Skip to main content

ADAM13 Function in Development

Prototypical or unique ADAM?

  • Chapter
The ADAM Family of Proteases

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 4))

Abstract

ADAM13 is a cell surface metalloprotease containing a disintegrin domain. It was cloned in an effort to identify ADAM proteins that function during early embryogenesis in the frog Xenopus laevis. ADAM13 is most similar in sequence to the meltrins (ADAM12, 19 and 33) and is expressed as a zygotic messenger RNA at the Mid Blastula Transition (MBT). The protein is expressed in Cranial Neural Crest (CNC) cells and somites during neurulation and subsequent tailbud formation. ADAM13 is a protease that can cleave itself and the extracellular matrix (ECM) protein fibronectin. Xenopus XTC cells expressing ADAM13 can remodel a fluorescent fibronectin substrate while cells expressing a dominant negative form of ADAM13 cannot. The adhesive domain of ADAM13 (DC) binds to the heparin-binding domain of fibronectin at the same site as the proteoglycan syndecan. Mutations in fibronectin that abolish syndecan binding also prevent ADAM13 association. The proteolytic activity of ADAM13 is essential for CNC migration in two of the three main pathways (Branchial and Hyoid but not Mandibular), while this activity is not essential for CNC migration in vitro. ADAM13 proteolytic specificity depends on the adhesive region of the extracellular domain (DC) rather than on the metalloprotease domain. Finally, ADAM13 activity is controlled by two specific regions of its cytoplasmic domain. The juxtamembrane domain controls protein level while the proline-rich carboxyl terminal region binds to proteins containing an SH3-domain. One of these SH3-containing proteins, PACSIN-2, binds to and down regulates ADAM13 proteolytic function in embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe, E., Mocharla, H., Yamate, T., Taguchi, Y., and Manolagas, S. C. (1999). Meltrin-alpha, a fusion protein involved in multinucleated giant cell and osteoclast formation. Calcif Tissue Int 64, 508–515.

    Article  PubMed  CAS  Google Scholar 

  • Alfandari, D., Cousin, H., Gaultier, A., Smith, K., White, J. M., Darribere, T., and DeSimone, D. W. (2001). Xenopus ADAM 13 is a metalloprotease required for cranial neural crest-cell migration. Curr Biol 11, 918–30.

    Article  PubMed  CAS  Google Scholar 

  • Alfandari, D., Wolfsberg, T. G., White, J. M., and DeSimone, D. W. (1997). ADAM 13: a novel ADAM expressed in somitic mesoderm and neural crest cells during Xenopus laevis development. Dev Biol 182, 314–330.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, D. V., Huang, S., and Moody, S. A. (1994). The cleavage stage origin of Spemann’s Organizer: analysis of the movements of blastomere clones before and during gastrulation in Xenopus. Development 120, 1179–89.

    PubMed  CAS  Google Scholar 

  • Black, R. A., and White, J. M. (1998). ADAMs: Focus on the protease domain. Curr. Op. in Cell Biol. 10, 654–659.

    Article  CAS  Google Scholar 

  • Blom, N., Gammeltoft, S., and Brunak, S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294, 1351–62.

    Article  PubMed  CAS  Google Scholar 

  • Cakebread, J. A., Haitchi, H. M., Holloway, J. W., Powell, R. M., Keith, T., Davies, D. E., and Holgate, S. T. (2004). The role of ADAM33 in the pathogenesis of asthma. Springer Semin Immunopathol 25, 361–75.

    Article  PubMed  CAS  Google Scholar 

  • Cao, Y., Zhao, Z., Gruszczynska-Biegala, J., and Zolkiewska, A. (2003). Role of metalloprotease disintegrin ADAM12 in determination of quiescent reserve cells during myogenic differentiation in vitro. Mol Cell Biol 23, 6725–38.

    Article  PubMed  CAS  Google Scholar 

  • Carnahan, R. H., and Gould, K. L. (2003). The PCH family protein, Cdc15p, recruits two Factin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 162, 851–62.

    Article  PubMed  CAS  Google Scholar 

  • Cong, F., Spencer, S., Cote, J. F., Wu, Y., Tremblay, M. L., Lasky, L. A., and Goff, S. P. (2000). Cytoskeletal protein PSTPIP1 directs the PEST-type protein tyrosine phosphatase to the c-Abl kinase to mediate Abl dephosphorylation. Mol Cell 6, 1413–23.

