Skip to main content

Role of the microcirculation in chronic gut inflammation

  • Chapter
Inflammatory Bowel Disease: From Bench to Bedside

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Kirsner JB. Inflammatory Bowel Disease, 5th edn. Philadelphia: Saunders, 2000.

    Google Scholar 

  2. Fiocchi C. Inflammatory bowel disease: etiology and pathogcnesis. Gastroenterology 1998;115:182–2.

    Article  PubMed  CAS  Google Scholar 

  3. Elson CO, Cong Y, Brandwein S et al. Experimental models to study molecular mechanisms underlying intestinal in flammation. Ann NY Acad Sci 1998;859:85–95.

    Article  PubMed  CAS  Google Scholar 

  4. Strober W, Fuss IJ, Ehrhardt RO, Neurath M, Boirivant M, Ludviksson BR. Mucosal immunoregulation and inflammatory bowel disease: new insights from murine models of inflammation. Scand J Immunol 1998;48:453–8.

    PubMed  CAS  Google Scholar 

  5. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experi mental models of inflammatory bowel disease. Gastroenterology 1995;109:1344–67.

    Article  PubMed  CAS  Google Scholar 

  6. Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL. Inhibition of Thl responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994;1:553–62.

    Article  PubMed  CAS  Google Scholar 

  7. Powrie F, Mauze S, Coffman RL. CD4+ T cells in the regulation of inflammatory responses in the intestine. Res Immunol 1997;148:576–81.

    Article  PubMed  CAS  Google Scholar 

  8. Powrie F, Correa-Oliveira R, Mauze S, Coffman RL. Regulatory interactions between CD45RBhigh and CD45R Blow CD4+ T cells are important for the balance between protective and pathogenic cell-mediated immunity. J Exp Med 1994;179:589–600.

    Article  PubMed  CAS  Google Scholar 

  9. Palade GE, Simionescu M, Simionescu N. Structural aspects of the permeability of the microvascular endothelium. Acta Physiol Scand 1979; 463(Suppl.): 11–32.

    CAS  Google Scholar 

  10. Granger DN. Physiology and pathophysiology of the microcirculation. Dialogues Cardiovasc Med 1998;3:123–40.

    Google Scholar 

  11. Rubes P, Granger DN. Leukocyte endothelial cell interactions evoked by mast cells. Cardiovasc Res 1996;32:699–708.

    Article  Google Scholar 

  12. Arfors KE, Rutili G, Svensjo E. Microvascular transport of macromolecules in normal and inflammatory conditions. Acta Physiol Scand 1979; 463(Suppl.): 93–103.

    CAS  Google Scholar 

  13. Kessel RG, Kardon RH. Tissues and Organs: A Text-Atlas of Scanning Electron Microscopy. San Francisco: W.H. Freeman, 1979.

    Google Scholar 

  14. Gannon, B.J., Perry, M.A. Histoanatomy and ultrastructure of vasculature of alimentary tract. In: Schultz SG, Rauner BB, Wood JD, eds. American Physiological Society — The Gastrointestinal System. Section 6. Bethesda, MD: American Physiological Society, 1989:1301–34.

    Google Scholar 

  15. Hirschi KK, D’Amore PA. Pericytes in the microvasculature. Cardiovasc Res 1996;32:687–98.

    Article  PubMed  CAS  Google Scholar 

  16. Chilian WM. Coronary microcirculation in health and disease. Summary of an NHLBI workshop. Circulation 1997;95:522–8.

    PubMed  CAS  Google Scholar 

  17. Laughlin MH. Endothelium-mediated control of coronary vascular tone after chronic exercise training. Med Sci Sports Exerc 1995;27:1135–44.

    PubMed  CAS  Google Scholar 

  18. Jones CJ, Kuo L, Davis MJ, Chilian WM. Regulation of coronary blood flow: coordination of heterogeneous control mechanisms in vascular microdomains. Cardiovasc Res 1995;29:585–96.

