMed  CAS  Google Scholar 

  73. Sato S, Roberts K, Gambino G et al. CBP/p300 as a cofactor for the Microphthalmia transcription factor. Oncogene 1997; 14:3083–3092.

    Article  PubMed  CAS  Google Scholar 

  74. Price ER, Ding HF, Badalian T et al. Lineage-specific signaling in melanocytes — c-Kit stimulation recruits p300/CBP to microphthalmia. J Biol Chem 1998; 273:17983–17986.

    Article  PubMed  CAS  Google Scholar 

  75. Felzien LK, Farrell S, Betts JC et al. Specificity of cyclin E-Cdk2, TFIIB, and E1A interactions with a common domain of the p300 coactivator. Mol Cell Biol 1999; 19:4241–4246.

    PubMed  CAS  Google Scholar 

  76. Nakajima T, Fukamizu A, Takahashi J et al. The signal-dependent coactivator CBP is a nuclear target for pp90RSK. Cell 1996; 86:465–474.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter E. Wright .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Landes Bioscience/Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

De Guzman, R.N., Martinez-Yamout, M.A., Dyson, H.J., Wright, P.E. (2005). Structure and Function of the CBP/p300 TAZ Domains. In: Iuchi, S., Kuldell, N. (eds) Zinc Finger Proteins. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27421-9_17

Download citation

Publish with us

Policies and ethics