    Article  PubMed  CAS  Google Scholar 

  • Cote, J. F., Chung, P. L., Theberge, J. F., Halle, M., Spencer, S., Lasky, L. A., and Tremblay, M. L. (2002). PSTPIP Is a Substrate of PTP-PEST and Serves as a Scaffold Guiding PTPPEST Toward a Specific Dephosphorylation of WASP. J Biol Chem 277, 2973–2986.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, H., and Alfandari, D. (2004). A PTP-PEST like protein affects (alpha)5(Beta)1 integrin-dependent matrix assembly cell adhesion and migration in xenopus gastrula. Dev Biol 265, 416–432.

    Article  PubMed  CAS  Google Scholar 

  • Cousin, H., Gaultier, A., Bleux, C., Darribere, T., and Alfandari, D. (2000). PACSIN2 is a regulator of the metalloprotease/disintegrin ADAM13. Dev. Biol. 227, 197–210.

    Article  PubMed  CAS  Google Scholar 

  • Da Costa, S. R., Sou, E., Xie, J., Yarber, F. A., Okamoto, C. T., Pidgeon, M., Kessels, M. M., Mircheff, A. K., Schechter, J. E., Qualmann, B., and Hamm-Alvarez, S. F. (2003). Impairing actin filament or syndapin functions promotes accumulation of clathrin-coated vesicles at the apical plasma membrane of acinar epithelial cells. Mol Biol Cell 14, 4397–413.

    Article  PubMed  Google Scholar 

  • Dzamba, B. J., Bolton, M. A., and DeSimone, D. W. (2002). “Cell Adhesion: The integrin family of cell adhesion molecules.” Oxford University Press, Oxford.

    Google Scholar 

  • Eagleson, G. W., and Harris, W. A. (1990). Mapping of the presumptive brain regions in the a neural plate of Xenopus laevis. J Neurobiol 21, 427–40.

    Article  PubMed  CAS  Google Scholar 

  • Etkin, L. D. (1988). Regulation of the mid-blastula transition in amphibians. Dev Biol (N Y 1985) 5, 209–25.

    CAS  Google Scholar 

  • Eto, K., Puzon-McLaughlin, W., Sheppard, D., Sehara-Fujisawa, A., Zhang, X. P., and Takada, Y. (2000). RGD-independent binding of integrin alpha 9beta 1 to the ADAM-12 and-15 disintegrin domains mediates cell-cell interaction. J Biol Chem 275, 34922–30.

    Article  PubMed  CAS  Google Scholar 

  • Evans, J. P., Schultz, R. M., and Kopf, G. S. (1995). Mouse sperm-egg plasma membrane interactions: analysis of roles of egg integrins and the mouse sperm homologue of PH-30 (fertilin) beta. J Cell Sci 108, 3267–3278.

    PubMed  CAS  Google Scholar 

  • Faisal Khan, K. M., Laurie, G. W., McCaffrey, T. A., and Falcone, D. J. (2002). Exposure of cryptic domains in the alpha 1-chain of laminin-1 by elastase stimulates macrophages urokinase and matrix metalloproteinase-9 expression. J Biol Chem 277, 13778–86.

    Article  PubMed  CAS  Google Scholar 

  • Feng S, C. J., Yu H, Simon JA, Schreiber SL. (1994). Two binding orientations for peptides to the Src SH3 domain: development of a general model for SH3-ligand interactions. Science 266, 1241–1247.

    PubMed  CAS  Google Scholar 

  • Gaultier, A., Cousin, H., Darribere, T., and Alfandari, D. (2002). ADAM 13 disintegrin and cysteine-rich domains bind to the Hep II domain of fibronectin. J Biol Chem 19, 19.

    Google Scholar 

  • Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W. G., and Quaranta, V. (1997). Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277, 225–8.

    Article  PubMed  CAS  Google Scholar 

  • Gilpin, B. J., Loechel, F., Mattei, M. G., Engvall, E., Albrechtsen, R., and Wewer, U. M. (1998). A novel, secreted form of human ADAM 12 (meltrin alpha) provokes myogenesis in vivo. J Biol Chem 273, 157–166.

