Skip to main content

SMART Drug Design: Novel Phosphopeptide and ATP Mimetic-Based Small Molecule Inhibitors of the Oncogenic Protein Kinase pp60src (Src)

  • Chapter
Proteomics and Protein-Protein Interactions

Part of the book series: Protein Reviews ((PRON,volume 3))

Abstract

Over the past two decades, the oncogenic protein kinase pp60src (Src) has been the focus of tremendous biological investigations that have identified it to be a promising therapeutic target for both cancer and bone disease drug discovery. The molecular, cellular and in vivo functional properties of Src provide a detailed framework for strategies to advance small molecule inhibitors relative to both its noncatalytic (e.g., SH2) and catalytic (i.e., kinase) domains. This chapter illustrates phoshopeptide mimetic-based small molecule Src SH2 inhibitors and ATP mimetic-based, small molecule Src kinase inhibitors. Key lead compounds exemplifying Src SH2 and Src kinase inhibitors are described with respect to structural biology, drug design and biological activity (in vitro and in vivo). The term SMART refers to small molecule ARIAD therapeutics that has been particularly focused on generating and optimizing novel lead compounds such as AP22408 and AP23464. AP22408 is a prototype bone-targeted Src SH2 inhibitor that blocks binding to phosphorylated ligands and was first to achieve in vivo proof-of-concept in a bone disease model. AP23451 is a second-generation, bone-targeted Src inhibitor and determined to be effective in both osteolytic bone metastasis and osteoporosis in vivo models. AP23464 is a prototype Src kinase inhibitor that is competitive to ATP and is extraordinarily potent in vitro and provides proof-of-concept in Src-dependent, cell assays representing both bone degrading osteoclasts and cancer cells. X-ray crystallographic structures of the aforementioned Src SH2 and Src kinase inhibitors provide insight to SMART drug design strategies. Second-generation Src kinase inhibitors are amidst preclinical and clinical drug development, and such small molecules illustrate varying template classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abu-Amer, Y., Ross, F.P., Schlesinger, P., Tondravi, M.M., and Teitelbaum, S.L. (1997). Substrate recognition by osteoclast precursors induces c-Src/microtubule association. J. Cell Biol. 137:247–258.

    Article  PubMed  CAS  Google Scholar 

  • Alexandropoulos, K., and Baltimore, D. (1996). Coordinate activation of c-Src by SH3-and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10:1341–1355.

    PubMed  CAS  Google Scholar 

  • Alfaro-Lopez, J., Yuan, W., Phan, B.C., Kamath, J., Lou, Q., Lam, K.S., and Hruby, V.J. (1998). Discovery of a novel series of potent and selective substrate-based inhibitors of pp60c-src protein tyrosine kinase: conformational and topographical constraints in peptide design. J. Med. Chem. 41:2252–2260.

    Article  PubMed  CAS  Google Scholar 

  • Alligood, K.J., Charifson, P.S., Crosby, R., Consler, T.G., Feldman, P.L., Gampe, R.T. Jr., Gilmer, T.M., Jordan, S.R., Milstead, M.W., Mohr, C., Peel, M.R., Rocque, W., Rodriguez, M., Rusnak, D.W., Shewchuk, L.M., and Sternbach, D.D. (1998). The formation of a covalent complex between a dipeptide ligand and the SRC SH2 domain. Bioorg. Med. Chem. Lett. 8:1189–1194.

    Article  PubMed  CAS  Google Scholar 

  • Avizienyte, E., Wyke, A.W., Jones, R.J., McLean, G.W., Westhoff, M.A., Brunton, V.G., and Frame, M.C. (2002). Src-induced de-regulation of E-cadherin in colon cancer cells requires integrin signalling. Nat. Cell Biol. 4:632–638.

    PubMed  CAS  Google Scholar 

  • Belsches-Jablonski, A.P., Biscardi, J.S., Peavy, D.R., Tice, D.A., Romney, D.A., and Parsons, S.J. (2001). Src family kinases and HER2 interactions in human breast cancer cell growth and survival. Oncogene 20:1464–1475.

    Article  CAS  Google Scholar 

  • Biscardi, J.S., Tice, D.A., and Parson, S.J. (1999). c-Src, receptor tyrosine kinases, and human cancer. Adv. Cancer Res. 76:61–119.

    PubMed  CAS  Google Scholar 

  • Bishop, A.C., and Shokat, K.M. (1999). Acquisition of inhibitor-senstive protein kinases through protein design. Pharmacol. Ther. 82:337–346.

    Article  PubMed  CAS  Google Scholar 

  • Bishop, A.C., Shah, K., Liu, Y., Witucki, L, Kung, C., and Shokat, K.M. (1998). Design of allele-specific inhibitors to probe protein kinase signaling. Curr. Biol. 8:257–266.

    Article  PubMed  CAS  Google Scholar 

  • Blake, R.A., Broome, M.A., Liu, X., Wu, J., Gishizky, M., Sun, L., and Courtneidge, S.A. (2000). SU6656, a selective Src family kinase inhibitor used to probe growth factor signaling. Mol. Cell. Biol. 20:9018–9027.

    Article  PubMed  CAS  Google Scholar 

  • Bohacek, R.S., Dalgarno, D.C., Hatada, M., Jacobsen, V.A., Lynch, B.A., Macek, K.J., Merry, T., Metcalf, C.A. III, Narula, S.S., Sawyer, T.K., Shakespeare, W.C., Violette, S.M., and Weigele, M. (2001). X-ray structure of citrate bound to Src SH2 leads to high-affinity, bone-targeted Src SH2 inhibitor. J. Med. Chem. 44:660–663.

    Article  PubMed  CAS  Google Scholar 

  • Boschelli, D.H. (2002). 4-Anilino-3-quinolinecarbonitriles: an emerging class of kinase inhibitors. Curr. Top. Med. Chem. 2:1051–1063.

    Article  PubMed  CAS  Google Scholar 

  • Boschelli, D.H., Wang, Y.D., Ye, F., Wu, B., Zhang, N., Dutia, M., Powell, D.W., Wissner, A., Arndt, K., Weber, J.M., Boschelli, F. (2001). Synthesis and Src kinase inhibitory activity of a series of 4-phenylamino-3-quinolinecarbonitriles. J. Med. Chem. 44:822–833.