    Article  PubMed  CAS  Google Scholar 

  19. Davies MG, Hagen PO. The vascular endothelium. A new horizon. Ann Surg 1993;218:593–609.

    Article  PubMed  CAS  Google Scholar 

  20. Sellke FW, Boyle EM, Jr, Verrier ED. Endothelial cell injury in cardiovascular surgery: the pathophysiology of vasomotor dysfunction. Ann Thorac Surg 1996;62:1222–8.

    Article  PubMed  CAS  Google Scholar 

  21. Drexler H. Endothelial dysfunction: clinical implications. Prog Cardiovasc Dis 1997;39:287–324.

    Article  PubMed  CAS  Google Scholar 

  22. Granger HJ, Shepherd AP, Jr. Intrinsic microvascular con trol of tissue oxygen delivery. Microvasc Res 1973;5:49–72.

    Article  PubMed  CAS  Google Scholar 

  23. Allen AC. A unified concept of the vascular pathogenesis of enterocolitis of varied etiology. A pathophysiologic analysis. Am J Gastroenterol 1971;55:347–78.

    PubMed  CAS  Google Scholar 

  24. Brahme F, Lindstrom C. A comparative radiographic and pathological study of intestinal vaso-architecture in Crohn’s disease and in ulcerative colitis. Gut 1970;11:928–40.

    PubMed  CAS  Google Scholar 

  25. Erikson U, Fagerberg S, Krause U, Olding L. Angiographic studies in Crohn’s disease and ulcerative colitis. Am J Roentgenol Radium Ther Nucl Med 1970;110:385–92.

    PubMed  CAS  Google Scholar 

  26. Hulten L, Lindhagen J, Lundgren O, Fasth S, Ahren C. Regional intestinal blood flow in ulcerative colitis and Crohn’s disease. Gastroenterology 1977;72:388–96.

    PubMed  CAS  Google Scholar 

  27. Johansson H, Krause U, Olding L. Microangiographic studies in Crohn’s disease and ulcerative colitis. Acta Chir Scand 1972;138:409–14.

    PubMed  CAS  Google Scholar 

  28. Tsuchiya M, Miura S, Asakura H et al. Angiographic evaluation of vascular changes in ulcerative colitis. Angiology 1980;31:147–53.

    PubMed  CAS  Google Scholar 

  29. Bolondi L, Gaiani S, Brignola C et al. Changes in splanchnic hemodynamics in inflammatory bowel disease. Noninvasive assessment by Doppler ultrasound flowmetry. Scand J Gastroenterol 1992;27:501–7.

    PubMed  CAS  Google Scholar 

  30. Lott MF, Davies JD. Lymph node hypervascularity: haemangiomatoid lesions and pan-nodal vasodilatation. J Pathol 1983;140:209–19.

    Article  PubMed  CAS  Google Scholar 

  31. Knutson H, Lunderquist A, Lunderquist A. Vascular changes in Crohn’s disease. Am J Roentgenol Radium Ther Nucl Med 1968;103:380–5.

    PubMed  CAS  Google Scholar 

  32. Lunderquist A, Knutsson H. Angiography in Crohn’s disease of the small bowel and colon. Am J Roentgenol Radium Ther Nucl Med 1967;101:338–44.

    PubMed  CAS  Google Scholar 

  33. Bacaner MB. Quantitative measurement of regional colon blood flow in the normal and pathological human bowel. Gastroenterology 1966;51:764–77.

    PubMed  CAS  Google Scholar 

  34. Kirsner JB. Inflammatory bowel disease. Considerations of etiology and pathogenesis. Am J Gastroenterol 1978;69:253–71.

    PubMed  CAS  Google Scholar 

  35. Granger DN, Barrowman JA. Microcirculation of the alimentary tract. I. Physiology of transcapillary fluid and solute exchange. Gastroenterology 1983;84:846–68.

    PubMed  CAS  Google Scholar 

  36. Granger DN, Barrowman JA. Microcirculation of the alimentary tract. II. Pathophysiology of edema. Gastroenterology 1983;84:1035–49.