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez, J. M., and Rucavado, A. (2000). Snake venom metalloproteinases: Their role in the pathogenesis of local tissue damage. Biochimie 82, 841–50.

    Article  PubMed  CAS  Google Scholar 

  • Gutwein, P., Oleszewski, M., Mechtersheimer, S., Agmon-Levin, N., Krauss, K., and Altevogt, P. (2000). Role of Src kinases in the ADAM-mediated release of L1 adhesion molecule from human tumor cells. J Biol Chem 275, 15490–7.

    Article  PubMed  CAS  Google Scholar 

  • Ham, C., Levkau, B., Raines, E. W., and Herren, B. (2002). ADAM15 is an adherens junction molecule whose surface expression can be driven by VE-cadherin. Exp Cell Res 279, 239–47.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, M., Osterfield, M., and Flanagan, J. G. (2000). Regulated cleavage of a contact-mediated axon repellent. Science 289, 1360–1365.

    Article  PubMed  CAS  Google Scholar 

  • Heasman, J., Snape, A., Smith, J., and Wylie, C. C. (1985). Single cell analysis of commitment in early embryogenesis. J Embryol Exp Morphol 89Suppl, 297–316.

    PubMed  Google Scholar 

  • Huang, X., Huang, P., Robinson, M. K., Stern, M. J., and Jin, Y. (2003). UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 130, 3147–61.

    Article  PubMed  CAS  Google Scholar 

  • Hundhausen, C., Misztela, D., Berkhout, T. A., Broadway, N., Saftig, P., Reiss, K., Hartmann, D., Fahrenholz, F., Postina, R., Matthews, V., Kallen, K. J., Rose-John, S., and Ludwig, A. (2003). The disintegrin-like metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates CX3CL1-mediated cell-cell adhesion. Blood 102, 1186–95.

    Article  PubMed  CAS  Google Scholar 

  • Huynh-Do, U., Stein, E., Lane, A. A., Liu, H., Cerretti, D. P., and Daniel, T. O. (1999). Surface densities of ephrin-B1 determine EphB1-coupled activation of cell attachment through alphavbeta3 and alpha5beta1 integrins. Embo J. 18, 2165–2173.

    Article  PubMed  CAS  Google Scholar 

  • Jia, L. G., Shimokawa, K., Bjarnason, J. B., and Fox, J. W. (1996). Snake venom metalloproteinases: structure, function and relationship to the ADAMs family of proteins. Toxicon 34, 1269–1276.

    Article  PubMed  CAS  Google Scholar 

  • Kang, T., Park, H. I., Suh, Y., Zhao, Y. G., Tschesche, H., and Sang, Q. X. (2002). Autolytic processing at Glu586-Ser587 within the cysteine-rich domain of human adamalysin 19/disintegrin-metalloproteinase 19 is necessary for its proteolytic activity. J Biol Chem 277, 48514–22.

    Article  PubMed  CAS  Google Scholar 

  • Kawaguchi, N., Xu, X., Tajima, R., Kronqvist, P., Sundberg, C., Loechel, F., Albrechtsen, R., and Wewer, U. M. (2002). ADAM 12 protease induces adipogenesis in transgenic mice. Am J Pathol 160, 1895–903.

    PubMed  CAS  Google Scholar 

  • Krieg, P. A., and Melton, D. A. (1985). Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. Embo J 4, 3463–71.

    PubMed  CAS  Google Scholar 

  • Kronqvist, P., Kawaguchi, N., Albrechtsen, R., Xu, X., Schroder, H. D., Moghadaszadeh, B., Nielsen, F. C., Frohlich, C., Engvall, E., and Wewer, U. M. (2002). ADAM12 alleviates the skeletal muscle pathology in mdx dystrophic mice. Am J Pathol 161, 1535–40.

    PubMed  CAS  Google Scholar 

  • Kumano, G., and Smith, W. C. (2002). Revisions to the Xenopus gastrula fate map: Implications for mesoderm induction and patterning. Dev Dyn 225, 409–21.

    Article  PubMed  Google Scholar 

  • Kurisaki, T., Masuda, A., Osumi, N., Nabeshima, Y., and Fujisawa-Sehara, A. (1998). Spatially-and temporally-restricted expression of meltrin α (ADAM 12) and β (ADAM 19) in mouse embryo. Mech. Devel. 73, 211–215.