    Article  PubMed  CAS  Google Scholar 

  • Boschelli, D.H., Wang, Y.D., Johnson, S., Wu, B., Ye, F., Barrios Sosa, A.C., Golas, J.M., and Boschelli, F. (2004). 7-Alkoxy-4-phenylamino-quinolinecarbonitriles as dual inhibitors of Src and Abl kinases. J. Med. Chem. 47:599–601.

    Google Scholar 

  • Boyce, B.F., Yoneda, T., Lowe, C., Soriano, P., and Mundy, G.R. (1992). Requirement of pp60c-src expression for osteoclasts to form ruffled borders and resorb bone in mice. J. Clin. Invest. 90:1622–1627.

    PubMed  CAS  Google Scholar 

  • Boyce, B.F., Xing, L., Shakespeare, W., Wang, Y., Dalgarno, D., Iuliucci, J., and Sawyer, T. (2003). Regulation of bone remodeling and emerging breakthrough drugs for osteoporosis and osteolytic bone metastases. Kidney Int. 85:52–55.

    Google Scholar 

  • Bradshaw, J.M., and Waksman, G. (2002). Molecular recognition by SH2 domains. Adv. Protein Chem. 61:161–210.

    PubMed  Google Scholar 

  • Bridges, A.J. (1995). The emerging role of protein phosphoryation and cell cycle control in tumor progression. ChemTracts Org. Chem. 8:73–107.

    CAS  Google Scholar 

  • Bridges, A.J. (2001a). Chemical inhibitors of protein kinases. Chem. Rev. 101:2541–2572.

    Article  PubMed  CAS  Google Scholar 

  • Bridges, A.J. (2001b). Current progress towards the development of tyrosine kinase inhibitors as anticancer agents. In: Bowman, W.C., Fitzgerald, J.D., Taylor, J.B. (eds.), Emerging Drugs: The Prospect for Improved Medicines. Ashley Publications, London, pp.:279–292.

    Google Scholar 

  • Brugge, J.S., and Erikson, R.L. (1977). Identification of a transformation-specific antigen induced by an avian sarcoma virus. Nature 269:346–348.

    Article  PubMed  CAS  Google Scholar 

  • Buchanan, J.L., Bohacek, R.S., Luke, G.P., Hatada, M., Lu, X., Dalgarno, D.C., Narula, S.S., Yuan, R., and Holt, D.A. (1999). Structure-based design and synthesis of a novel class of Src SH2 inhibitors. Bioorg. Med. Chem. Lett. 9:2353–2358.

    Article  PubMed  CAS  Google Scholar 

  • Burke, T.R., Jr., and Lee, K. (2003). Phosphotyrosyl mimetics in the development of signal transduction inhibitors. Acc. Chem. Res. 36:426–400.

    Article  PubMed  CAS  Google Scholar 

  • Burke, T.R., Jr., Yao, Z.-J., Liu, D.-G., Voigt, J., and Gao, Y. (2001). Phosphoryltyrosyl mimetics in the design of peptide-based signal transduction inhibitors. Biopolymers (Peptide Sci.) 60:32–44.

    Article  CAS  Google Scholar 

  • Carlomagno, F., Vitagliano, D., Guida, T., Napolitano, M., Veccio, G., Fusco, A., Gazit, A., Levitzki, A., and Santoro, M. (2002). The kinase inhibitor PP1 blocks tumorogenesis induced by RET oncogenes. Cancer Res. 62:1077–1082.

    PubMed  CAS  Google Scholar 

  • Catlett-Falcone, R., Dalton, W.S., and Jove, R. (1999). STAT proteins as novel targets for cancer therapy. Signal transducer and activatior of transcription. Curr. Opin. Oncol. 11:490–496.

    Article  PubMed  CAS  Google Scholar 

  • Clackson, T., Metcalf C.A., III, Rozamus, L.W., Rivera, V.M., Knowles, H.L., Wardwell, S.D., Wang, X., Burns, K.D., Roses, J.B., Graytock, C., Pradeepan, S., Notari, S.D., Bohacek, R.S., Berstein, D.L., Weigele, M., Dalgarno, D.C., and Iuliucci, J.D. (2002). Regression of tumor xenografts in mice after oral administration of AP23573, a novel mTOR inhibitor that induces tumor starvation. Proc. AACR 43:ALB-95.

    Google Scholar 

  • Cody, W.L., Lin, Z., Panek, R.L., Rose, D.W., and Rubin, J.R. (2000). Progress in the development of inhibitors of SH2 domains. Curr. Pharm. Des. 6:59–98.

    Article  PubMed  CAS  Google Scholar 

  • Collet, M.S., and Erikson, R.L. (1978). Protein kinase activity associated with avian sarcoma virus src gene product. Proc. Natl. Acad. Sci. USA 75:2021–2024.

    Article  Google Scholar 

  • Dalgarno, D.C., Botfield, M.C., and Rickles, R.J. (1997). SH3 domains and drug design: ligands, structure, and biological function. Biopolymers (Peptide Sci.) 43:383–400.

    Article  CAS  Google Scholar 

  • Dalgarno, D.C., Metcalf, C.A., Shakespeare, W.C., and Sawyer, T.K. (2000). Signal transduction drug discovery: targets, mechanisms, and structure-based design. Curr. Opin. Drug Dis. Dev. 3:549–564.

    CAS  Google Scholar 

  • Dalgarno, D., Bohacek, R., Stehle, T., Narula, S., Metcalf III, C., Shakespeare, W., Sundaramoorthi, R., Keenan, T., Wang, Y., Keats, J. Ram, M., Adams, S., van Schravendijk, M.R., Weigele, M. and Sawyer, T.K. (2003). Structure-based design and X-ray crystallographic analysis of a potent and selective Src tyrosine kinase inhibitor for the treatment of cancer. In: AACR-NCI-EORTC Conference on Molecular Targets and Cancer Therapeutics, November 17–23, Boston, MA, Abstract A5.

    Google Scholar 

  • Deprez, P., Baholet, I., Burlet, S., Lange, G., Amengual, R., Schoot, B., Vermond, A., Mandine, E., Lesuisse, D. (2002a). Discovery of highly potent Src SH2 binders: structure-activity studies and X-ray structures. Bioorg. Med. Chem. Lett. 12:1291–1294

    Article  PubMed  CAS  Google Scholar 

  • Deprez, P., Mandine, E., Gofflo, D., Meunier, S., and Lesuisse, D. (2002b). Small ligands interacting with the phosphotyrosine binding pocket of the Src SH2 protein. Bioorg. Med. Chem. Lett. 12:1295–1298.