    PubMed  CAS  Google Scholar 

  37. Nicoll PA, Taylor AE. Lymph formation and flow. Annu Rev Physiol 1977;39:73–95.

    Article  PubMed  CAS  Google Scholar 

  38. Boijsen E, Hartel M. [Contrast flow rates in the superior mesenteric arterial territory]. Fortschr Geb Rontgenstr Nuklearmed 1973;118:491–8.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson LR. Physiology of the Gastrointestinal Tract, 3rd edn. New York: Raven Press, 1994.

    Google Scholar 

  40. Hudlicka O, Brown M, Egginton S. Angiogenesis in skeletal and cardiac muscle. Physiol Rev 1992;72:369–417.

    PubMed  CAS  Google Scholar 

  41. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 1996;86:353–64.

    Article  PubMed  CAS  Google Scholar 

  42. Waltenberger J. Modulation of growth factor action: implications for the treatment of cardiovascular diseases. Circulation 1997;96:4083–94.

    PubMed  CAS  Google Scholar 

  43. Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995;57:311–32.

    PubMed  CAS  Google Scholar 

  44. Griga T, Voigt E, Gretzer B, Brasch F, May B. Increased production of vascular endothelial growth factor by intestinal mucosa of patients with inflammatory bowel disease. Hepatogastroenterology 1999;46:920–3.

    PubMed  CAS  Google Scholar 

  45. Thorn M, Raab Y, Larsson A, Gerdin B, Hallgren R. Intestinal mucosal secretion of basic fibroblast growth factor in patients with ulcerative colitis. Scand J Gastroenterol 2000;35:408–12.

    Article  PubMed  CAS  Google Scholar 

  46. Bousvaros A, Zurakowski D, Fishman SJ et al. Serum basic fibroblast growth factor in pediatric Crohn’s disease. Implications for wound healing. Dig Dis Sci 1997;42:378–86.

    Article  PubMed  CAS  Google Scholar 

  47. Iigo Y, Suematsu M, Higashida T et al. Constitutive expression of ICAM-1 in rat microvascular systems analyzed by laser confocal microscopy. Am J Physiol 1997;273:H138–47.

    PubMed  CAS  Google Scholar 

  48. Granger DN, Kubes P. The microcirculation and inflammation: modulation of leukocyte-endothelial cell adhesion. J Leuk Biol 1994;55:662–75.

    CAS  Google Scholar 

  49. Kirsner JB. Inflammatory bowel disease. Part I: Nature and pathogenesis. Dis Mon 1991;37:6–666.

    Google Scholar 

  50. Kalima TV. The structure and function of intestinal lymphatics and the influence of impaired lymph flow on the ileum of rats. Scand J Gastroenterol 1971; 10(Suppl.): 1–87.

    CAS  Google Scholar 

  51. Del Gaudio A, Bragaglia RB, Boschi L, Del Gaudio GA, Accorsi D. A new approach in the management of Crohn’s disease: observations in 20 consecutive cases. Hepatogastroenterology 1997;44:1095–103.

    PubMed  Google Scholar 

  52. Winn R, Vedder N, Ramamoorthy C, Sharar S, Harlan J. Endothelial and leukocyte adhesion molecules in inflammation and disease. Blood Coagul Fibrinolysis 1998; 9(Suppl. 2):S17–23.

    PubMed  CAS  Google Scholar 

  53. Granger DN. Cell adhesion and migration. II. Leukocyte-endothelial cell adhesion in the digestive system. Am J Physiol 1997;273:G982–6.

    PubMed  CAS  Google Scholar 

  54. Panes J, Granger DN. Leukocyte-endothelial cell interactions: molecular mechanisms and implications in gastro intestinal disease. Gastroenterology 1998;114:1066–90.

    Article  PubMed  CAS  Google Scholar 

  55. Kishimoto TK, Rothlein R. Integrins, ICAMs, and selectins: role and regulation of adhesion molecules in neutrophil recruitment to inflammatory sites. Adv Pharmacol 1994;25:117–69.

    PubMed  CAS  Google Scholar 

  56. Koizumi M, King N, Lobb R, Benjamin C, Podolsky DK. Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 1992;103:840–7.