    Article  CAS  Google Scholar 

  • Kurisaki, T., Masuda, A., Sudo, K., Sakagami, J., Higashiyama, S., Matsuda, Y., Nagabukuro, A., Tsuji, A., Nabeshima, Y., Asano, M., Iwakura, Y., and Sehara-Fujisawa, A. (2003). Phenotypic analysis of Meltrin alpha (ADAM12)-deficient mice: involvement of Meltrin alpha in adipogenesis and myogenesis. Mol Cell Biol 23, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Kurohara, K., Komatsu, K., Kurisaki, T., Masuda, A., Irie, N., Asano, M., Sudo, K., Nabeshima, Y., Iwakura, Y., and Sehara-Fujisawa, A. (2004). Essential roles of Meltrin beta (ADAM19) in heart development. Dev Biol 267, 14–28.

    Article  PubMed  CAS  Google Scholar 

  • Labat-Robert, J. (2003). [Cryptic sites and matrikines: cellular effects of fibronectin and laminin peptides]. J Soc Biol 197, 45–51.

    PubMed  CAS  Google Scholar 

  • Li, J., Nishizawa, K., An, W., Hussey, R. E., Lialios, F. E., Salgia, R., Sunder-Plassmann, R., and Reinherz, E. L. (1998). A cdc15-like adaptor protein (CD2BP1) interacts with the CD2 cytoplasmic domain and regulates CD2-triggered adhesion. EMBO J. 17, 7320–36.

    Article  PubMed  CAS  Google Scholar 

  • Martin, J., Eynstone, L. V., Davies, M., Williams, J. D., and Steadman, R. (2002). The role of ADAM 15 in glomerular mesangial cell migration. J Biol Chem 277, 33683–9.

    Article  PubMed  CAS  Google Scholar 

  • Matsui, T., Fujimura, Y., and Titani, K. (2000). Snake venom proteases affecting hemostasis and thrombosis. Biochim Biophys Acta 1477, 146–56.

    PubMed  CAS  Google Scholar 

  • Mechtersheimer, S., Gutwein, P., Agmon-Levin, N., Stoeck, A., Oleszewski, M., Riedle, S., Fogel, M., Lemmon, V., and Altevogt, P. (2001). Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins. J Cell Biol 155, 661–73.

    Article  PubMed  CAS  Google Scholar 

  • Miller, A. L., Wang, Y., Mooseker, M. S., and Koleske, A. J. (2004). The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion. J Cell Biol 165, 407–19.

    Article  PubMed  CAS  Google Scholar 

  • Modregger, J., Ritter, B., Witter, B., Paulsson, M., and Plomann, M. (2000). All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113, 4511–4521.

    PubMed  CAS  Google Scholar 

  • Moerman, D. G. (1999). A metalloprotease prepares the way. Curr Biol 9, R701–3.

    Article  PubMed  CAS  Google Scholar 

  • Moghadaszadeh, B., Albrechtsen, R., Guo, L. T., Zaik, M., Kawaguchi, N., Borup, R. H., Kronqvist, P., Schroder, H. D., Davies, K. E., Voit, T., Nielsen, F. C., Engvall, E., and Wewer, U. M. (2003). Compensation for dystrophin-deficiency: ADAM12 overexpression in skeletal muscle results in increased alpha 7 integrin, utrophin and associated glycoproteins. Hum Mol Genet 12, 2467–79.

    Article  PubMed  CAS  Google Scholar 

  • Murphy, G., and Gavrilovic, J. (1999). Proteolysis and cell migration: creating a path? Curr Opin Cell Biol 11, 614–21.

    Article  PubMed  CAS  Google Scholar 

  • Nabeshima, K., Inoue, T., Shimao, Y., and Sameshima, T. (2002). Matrix metalloproteinases in tumor invasion: role for cell migration. Pathol Int 52, 255–64.

    Article  PubMed  CAS  Google Scholar 

  • Nath, D., Slocombe, P. M., Webster, A., Stephens, P. E., Docherty, A. J., and Murphy, G. (2000). Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1)integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci 113, 2319–28.