    Article  PubMed  CAS  Google Scholar 

  • Dreyer, M.K., Borcherding, D.R., Dumont, J.A., Peet, N.P., Tsay, J.T., Wright, P.S., Bitonti, A.J., Shen, J., and Kim, S.H. (2001). Crystal structure of human cyclin-dependent kinase 2 in complex with the adenine-derived inhibitor H717. J. Med. Chem. 44:524–530.

    Article  PubMed  CAS  Google Scholar 

  • Dumas, J. (2001). Protein kinase inhibitors: emerging pharmacophores 1997-2000. Expert Opin. Ther. Patents 11:405–429.

    Article  CAS  Google Scholar 

  • Duong, L.T., Lakkakorpi, P.T., Nakamura, I., Machwate, M., Nagy, R.M., and Rodan, G.A. (1998). Pyk2 in osteoclasts is an adhesion kinase, localized in the sealing zone, activation by ligation of alpha(v)beta3 integrin and phosphorylated by Src kinase. J. Clin. Invest. 102:881–892.

    PubMed  CAS  Google Scholar 

  • Egan, C., Pang, A., Durda, D., Cheng, H.C., Wang, J.H., and Fujita, D.J. (1999). Activation of Src in human breast tumor cell lines: elevated levels of phosphotyrosine phosphatase activity that preferentially recognizes the Src carboxy terminal negative regulatory tyrosine 530. Oncogene 18:1227–1237.

    Article  PubMed  CAS  Google Scholar 

  • Eliceiri, B.P., Paul, R., Schwartzbert, P.I., Hood, J.D., Leng, J., and Cheresch, D.A. (1999). Selective requirement for Src kinases during VEGF-induced angiogenesis and vascular permeability. Mol. Cell 4:915–924.

    Article  PubMed  CAS  Google Scholar 

  • Ellis, L.M., Staley, C.A., Liu, W., Fleming, R.Y., Parikh, N.U., Bucana, C.D., and Gallick, G.E. (1998). Downregulation of vascular endothelial growth factor in a human colon carcinoma cell line transfected with an antisense expression vector specific for c-Src. J. Biol. Chem. 273:1052–1057.

    Article  PubMed  CAS  Google Scholar 

  • Erpel, T., and Courtneidge, S.A. (1995). Src family protein tyrosine kinases and cellular signal transduction pathways. Curr. Opin. Cell Biol. 7:176–182.

    Article  PubMed  CAS  Google Scholar 

  • Fleisch, H. (2001), Bisphosphonates: mechanisms of action. Expert Opini. Ther. Patents 11:1371–1381.

    Article  CAS  Google Scholar 

  • Frame, M.C. (2002). Src in cancer: deregulation and consequences for cell behavior. Biochim. Biophys. Acta 1602:114–130.

    PubMed  CAS  Google Scholar 

  • Gane, P.J., and Dean, P.M. (2000). Recent advances in structure-based rational drug design. Curr. Opin. Struct. Biol. 10:401–404.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Echevarria, C. (2001). Antagonists of the Src homology 2 (SH2) domains of Grb2, Src, Lck and ZAP-70. Curr. Med. Chem. 8:589–604.

    Google Scholar 

  • Geddes, A.D., D’Souaza, S.M., Ebetino, F.H., and Ibbotson, K.J. (1994). Bisphosphonates: structure activity relationships and therapeutic implications. Bone Miner. Res. 8:265–306.

    CAS  Google Scholar 

  • Gilmer, T., Rodriguez, M., Jordan, S., Crosby, R., Alligood, K., Green, M., Kimery, M., Wagner, C., Kinder, D., Charifson, P., Hassell, A.M., Willard, D., Luther, M., Rusnak, D., Sternbach, D.D., Mehrotra, M., Peel, M., Shampine, L., Davis, R., Robbins, J., Patel, I.R., Kassel, D., Burkhart, W., Moyer, M., Bradshaw, T., and Berman, J. (1994). Peptide inhibitors of Src SH3-SH2-phosphoprotein interactions. J. Biol. Chem. 269:31711–31719.

    PubMed  CAS  Google Scholar 

  • Gmeiner, W.H., and Horita, D.A. (2001). Implications of SH3 domain structure and dynamics for protein regulation and drug design. Cell Biochem. Biophys. 35:127–140.

    Article  PubMed  CAS  Google Scholar 

  • Gould, C. and Wong, C.F. (2002). Designing specific protein kinase inhibitors: insights from computer simulations and comparative sequence/structure analysis. Pharmacol. Ther. 93:169–178.

    Article  PubMed  CAS  Google Scholar 

  • Gray, N.S., Wodicka, L., Thunnissen, A.M., Norman, T.C., Kwon, S., Espinoza, F.H., Morgan, D.O., Barnes, G., LeClerc, S., Meijer, L., Kim, S.H., Lockhart, D.J., and Schultz, P.G. (1998). Exploiting chemical libraries, structure, and genomics in the search for kinase inhibitors. Science 281:533–538.

    Article  PubMed  CAS  Google Scholar 

  • Hall, T.J., Schaeriblin, M., and Missbach, M. (1994). Evidence that c-Src is involved in the process of osteoclastic bone resorption. Biochem. Biophys. Res. Commun. 199:1237–1244.

    Article  PubMed  CAS  Google Scholar 

  • Hamby, J.M., Connolly, C.J., Schroeder, M.C., Winters, R.T., Showalter, H.D., Panek, R.L., Major, T.C., Olsewski, B., Ryan, M.J., Dahring, T., Lu, G.H., Keiser, J., Amar, A., Shen, C., Kraker, A.J., Slintak, V., Nelson, J.M., Fry, D.W., Bradford, L., Hallak, H., and Doherty, A.M. (1997). Structure-activity relationships for a novel series of pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. J. Med. Chem. 40:2296–2303.

    Article  PubMed  CAS  Google Scholar 

  • Hanke, J.H., Gardner, J.P., Dow, R.L., Changelian, P.S., Brissette, W.H., Weringer, E.J., Pollok, B.A., and Connelly, P.A. (1996). Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. J. Biol. Chem. 271:695–701.