    PubMed  CAS  Google Scholar 

  57. Nakamura S, Ohtani H, Watanabe Y et al. In situ expression of the cell adhesion molecules in inflammatory bowel disease. Evidence of immunologic activation of vascular endothelial cells. Lab Invest 1993;69:77–85.

    PubMed  CAS  Google Scholar 

  58. Kawachi S, Jennings S, Panes J et al. Cytokine and endothelial cell adhesion molecule expression in interleukin-10-deficient mice. Am J Physiol Gastrointest Liver Physiol 2000;278:G734–43.

    PubMed  CAS  Google Scholar 

  59. Morise Z, Eppihimer M, Granger DN, Anderson DC, Grisham MB. Effects of lipopolysaccharide on endothelial cell adhesion molecule expression in interleukin-10 deficient mice. Inflammation 1999;23:99–110.

    Article  PubMed  CAS  Google Scholar 

  60. Kawachi S, Morise Z, Conner E et al. E-Selectin expression in a murine model of chronic colitis. Biochem Biophys Res Commun 2000;268:547–52.

    Article  PubMed  CAS  Google Scholar 

  61. Kawachi S, Morise Z, Jennings SR et al. Cytokine and adhesion molecule expression in SCID mice reconstituted with CD4+ T cells. Inflam Bowel Dis 2000;6:171–80.

    Article  CAS  Google Scholar 

  62. Podolsky DK, Lobb R, King N et al. Attenuation of colitis in the cotton-top tamarin by anti-alpha 4 integrin monoclonal antibody. J Clin Invest 1993;92:372–80.

    PubMed  CAS  Google Scholar 

  63. Eppihimer MJ, Wolitzky B, Anderson DC, Labow MA, Granger DN. Heterogeneity of expression. Circ Res 1996;79:560–69.

    PubMed  CAS  Google Scholar 

  64. Schurmann GM, Bishop AE, Facer P et al. Increased expression of cell adhesion molecule P-selectin in active inflammatory bowel disease. Gut 1995;36:411–18.

    PubMed  CAS  Google Scholar 

  65. Springer TA. Traffic signals on endothelium for lymphocyte recirculation and leukocyte emigration. Annu Rev Physiol 1995;57:827–72.

    Article  PubMed  CAS  Google Scholar 

  66. Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC. Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 1989; 83: 2008–17.

    PubMed  CAS  Google Scholar 

  67. Carlos TM, Harlan JM. Membrane proteins involved in phagocyte adherence to endothelium. Immunol Rev 1990; 114: 5–28.

    Article  PubMed  CAS  Google Scholar 

  68. D’Agata ID, Paradis K, Chad Z, Bonny Y, Seidman E. Leucocyte adhesion deficiency presenting as a chronic ileocolitis. Gut 1996;39:605–8.

    PubMed  CAS  Google Scholar 

  69. Lopez-Cubero SO, Sullivan KM, McDonald GB. Course of Crohn’s disease after allogeneic marrow transplantation. Gastroenterology 1998;114:433–40.

    Article  PubMed  CAS  Google Scholar 

  70. Diamond MS, Staunton DE, Marlin SD, Springer TA. Binding of the integrin Mac-1 (CD11b/CD18) to the third immunoglobulin-like domain of ICAM-1 (CD 54) and its regulation by glycosylation. Cell 1991;65:961–71.

    Article  PubMed  CAS  Google Scholar 

  71. Staunton DE, Dustin ML, Springer TA. Functional cloning of ICAM-2, a cell adhesion ligand for LFA-1 homologous to ICAM-1. Nature 1989; 339: 61–4.

    Article  PubMed  CAS  Google Scholar 

  72. Jones SC, Banks RE, Haidar A et al. Adhesion molecules in inflammatory bowel disease. Gut 1995;36:724–30.

    PubMed  CAS  Google Scholar 

  73. Oshitani N, Campbell A, Bloom S, Kitano A, Kobayashi K, Jewell DP. Adhesion molecule expression on vascular endothelium and nitroblue tetrazolium reducing activity in human colonic mucosa. Scand J Gastroenterol 1995;30:915–20.