    PubMed  CAS  Google Scholar 

  • Nieuwkoop, P. D., and Faber, J. (1994). “Normal table of Xenopus Laevis (Daudin).” Garland Publishing, Inc., New York.

    Google Scholar 

  • Nikki, M., Merilainen, J., and Lehto, V. P. (2002). FAP52 regulates actin organization via binding to filamin. J Biol Chem 277, 11432–40.

    Article  PubMed  CAS  Google Scholar 

  • Nishiwaki, K., Hisamoto, N., and Matsumoto, K. (2000). A metalloprotease disintegrin that controls cell migration in Caenorhabditis elegans. Science 288, 2205–8.

    Article  PubMed  CAS  Google Scholar 

  • Pan, D., and Rubin, G. M. (1997). Kuzbanian controls proteolytic processing of Notch and mediates lateral inhibition during Drosophila and vertebrate neurogenesis. Cell 90, 271–280.

    Article  PubMed  CAS  Google Scholar 

  • Pirila, E., Sharabi, A., Salo, T., Quaranta, V., Tu, H., Heljasvaara, R., Koshikawa, N., Sorsa, T., and Maisi, P. (2003). Matrix metalloproteinases process the laminin-5 gamma 2-chain and regulate epithelial cell migration. Biochem Biophys Res Commun 303, 1012–7.

    Article  PubMed  CAS  Google Scholar 

  • Qualmann, B., and Kelly, R. B. (2000). Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148, 1047–62.

    Article  PubMed  CAS  Google Scholar 

  • Rooke, J., Pan, D., Xu, T., and Rubin, G. M. (1996). KUZ, a conserved metalloprotease-disintegrin protein with two roles in Drosophila neurogenesis. Science 273, 1227–1231.

    PubMed  CAS  Google Scholar 

  • Sadaghiani, B., and Thiebaud, C. H. (1987). Neural crest development in the Xenopus laevis embryo, studied by interspecific transplantation and scanning electron microscopy. Dev Biol 124, 91–110.

    Article  PubMed  CAS  Google Scholar 

  • Schlondorff, J., and Blobel, C. P. (1999). Metalloprotease-disintegrins: modular proteins capable of promoting cell-cell interactions and triggering signals by protein-ectodomain shedding. J Cell Sci 112, 3603–3617.

    PubMed  CAS  Google Scholar 

  • Seals, D. F., and Courtneidge, S. A. (2003). The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17, 7–30.

    Article  PubMed  CAS  Google Scholar 

  • Shirakabe, K., Wakatsuki, S., Kurisaki, T., and Fujisawa-Sehara, A. (2001). Roles of Meltrin beta /ADAM19 in the processing of neuregulin. J Biol Chem 276, 9352–8.

    Article  PubMed  CAS  Google Scholar 

  • Simpson, F., Hussain, N. K., Qualmann, B., Kelly, R. B., Kay, B. K., McPherson, P. S., and Schmid, S. L. (1999). SH3-domain-containing proteins function at distinct steps in clathrin-coated vesicle formation. Nat Cell Biol 1, 119–124.

    Article  PubMed  CAS  Google Scholar 

  • Sive, H., and Bradley, L. (1996). A sticky problem: the Xenopus cement gland as a paradigm for anteroposterior patterning. Dev Dyn 205, 265–280.

    Article  PubMed  CAS  Google Scholar 

  • Sive, H. L., Hattori, K., and Weintraub, H. (1989). Progressive determination during formation of the anteroposterior axis in Xenopus laevis. Cell 58, 171–180.

    Article  PubMed  CAS  Google Scholar 

  • Smith, K. M., Gaultier, A., Cousin, H., Alfandari, D., White, J. M., and DeSimone, D. W. (2002). The cysteine-rich domain regulates ADAM protease function in vivo. J Cell Biol 159, 893–902.

    Article  PubMed  CAS  Google Scholar 

  • Spencer, S., Dowbenko, D., Cheng, J., Li, W., Brush, J., Utzig, S., Simanis, V., and Lasky, L. A. (1997). PSTPIP: a tyrosine phosphorylated cleavage furrow-associated protein that is a substrate for a PEST tyrosine phosphatase. Journal Of Cell Biology 138, 845–60.

    Article  PubMed  CAS  Google Scholar 

  • Stetler-Stevenson, W. G., and Yu, A. E. (2001). Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11, 143–52.