    Article  PubMed  CAS  Google Scholar 

  • Hatada, M.H., Lu, X., Laird, E.R., Green, J., Morgenstern, J.P., Lou, M., Marr, C.S., Phillips, T.B., Ram, M.K., Theriault, K., Zoller, M.J., and Karas, J.L. (1995). Molecular basis for interaction of the protein tyrosine kinase ZAP-70 with the T-cell receptor. Nature 377:32–38.

    Article  PubMed  CAS  Google Scholar 

  • Hubbard, S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16:5572–5581.

    Article  PubMed  CAS  Google Scholar 

  • Hunter, T., and Sefton, B.M. (1980). Transforming gene product of Rous sarcoma virus phosphorylates tyrosine. Proc. Natl. Acad. Sci. USA 77:1311–1315.

    Article  PubMed  CAS  Google Scholar 

  • Huron, D.R., Corre, M.E., Kraker, A.J., Sawyers, C.L., Rosen, N., and Moasser, M.M. (2003). A novel pyridopyrimidine inhibitor of Abl kinase is a picomolar inhibitor of Bcr-Abl-driven K562 cells and is effective against STI571-resistant Bcr-Abl mutants. Clin. Cancer Res. 9:1267–1273.

    PubMed  CAS  Google Scholar 

  • Irby, R.B., Mao, W., Coppola, D., Kang, J., Loubeau, J.M., Trudeau, W., Karl, R., Fujita, D.J., Jove, R., and Yeatman, T.J. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21:187–190.

    Article  PubMed  CAS  Google Scholar 

  • Jeschke, M., Brandi, M.-L., and Susa, M. (1998). Expression of Src family kinases and their putative substrates in the human preosteoclastic cell line FLG 29.1. J. Bone Miner. Res. 13:1880–1889.

    Article  PubMed  CAS  Google Scholar 

  • Joseph-McCarthy, D. (1999). Computational approaches to structure-based ligand design. Pharmacol. Ther. 84:179–191.

    Article  PubMed  CAS  Google Scholar 

  • Karni, R., Jove, R., and Levitzki, A. (1999). Inhibition of pp60c-Src reduces Bcl-Xl expression and reverses the transformed phenotype of cells overexpressing EGF and HER-2 receptors. Oncogene 18:4654–462.

    Article  PubMed  CAS  Google Scholar 

  • Kawahata, N., Yang, M.G., Luke, G.P., Shakespeare, W.C., Sundaramoorthi, R., Wang, Y., Johnson, D., Merry, T., Violette, S., Guan, W., Bartlett, C., Smith, J., Hatada, M., Lu, X., Dalgarno, D.C., Eyermann, C.J., Bohacek, R.S., and Sawyer, T.K. (2001). A novel phosphotyrosine mimetic 4′-carboxymethyloxy-3′-phosphophenylalanine (Cpp): exploitation in the design of nonpeptide inhibitors of pp60src SH2 domain. Bioorg. Med. Chem. Lett. 11:2319–2323.

    Article  PubMed  CAS  Google Scholar 

  • Kauffman, E.C., Robinson, V.L., Stadler, W.M., Sokoloff, M.H., and Rinker-Schaeffer, C.W. (2003). Metastasis suppression: the evolving role of metastasis suppressor genes for regulating cancer cell growth at the secondary site. J. Urol. 169:1122–1133.

    Article  PubMed  Google Scholar 

  • Klebe, G. (2000). Recent developments in structure-based drug design. J. Mol. Med. 78:269–281.

    Article  PubMed  CAS  Google Scholar 

  • Klohs, W.D., Fry, D.W., and Kraker, A.J. (1997). Inhibitors of tyrosine kinase. Curr. Opin. Oncol. 9:562–268.

    PubMed  CAS  Google Scholar 

  • Klutchko, S.R., Hamby, J.M., Boschelli, D.H., Wu, Z., Kraker, A.J., Amar, A.M., Hartl, B.G., Shen, C., Klohs, W.D., Steinkampf, R.W., Driscoll, D.L., Nelson, J.M., Elliott, W.L., Roberts, B.J., Stoner, C.L., Vincent, P.W., Dykes, D.J., Panek, R.L., Lu, G.H., Major, T.C., Dahring, T.K., Hallak, H., Bradford, L.A., Showalter, H.D., and Doherty, A.M. (1998). 2-Substituted aminopyrido[2,3-d]pyrimidin-7(8H)-ones. Structure-activity relationships against selected tyrosine kinases and in vitro and in vivo anticancer activity. J. Med. Chem. 41:3276–3292.

    Article  PubMed  CAS  Google Scholar 

  • Kraker, A.J., Hartl, B.G., Amar, A.M., Barvian, M.R., Showalter, H.D., and Moore, C.W. (2000). Biochemical and cellular effects of c-Src kinase-selective pyrido[2,3-d]pyrimidine tyrosine kinase inhibitors. Biochem. Pharmacol. 60:885–898.

    Article  PubMed  CAS  Google Scholar 

  • Kraybill, B.C., Elkin, L.L. Blethrow, J.D., Morgan, D.O., and Shokat, K.M. (2002). Inhibitor scaffolds as new allele specific kinase substrates. J. Am. Chem. Soc. 124:12118–121128.

    Article  PubMed  CAS  Google Scholar 

  • Lamers, M.B., Antson, A.A., Hukbbard, R.E., Scott, R.K., and Williams, D.H. (1999). Structure of Cterminal Src kinase (CSK) in complex with staurosporine. J. Mol. Biol. 28:713–725.

    Article  Google Scholar 

  • Lange, G., Lesuisse, D., Deprez, P., Schoot, B., Loenz, P., Marquette, J.-P., Broto, P., Sarubbi, E., and Mandine, E. (2002). Principles governing the binding of a class of non-peptidic inhibitors to the SH2 domain of Src studied by X-ray analysis. J. Med. Chem. 45:2915–2922.

    Article  PubMed  CAS  Google Scholar 

  • Lawrence, D.S., and Niu, J. (1998). Protein kinase inhibitors: the tyrosine-specific kinases. Pharmacol. Ther. 77:81–114.