    PubMed  CAS  Google Scholar 

  74. Bennett CF, Kornbrust D, Henry S et al. An ICAM-1 antisense oligonucleotide prevents and reverses dextran sulfate sodium-induced colitis in mice. J Pharmacol Exp Ther 1997;280:988–1000.

    PubMed  CAS  Google Scholar 

  75. Yacyshyn BR, Bowen-Yacyshyn MB, Jewell L et al. A placebo-controlled trial of ICAM-1 antisense oligonucleotide in the treatment of Crohn’s disease. Gastroenterology 1998;114:1133–42.

    Article  PubMed  CAS  Google Scholar 

  76. Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 1997;112:1895–907.

    Article  PubMed  CAS  Google Scholar 

  77. Haraldsen G, Kvale D, Lien B, Farstad IN, Brandtzaeg P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J Immunol 1996;156:2558–65.

    PubMed  CAS  Google Scholar 

  78. Kawachi S, Cockrell A, Laroux FS et al. Role of inducible nitric oxide synthase in the regulation of VCAM-1 expression in gut inflammation. Am J Physiol 1999;277:G572–6.

    PubMed  CAS  Google Scholar 

  79. Butcher EC, Picker LJ. Lymphocyte homing and homeostasis. Science 1996;272:60–6.

    Article  PubMed  CAS  Google Scholar 

  80. Butcher EC, Williams M, Youngman K, Rott L, Briskin M. Lymphocyte trafficking and regional immunity. Adv Immunol 1999;72:209–53.

    Article  PubMed  CAS  Google Scholar 

  81. Connor EM, Eppihimer MJ, Morise Z, Granger DN, Grisham MB. Expression of mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in acute and chronic inflammation. J Leuk Biol 1999;65:349–55.

    CAS  Google Scholar 

  82. Briskin M, Winsor-Hines D, Shyjan A et al. Human mucosal addressin cell adhesion molecule-1 is preferentially expressed in intestinal tract and associated lymphoid tissue. Am J Pathol 1997;151:97–110.

    PubMed  CAS  Google Scholar 

  83. Picarella D, Hurlbut P, Rottman J, Shi X, Butcher E, Ringler DJ. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol 1997;158:2099–106.

    PubMed  CAS  Google Scholar 

  84. Viney JL, Jones S, Chiu HH et al. Mucosal addressin cell adhesion molecule-1: a structural and functional analysis demarcates the integrin binding motif. J Immunol 1996;157:2488–97.

    PubMed  CAS  Google Scholar 

  85. Hesterberg PE, Winsor-Hines D, Briskin MJ et al. Rapid resolution of chronic colitis in the cotton-top tamarin with an antibody to a gut-homing integrin alpha 4 beta 7. Gastroenterology 1996;111:1373–80.

    Article  PubMed  CAS  Google Scholar 

  86. Muller WA, Weigl SA, Deng X, Phillips DM. PECAM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993;178:449–60.

    Article  PubMed  CAS  Google Scholar 

  87. Schuermann GM, Aber-Bishop AE, Facer P et al. Altered expression of cell adhesion molecules in uninvolved gut in inflammatory bowel disease. Clin Exp Immunol 1993;94:341–7.

    Article  PubMed  CAS  Google Scholar 

  88. Bienvenu K, Harris N, Granger DN. Modulation of leukocyte migration in mesenteric interstitium. Am J Physiol 1994;267:H1573–7.

    PubMed  CAS  Google Scholar 

  89. Grisham MB. Oxidants and free radicals in inflammatory bowel disease. Lancet 1994;344:859–61.

    Article  PubMed  CAS  Google Scholar 

  90. Beckman JS, Koppenol WH. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am J Physiol 1996;271:C1424–37.

    PubMed  CAS  Google Scholar 

  91. Grisham MB, Jourd’Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: implications in inflammation. Am J Physiol 1999;276:G315–21.

    PubMed  CAS  Google Scholar 

  92. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989;320:365–76.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Grisham, M.B., Laroux, F.S., Granger, D.N. (2003). Role of the microcirculation in chronic gut inflammation. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_8

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics