Skip to main content

Rate of Decrease of PO2 from an Arteriole with Arrested Flow

  • Conference paper
Oxygen Transport to Tissue XXVI

Abstract

When flow to a region is arrested, the amount of oxygen contained within the stationary blood decreases at a rate dependent on the oxygen utilization of the surrounding tissue. We used phosphorescence quenching microscopy to measure arteriolar PO2 in the mesentery of male Sprague-Dawley rats. Flow was quickly stopped (< 1 s) by occluding the microvessels using an inflatable Saran bag attached to the microscope objective. The rate of decline in PO2 following occlusion yielded a calculated initial flux of oxygen out of the vessel lumen of 8.0 × 10−7 ml O2 cm−2 sec−1. An upper limit on the oxygen consumption of the arteriolar wall was calculated by assuming that all of the oxygen in the lumen was consumed by the wall at the initial rate. This value was 2.5 × 10−3 ml O2 cm−3 sec−1 and is an overestimate since the oxygen consumption of the nearby parenchymal cells was neglected. The calculated maximum oxygen consumption of the wall is more than an order of magnitude smaller than that reported previously for arterioles in the rat mesentery (6.5 × 10−2 ml O2 cm−3 sec−1). We conclude that oxygen consumption of the arteriolar wall is similar to previous values for other vascular tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. R. Duling, and R. M. Berne, Longitudinal gradients in periarteriolar oxygen tension. A possible mechanism for the participation of oxygen in the local regulation of blood flow, Circ. Res. 27, 669–678 (1970).

    PubMed  CAS  Google Scholar 

  2. L. Kuo, and R. N. Pittman, Effect of hemodilution on oxygen transport in arteriolar networks of hamster striated muscle, Am. J. Physiol. 254, H331–H339 (1988).

    PubMed  CAS  Google Scholar 

  3. D. P. Swain, and R. N. Pittman, Oxygen exchange in the microcirculation of hamster retractor muscle, Am. J. Physiol. 256, H247–H255 (1989).

    PubMed  CAS  Google Scholar 

  4. L. Kuo, and R. N. Pittman, Influence of hemoconcentration on arteriolar oxygen transport in hamster striated muscle, Am. J. Physiol. 259, H1694–H1702 (1990).

    PubMed  CAS  Google Scholar 

  5. H. Kerger, I. P. Torres Filho, M. Rivas, R. M. Winslow, and M. Intaglietta, Systemic and subcutaneous microvascular oxygen tension in conscious Syrian golden hamsters, Am. J. Physiol. 267, H802–H810 (1995).

    Google Scholar 

  6. N. Tateishi, N. Maeda, and T. Shiga, A method for measuring the rate of oxygen release from single microvessels, Circ. Res. 70, 812–819 (1992).

    PubMed  CAS  Google Scholar 

  7. A. Seiyama, S. Tanaka, H. Kosaka, and T. Shiga, O2 transfer from single microvessels to acinar cells in secretin-stimulated pancreas of rat, Am. J. Physiol. Heart Circ. Physiol. 270, H1704–H1711 (1996).

    CAS  Google Scholar 

  8. A. G. Tsai, B. Friesenecker, M. C. Mazzoni, H. Kerger, D. G. Buerk, P. C. Johnson, and M. Intaglietta, Microvascular and tissue oxygen gradients in the rat mesentery, Proc. Natl. Acad. Sci. 95, 6590–6595 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. H. Kobayashi, and N. Takizawa, Oxygen saturation and pH changes in cremaster microvessels of the rat, Am. J. Physiol. Heart Circ. Physiol. 270, H1453–H1461 (1996).

    CAS  Google Scholar 

  10. M. L. Ellsworth, C. G. Ellis, A. S. Popel, and R. N. Pittman, Role of microvessels in oxygen supply to tissue, News Physiol. Sci. 9, 119–123 (1994).

    Google Scholar 

  11. M. L. Ellsworth, and R. N. Pittman, Arterioles supply oxygen to capillaries by diffusion as well as by convection, Am. J. Physiol. 258, H1240–H1243 (1990).

    PubMed  CAS  Google Scholar 

  12. A. S. Popel, R. N. Pittman, and M. L. Ellsworth, The rate of oxygen loss from arterioles is an order of magnitude higher than expected, Am. J. Physiol. 256, H921–H924 (1989).

    PubMed  CAS  Google Scholar 

  13. D. P. V. Weerappuli, R. N. Pittman, and A. S. Popel, Effect of convection in capillaries on oxygen removal from arterioles in striated muscle, J. Theor. Biol. 147, 275–288 (1990).

    PubMed  CAS  Google Scholar 

  14. T. W. Secomb, and R. Hsu, Simulation of oxygen transport in skeletal muscle: diffusive exchange between arterioles and capillaries, Am. J. Physiol. Heart Circ. Physiol. 267, H1214–H1221 (1994).

    CAS  Google Scholar 

  15. H. Meng, T. B. Bentley, and R. N. Pittman, Oxygen diffusion in hamster striated muscle: comparison of in vitro and near in vivo conditions, Am. J. Physiol. 263, H35–H39 (1992).

    PubMed  CAS  Google Scholar 

  16. T. B. Bentley, H. Meng, and R. N. Pittman, Temperature dependence of oxygen diffusion and consumption in mammalian striated muscle, Am. J. Physiol. 264, H1825–H1830 (1993).

    PubMed  CAS  Google Scholar 

  17. R. N. Pittman, Influence of microvascular architecture on oxygen exchange in skeletal muscle, Microcirc. 2, 1–18 (1995).

    CAS  Google Scholar 

  18. A. R. Vadapalli, R. N. Pittman, and A. S. Popel, Estimating oxygen transport resistance of the microvascular wall, Am. J. Physiol. Heart Circ. Physiol. 279, 657–671 (2000).

    Google Scholar 

  19. A. G. Tsai, P. C. Johnson, and M. Intaglietta, Oxygen gradients in the microcirculation, Physiol. Rev. 83, 933–963 (2003).

    PubMed  CAS  Google Scholar 

  20. A. S. Golub, and R. N. Pittman, Thermostatic animal platform for intravital microscopy of thin tissues, Micmvasc. Res. 66, 213–217 (2003).

    Article  Google Scholar 

  21. L. Zheng, A. S. Golub, and R. N. Pittman, Determination of PO2 and its heterogeneity in single capillaries, Am. J. Physiol. 271, H365–H372 (1996).

    PubMed  CAS  Google Scholar 

  22. A. S. Golub, A. S. Popel, L. Zheng, and R. N. Pittman, Analysis of phosphorescence decay in heterogeneous systems using distributions of quencher concentration, Biophys. J. 73, 452–465 (1997).

    Article  PubMed  CAS  Google Scholar 

  23. R. N. Pittman, A. S. Golub, A. S. Popel, and L. Zheng, Interpretation of phosphorescence quenching measurements made in the presence of oxygen gradients, Adv. Exp. Med. Biol. 454, 375–383 (1998).

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Pittman, R.N., Golub, A.S., Schleicher, W.F. (2005). Rate of Decrease of PO2 from an Arteriole with Arrested Flow. In: Okunieff, P., Williams, J., Chen, Y. (eds) Oxygen Transport to Tissue XXVI. Advances in Experimental Medicine and Biology, vol 566. Springer, Boston, MA. https://doi.org/10.1007/0-387-26206-7_34

Download citation

Publish with us

Policies and ethics