    Article  PubMed  CAS  Google Scholar 

  • Legraverend, M., Tunnah, P., Noble, M., Ducrot, P., Ludwig, O., Grierson, D.S., Leost, M., Meijer, L., and Endicott, J. (2000). Cyclin-dependent kinase inhibition by new C-2 alkynylated purine derivatives and molecular structure of a CDK2-inhibitor complex. J. Med. Chem. 43:1282–1292.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse, D., Deprez, P., Albert, E., Duc, T.T., Sortais, B., Goffe, D., Jean-Baptiste, V., Marquette, J.-P., Schoot, B., Sarubbi, E., Lange, G., Broto, P., and Mandine, E. (2001a). Discovery of thioazepinone ligands for Src SH2: from non-specific to specific binding. Bioorg. Med. Chem. Lett. 11:2127–2131.

    Article  PubMed  CAS  Google Scholar 

  • Lesuisse, D., Deprez, P., Bernard, D., Broto, P., Delettre, G., Jean-Baptiste, V., Marquette, J.P., Sarubti, E., Schoot, B., Mandine, E., and Lange, G. (2001b). SAR by crystallography: a new approach combining screening and rational drug design. Application to the discovery of nanomolar Src SH2 binders. Chim. Nouv. 19:3240–3241.

    CAS  Google Scholar 

  • Lesuisse. D., Lange, G., Deprez, P., Benard, D., Schoot, B., Delettre, G., Marquette, J.P., Broto, P., Jean-Baptiste, V., Bichet, P., Sarubbi, E., and Mandine, E. (2002). SAR and X-ray. A new approach combining fragment-based screening and rational drug design: application to the discovery of nanomolar inhibitors of Src SH2. J. Med. Chem. 45:2379–2387.

    Article  PubMed  CAS  Google Scholar 

  • Levinson, A.D., Oppermann, H., Levintow, L., Varmus, H.E., and Bishop, J.M. (1978). Evidence that the transforming gene of avian sarcoma virus encodes a protein kinase associated with a phosphoprotein. Cell 15:561–572.

    Article  PubMed  CAS  Google Scholar 

  • Levitzki, A., and Gazit, A. (1995). Tyrosine kinase inhibition: an approach to drug development. Science 267:1782–1788.

    Article  PubMed  CAS  Google Scholar 

  • Lowell, C.A., and Soriano, P. (1996). Knockouts of Src-family kinases: stiff bones, wimpy T cells, and bad memories. Genes Dev. 10:1845–1857.

    PubMed  CAS  Google Scholar 

  • Lunney, E.A., Para, K.S., Plummer, M.S., Shahripour, A., Holland, D., Rubin, J.R., Humblet, C., Fergus, J., Marks, J., Hubbell, S., Herrera, R., Saltiel, A.R., and Sawyer, T.K. (1997). Structure-based design of a novel series of nonpeptide ligands that bind to the pp60src SH2 domain. J. Am. Chem. Soc. 119:12471–12476.

    Article  CAS  Google Scholar 

  • Lutz, M.P., Esser, I.B., Flossmann-Kast, B.B., Vogelmann, R., Luhrs, H., Friess, H., Buchler, M.W., and Adler, G. (1998). Overexpression and activation of the tyrosine kinase Src in human pancreatic carcinoma. Biochem. Biophys. Res. Commun. 243:503–508.

    Article  PubMed  CAS  Google Scholar 

  • Maa, M.-C., Leu, T.H., McCarley, D.J., Schatzman, R.C., and Parsons, S.J. (1995). Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: implications for the etiology of multiple human cancers. Proc. Natl. Acad. Sci. USA 92:6981–6985.

    Article  PubMed  CAS  Google Scholar 

  • Maly, D.J., Choong, I.C., and Ellman, J.A. (2000). Combinatorial target-guided ligand assembly: identification of potent subtype-selective c-Src inhibitors. Proc. Natl. Acad. Sci. USA 97:2419–2424.

    Article  PubMed  CAS  Google Scholar 

  • Mao, W., Irby, R., Coppola, D., Fu, L., Wloch, M., Turner, J., Yu, H., Garcia, R., Jove, R., and Yeatman, T.J. (1997). Activation of c-Src by receptor tyrosine kinases in human colon cancer cells with high metastatic potential. Oncogene 15:3083–3090.

    Article  PubMed  CAS  Google Scholar 

  • Martin, G.S. (2001). The hunting of the Src. Nat. Rev. Mol. Cell Biol. 2:467–475.

    Article  PubMed  CAS  Google Scholar 

  • Marzia, M., Sims, N.A., Voit, S., Migliaccio, S., Taranta, A., Bernardini, S., Faraggiana, T., Yoneda, T., Mundy, G.R., Boyce, B.F., Baron, R., and Teti, A. (2000). Decreased c-Src expression enhances osteoblast differentiation and bone formation. J. Cell Biol. 151:311–320.

    Article  PubMed  CAS  Google Scholar 

  • McMahon, G., Sukn, L., Liang, C., and Tang, C. (1998). Protein kinase inhibitors: structural determinants for target specificity. Curr. Opin. Drug Disc. Dev. 1:131–146.

    CAS  Google Scholar 

  • McMartin, C., and Bohacek, R.S. (1997). QXP: powerful, rapid computer algorithms for structure-based drug design. J. Comput. Aided Mol. Design 11:333–344.

    Article  CAS  Google Scholar 

  • McTigue, M.A., Wickersham, J.A., Pinko, C., Showalter, R.E., Parast, C.V., Tempczyk-Russell, A., Gehring, M.R., Mroczkowski, B., Kan, C.C., Villafranca, J.E., and Appelt, K. (1999). Crystal structure of the kinase domain of human vascular endothelial growth factor receptor 2: a key enzyme in angiogenesis. Struct. Fold. Des. 7:319–330.

    Article  CAS  Google Scholar 

  • Menke, A., Philipp, C., Vogelmann, R., Seidel, B., Lutz, M.P., Adler, G., and Wedlich, D. (2001). Downregulation of E-cadherin gene expression by collagen type I and type II in pancreatic cell lines. Cancer Res. 61:3508–3517.

    PubMed  CAS  Google Scholar 

  • Metcalf, C.A., and Sawyer, T.K. (2004). Src homology-2 domains and structure-based, small molecule library approaches to drug discovery. In: (A. Makriyannis, A., and Biegel, D. (eds.), Drug Discovery Strategies and Methods. Marcel Dekker, New York, pp. 23–59.