    Article  PubMed  CAS  Google Scholar 

  • Stone, A. L., Kroeger, M., and Sang, Q. X. (1999). Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins (review). J Protein Chem 18, 447–465.

    Article  PubMed  CAS  Google Scholar 

  • Tian, B. L., Wen, J. M., Zhang, M., Xie, D., Xu, R. B., and Luo, C. J. (2002). The expression of ADAM12 (meltrin alpha) in human giant cell tumours of bone. Mol Pathol 55, 394–7.

    Article  PubMed  CAS  Google Scholar 

  • Van Eerdewegh, P., Little, R. D., Dupuis, J., Del Mastro, R. G., Falls, K., Simon, J., Torrey, D., Pandit, S., McKenny, J., Braunschweiger, K., Walsh, A., Liu, Z., Hayward, B., Folz, C., Manning, S. P., Bawa, A., Saracino, L., Thackston, M., Benchekroun, Y., Capparell, N., Wang, M., Adair, R., Feng, Y., Dubois, J., FitzGerald, M. G., Huang, H., Gibson, R., Allen, K. M., Pedan, A., Danzig, M. R., Umland, S. P., Egan, R. W., Cuss, F. M., Rorke, S., Clough, J. B., Holloway, J. W., Holgate, S. T., and Keith, T. P. (2002). Association of the ADAM33 gene with asthma and bronchial hyperresponsiveness. Nature 418, 426–30.

    Article  PubMed  Google Scholar 

  • Van Wart, H. E., and Birkedal-Hansen, H. (1990). The cysteine switch: a principle of regulation of metalloproteinase activity with potential applicability to the entire matrix metalloproteinase gene family. Proc Natl Acad Sci U S A 87, 5578–82.

    Article  PubMed  Google Scholar 

  • Webb, D. J., Parsons, J. T., and Horwitz, A. F. (2002). Adhesion assembly, disassembly and turnover in migrating cells — over and over and over again. Nat Cell Biol 4, E97–100.

    Article  PubMed  CAS  Google Scholar 

  • Weskamp, G., and Blobel, C. P. (1994). A family of cellular proteins related to snake venom disintegrins. Proc Natl Acad Sci U S A 91, 2748–2751.

    Article  PubMed  CAS  Google Scholar 

  • Weskamp, G., Kratzschmar, J., Reid, M. S., and Blobel, C. P. (1996). MDC9, a widely expressed cellular disintegrin containing cytoplasmic SH3 ligand domains. J Cell Biol 132, 717–726.

    Article  PubMed  CAS  Google Scholar 

  • Wolfsberg, T. G., Straight, P. D., Gerena, R. L., Huovila, A. P., Primakoff, P., Myles, D. G., and White, J. M. (1995). ADAM, a widely distributed and developmentally regulated gene family encoding membrane proteins with a disintegrin and metalloprotease domain. Dev Biol 169, 378–383.

    Article  PubMed  CAS  Google Scholar 

  • Yagami-Hiromasa, T., Sato, T., Kurisaki, T., Kamijo, K., Nabeshima, Y., and Fujisawa-Sehara, A. (1995). A metalloprotease-disintegrin participating in myoblast fusion. Nature 377, 652–656.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H. M., Weskamp, G., Chesneau, V., Sahin, U., Vortkamp, A., Horiuchi, K., Chiusaroli, R., Hahn, R., Wilkes, D., Fisher, P., Baron, R., Manova, K., Basson, C. T., Hempstead, B., and Blobel, C. P. (2004). Essential role for ADAM19 in cardiovascular morphogenesis. Mol Cell Biol 24, 96–104.

    Article  PubMed  CAS  Google Scholar 

  • Zou, J., Zhu, F., Liu, J., Wang, W., Zhang, R., Garlisi, C. G., Liu, Y. H., Wang, S., Shah, H., Wan, Y., and Umland, S. P. (2004). Catalytic activity of human ADAM33. J Biol Chem 279, 9818–30.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Alfandari, D. (2005). ADAM13 Function in Development. In: Hooper, N.M., Lendeckel, U. (eds) The ADAM Family of Proteases. Proteases in Biology and Disease, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25151-0_7

Download citation

Publish with us

Policies and ethics