    Google Scholar 

  • Metcalf III., C.A., Vu, C.B., Sundaramoorthi, R., Jacobsen, V.A., Laborde, E.A., Green, J., Green, Y., Macek, K.J., Merry, T.J., Pradeepan, S.G., Uesugi, M., Varkhedkar, V.M., and Holt, D.A., (1998). Novel phosphate ester-linked resins: the solid-phase generation of phenyl phosphate-containing compounds for SH2 inhibition. Tetrahed. Lett. 39:3435–3438.

    Article  CAS  Google Scholar 

  • Metcalf III, C.A., Eyermann, C.J., Bohacek, R.S., Haraldson, C.A., Varkhedkar, V.M., Lynch, B.A., Barlett, C., Violette, S.M., and Sawyer, T.K. (2000). Structure-based design and parallel synthesis of phosphorylated nonpeptides to explore hydrophobic binding at the Src SH2 domain. J. Comb. Chem. 2:305–313.

    Article  PubMed  CAS  Google Scholar 

  • Metcalf, C., van Schravendijk, M.R., Dalgarno, D., and Sawyer, T.K. (2002). Targeting protein kinases for bone disease: discovery and development of Src inhibitors. Curr. Pharm. Design 8:2049–2075.

    Article  CAS  Google Scholar 

  • Metcalf, C., III, Wang, Y., Shakespeare, W., Sundaramoorthi, R., Keenan, T., Dalgarno, D., Bohacek, R., Burns, K., Roses, J., van Schravendijk, M.R., Ram, M., Keats, J., Liou, S., Adams, S., Snodgrass, J., Rivera, V., Weigele, M., Iuliucci, J., Clackson, T., Frame, M., Brunton, V., and Sawyer, T. (2003a). Structure-based methods to design potent and selective Src/Abl dual inhibitors and their development as antileukemic and antimetastatic agents. In: ACS Abstracts (226th ACS National Meeting). New York Sept 7–11, 2003.

    Google Scholar 

  • Metcalf, C., III, Wang, Y., Shakespeare, W., Sundaramoorthi, R., Keenan, T., Dalgarno, D., Bohacek, R., Burns, K., Roses, J., van Schravendijk, M.R., Ram, M., Keats, J., Liou, S., Rivera, V., Weigele, M., Iuliucci, J., Clackson, T., Brunton, V., and Sawyer, T. (2003b). Discovery of potent and selective Src inhibitors and their development as antitumor and antimetastatic agents. Proc. AACR 44:A1716.

    Google Scholar 

  • Metcalf III, C.A., Bohacek, R., Rozamus, L.W., Burns, K.D., Roses, J.B., Rivera, V.M., Tang, H., Keats, J.A., Dalgarno, D.C., Snodgrass, J., Berstein, D.L., Weigele, M., and Clackson, T. (2004). Structurebased design of AP23573, a phosphorus-containing analog of rapamycin for anti-tumor therapy. Proc. AACR 45:A2476.

    Google Scholar 

  • Missbach, M., Jeschke, M., Feyen, J., Muller, K., Glatt, M., Green, J., Susa, M. (1999). A novel inhibitor of the tyrosine kinase Src suppresses phosphorylation of its major cellular substrates and reduces bone resorption in vitro and in rodent models in vivo. Bone 24:437–449.

    Article  PubMed  CAS  Google Scholar 

  • Missbach, M., Attmann, E., and Susa, M. (2000). Tyrosine kinase inhibition in bone metabolism. Curr. Opin. Drug Disc. 3:541–548.

    CAS  Google Scholar 

  • Mohammadi, M., McMahon, G., Sun, L., Tang, C., Hirth, P., Yeh, B.K., Hubbard, S.R., and Schlessinger, J. (1997). Structures of the tyrosine kinase domain of fibroblast growth factor receptor in complex with inhibitors. Science 276:955–960.

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi, M., Froum, S., Hamby, J.M., Schroeder, M.C., Panek, R.L., Lu, G.H., Eliseenkova, A.V., Green, D., Schlessinger, J., and Hubbard, S.R. (1998). Crystal structure of an angiogenesis inhibitor bound to the FGF receptor tyrosine kinase. EMBO J. 17:5896–5904.

    Article  PubMed  CAS  Google Scholar 

  • Muller, G. (2000). Peptidomimetic SH2 domain antagonists for targeting signal transduction. Top. Curr. Chem. 211:17–59.

    Google Scholar 

  • Musacchio, A. (2002). How SH3 domains recognize proline. Adv. Protein Chem. 61:211–268.

    Article  PubMed  Google Scholar 

  • O’Hare, T., Pollock, R., Stoffreger, E.P., Keats, J.A., Abdullah, O.M., Moseson, E.M., Rivera, V.M., Tang, H., Metcalf III, C.A., Bohacek, R.S., Wang, Y., Sundaramoorthi, R., Shakespeare, W.C., Dalgarno, D.C., Clackson, T., Sawyer, T.K., Deininger, M.W., Drucker, B.J. (2004). Inhibition of wild-type and mutant Bcr-Abl by Ap23464, a potent ATP-bised oncogenic protein kinas: inhibitor: Implications for CML. Blood 104:2532–2539.

    Article  PubMed  CAS  Google Scholar 

  • Para, K., Lunney, E.A., Plummer, M., Stankovic, C.J., Shahripour, A., Holland, D., Rubin, J.R., Humblet, C., Fergus, J., Marks, J., Hubbell, S., Herrera, R., Saltiel, A.R., and Sawyer, T.K. (1999). Structure-based de novo design and discovery of nonpeptide antagonists of the pp60src SH2 domain. In: Tam, J., and Kaumaya, P. (eds.), Proceedings of the Fifteenth American Peptide Symposium. Kluwer, Dordrecht, The Netherlands, pp. 173–175.

    Google Scholar 

  • Paul, R., Zhang, Z.G., Eliceiri, B.P., Jiang, Q., Boccia, A.D., Zhang, R.L., Chopp, M., and Cheresh, D.A. (2001). Src deficiency or blockade of Src activity in mice provides cerebral protection during stroke. Nat. Med. 7:222–227.

    Article  PubMed  CAS  Google Scholar 

  • Pawson, T. (2004). Specificity in signal transduction: from phosphotyrosine-SH2 domain interactions to complex cellular systems. Cell 116:191–203.

    Article  PubMed  CAS  Google Scholar 

  • Ple, P.A., Green, T.P., Hennequin, L.F., Curwen, J., Fennell, M., Allen, J., Lambert-van der Brempt, C., and Costello, G. (2004). Discovery of a new class of anilinoquinazoline inhibitors with high affinity and specificity for the tyrosine kinase domain of c-Src. J. Med. Chem. 47:871–887.

    Article  PubMed  CAS  Google Scholar 

  • Plummer, M.S., Lunney, E.A., Para, K.S., Prasad, J.V., Shahripour, A., Singh, J., Stankovic, C.J., Humblet, C., Fergus, J.H., Marks, J.S., and Sawyer, T.K. (1996). Hydrophobic D-amino acids in the design of peptide ligands for the pp60src SH2 domain. Drug Des. Discov. 13:75–81.

    PubMed  CAS  Google Scholar 

  • Plummer, M.S., Holland, D.R., Shahripour, A., Lunney, E.A., Fergus, J.H., Marks, J.S., McConnell, P., Mueller, W.T., and Sawyer, T.K. (1997a). Design, synthesis, and cocrystal structure of a nonpeptide Src SH2 domain ligand J. Med. Chem. 40:3710–3725.

    Article  Google Scholar 

  • Plummer, M.S., Lunney, E.A., Para, K.S., Shahripour, A., Stankovic, C.J., Humblet, C., Fergus, J.H., Marks, J.S., Herrera, R., Hubbell, S., Saltiel, A., and Sawyer, T.K. (1997b). Design of peptidomimetic ligands for the pp60src SH2 domain. Bioorg. Med. Chem. 5:41–47.

    Article  PubMed  CAS  Google Scholar 

  • Rahuel, J., Gay, B., Erdmann, D., Strauss, A., Garcia-Echeverria, C., Furet, P., Caravatti, G., Fretz, H., Schoepfer, J., and Grutter, M.G. (1996). Structural basis for specificity of Grb2-SH2 revealed by a novel ligand binding mode. Nat. Struct. Biol. 3:586–589.

    Article  PubMed  CAS  Google Scholar 

  • Ramdas, L., Bunnin, B.A., Plunkett, M.J., Sun, G., Ellman, J., Gallick, G., and Budde, R.J.A. (1999). Benzodiazepine compounds as inhibitors of the Src protein tyrosine kinase: screening of a combinatorial library of 1,4-benzodiazepines. Arch. Biochem. Biophys. 368:394–300.

    Article  PubMed  CAS  Google Scholar 

  • Recchia, I., Rucci, N., Festuccia, C., Bologna, M., MacKay, A.R., Migliaccio, S., Longo, M., Susa, M., Fabbro, D., and Teti, A. (2003). Pyrrolopyrimidine c-Src inhibitors reduce growth, adhesion, motility and invasion of prostate cancer cells in vitro. Eur. J. Cancer 39:1927–1935.

    Article  PubMed  CAS  Google Scholar 

  • Recchia, I., Rucci, N., Funari, A., Migliaccio, S., Taranta, A., Longo, M., Kneissel, M., Susa, M., Fabbro, D., Teti, A. (2004). Reduction of c-Src activity by substituted 5,7-diphenyl-pyrrolo[2,3-d]-pyrimidines induces osteoclast apoptosis in vivo and in vitro. Involvement of ERK1/2 pathway. Bone 34: 65–79.

    Article  PubMed  CAS  Google Scholar 

  • Rickles, R.J., Henry, P.A., Guan, W., Azimioara, M., Shakespeare, W.C., Violette, S., Zoller, M.J. (1998). A novel mechanism-based mammalian cell assay for the identification of SH2-domain-specific proteinprotein inhibitors. Chem. Biol. 5:529–538.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.J. (2003). New insights into the molecular mechanisms of action of bisphosphonates. Curr. Pharm. Des. 9:2643–2658.

    Article  PubMed  CAS  Google Scholar 

  • Rogers, M.J., Gordon, S., Benford, H.L., Coxon, FP., Luckman, SP., Monkkonen, J, and Frith JC: (2000). Cellular and molecular mechanisms of action of bisphosphonates. Cancer 88(12, Suppl.): 2961–2978.

    Article  PubMed  CAS  Google Scholar 

  • Russello, S.V., and Shore, S.K. (2003). Src in human carcinogenesis. Front. Biosci. 8:1068–1073.

    Google Scholar 

  • Sawyer, T.K. (2004). Novel dual Src/Abl kinase inhibitors for cancer therapy. Keystone Symposium on Protein Kinases and Cancer: The Promise of Molecular-Based Therapies, February 24–29 2004, Tahoe City. CA.

    Google Scholar 

  • Sawyer, T.K., Boyce, B., Dalgarno, D., and Iuliucci, J. (2001). Src inhibitors: genomics to therapeutics. Expert Opin. Invest. Drugs 10:1327–1344.

    Article  CAS  Google Scholar 

  • Sawyer, T.K., Bohacek, R.S., Dalgarno, D.C., Eyermann, C. J., Kawahata, N., Metcalf, C., Shakespeare, W.C., Sundaramoorthi, R., Wang, Y., and Yang, M. (2002). Mini Rev. Med. Chem. 2:475–489.

    Article  PubMed  CAS  Google Scholar 

  • Sawyer, T.K., Bohacek, R.S., Metcalf, C.A., III, Shakespeare, W. C., Wang, Y., Sundaramoorthi, R., Keenan, T., Narula, S., Weigele, M., Dalgarno, D.C. (2003). Novel protein kinase inhibitors: SMART drug design technology. BioTechniques (Suppl) June:2–15.

    Google Scholar 

  • Scapin, G. (2000). Structural biology in drug design: selective protein kinase inhibitors. Drug Discov Today 7:601–611.

    Article  Google Scholar 

  • Schindler, T., Sicheri, F., Pico, A., Gazit, A., Levitzki, A., and Kuriyan, J. (1999). Crystal structure of Hck in complex with a Src family-selective tyrosine kinase inhibitor. Mol. Cell 3:639–648.

    Article  PubMed  CAS  Google Scholar 

  • Schindler, T., Bornmann, W., Pellicena, P., Miller, W.T., Clarkson, B., and Kuriyan, J. (2000). Structural mechanism for STI-571 inhibition of Abelson tyrosine kinase. Science 289:1938–1942.

    Article  PubMed  CAS  Google Scholar 

  • Sedlacek, H.H. (2000). Kinase inhibitors in cancer therapy. Drugs 59:435–476.

    Article  PubMed  CAS  Google Scholar 

  • Shakespeare, W.C. (2001). SH2 domain inhibition: a problem solved? Curr. Opin. Chem. Biol. 5:409–415.

    Article  PubMed  CAS  Google Scholar 

  • Shakespeare, W.C., Bohacek, R.S., Azimioara, M.D., Macek, K.J., Luke, G.P., Dalgarno, D.C., Hatada, M.H., Lu, X., Violette, S.M., Bartlett, C., and Sawyer, T.K. (2000a). Structure-based design of novel bicyclic inhibitors for the Src SH2 domain. J. Med. Chem. 43:3815–3819.

    Article  PubMed  CAS  Google Scholar 

  • Shakespeare, W., Yang, M., Bohacek, R., Cerasoli, F., Stebbins, K., Sundaramoorthi, R., Azimioara, M., Vu, C., Pradeepan, S., Metcalf, C. III, Haraldson, C., Merry, T., Dalgarno, D., Narula, S., Hatada, M., Lu, X., van Schravendijk, M.R., Adams, S., Violette, S., Smith, J., Guan, W., Bartlett, C., Herson, J., Iuliucci, J., Weigele, M., and Sawyer, T. (2000b). Structure-based design of an osteoclast-selective, nonpeptide Src homology 2 inhibitor with in vivo antiresorptive activity. Proc. Natl. Acad. Sci. USA 97:9373–9378.

    Article  PubMed  CAS  Google Scholar 

  • Shakespeare, W.C., Metcalf, C.A. III, Wang, Y., Sundaramoorthi, R., Keenan, T., Weigele, M., Bohacek, R.S., Dalgarno, D.C. and Sawyer, T.K. (2003a). Novel bone-targeted Src tyrosine kinase inhibitor drug discovery. Curr. Opin. Drug Disc. Devel. 6:729–741.

    CAS  Google Scholar 

  • Shakespeare, W., Wang, Y., Metcalf, C., Sundaramoorthi, R., Keenan, T., Bohacek, R., vanSchravendijk, M.R., Snodgrass, J., Dilauro, A., Roeloffzen, S., Liu, S., Saltmarsh, J., Paramanathan, G., Pradeepan, S., Naugle, J., Wardwell, S., Bogus, J., Keats, J., Ram, M., Andrade, L., Liou, S., Narula, S., Adams, S., Boyce, B., Xing, L., Weigele, M., Dalgarno, D., Iuliucci, J., and Sawyer, T. (2003b). Development of a novel bone-targeted Src tyrosine kinase inhibitor AP23451 having potent activity in an animal model of osteolytic bone metastasis. Proc. AACR 44:A3871.

    Google Scholar 

  • Sicheri, F., Moarefi, I., and Kuriyan, J. (1997). Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602–609.

    Article  PubMed  CAS  Google Scholar 

  • Slate, D.L, Lee, R.H., Rodriguez, J., and Crews, P. (1994). The marine nature product, halistanol trisulfate, inhibits pp60v-src protein tyrosine kinase activity. Biochem. Biophys. Res. Commun. 203:260–264.

    Article  PubMed  CAS  Google Scholar 

  • Songyang, Z., Shoelson, S.E., Chaudhuri, M., Gish, G., Pawson, T., Haser, W.G., King, F., Roberts, T., Ratnofsky, S., Lechleider, R.J., Neel, B.G., Rirge, R.B., Fajardo, J.E., Chou, M.M., Hanafusa, H., Schaffhausen, B., and Cantley, C.L. (1993). SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778.

    Article  PubMed  CAS  Google Scholar 

  • Soriano, P., Montgomery, C., Geske, R., and Bradley, A. (1991). Targeted disruption of the c-src protooncogene leads to osteoporosis in mice. Cell 64:693–702.

    Article  PubMed  CAS  Google Scholar 

  • Sotriffer, C., and Klebe, G. (2002). Identification and mapping of small-molecule binding sites in proteins: computational tools for structure-based drug design. Farmaco 57:243–251.

    Article  PubMed  CAS  Google Scholar 

  • Staley, C.A., Parikh, N.U., and Gallick, G.E. (1997). Decreased tumorigenicity of a human colon carcinoma cell line by an antisense expression vector specific for c-Src. Cell Growth Differ. 8:269–274.

    PubMed  CAS  Google Scholar 

  • Stankovic, C.J., Plummer, M.S., and Sawyer, T.K. (1997a). Peptidomimetic ligands for Src homology-2 domains. Adv. Amino Acid Mimet. Peptidomimet. 1:127–163.

    CAS  Google Scholar 

  • Stankovic, C.J., Surendran, N., Lunney, E., Plummer, M.S., Para, K., Shahipour, A., Fergus, J.H., Marks, J.S., Herrera, R., Hubbell, S.E., Humblet, C., Saltiel, A.R., Stewart, B.H., and Sawyer, T.K. (1997b). The role of 4-phosphonodifluoromethyl-and 4-phosphono-phenylalanine in the selectivity and cellular uptake of SH2 domain ligands. Bioorg. Med. Chem. Lett. 7:1909–1914.

    Article  CAS  Google Scholar 

  • Stover, D.R., Lydon, N.B., and Nunes, J.J. (1999). Recent advances in protein kinase inhibition: current molecular scaffolds used for inhibitor synthesis. Curr. Opin. Drug Discov. Dev. 2:274–285.

    CAS  Google Scholar 

  • Strawn, L.M., and Shawver, L.K. (1998). Tyrosine kinases in diseases. Overview of kinase inhibitors as therapeutic agents and current drugs in clinical trials. Expert Opin. Invest. Drugs 7:533–573.

    Article  Google Scholar 

  • Summy, J.M., and Gallick, G.E. (2003). Src family kinases in tumor progression and metastasis. Cancer Metastas. Rev. 22:337–358.

    Article  CAS  Google Scholar 

  • Sundaramoorthi, R., Kawahata, N., Yang, M.G., Shakespeare, W.C., Metcalf, C.A. III, Wang, Y., Merry, T., Eyermann, C.J., Bohacek, R.S., Narula S., Dalgarno, D.C., Sawyer, T.K. (2003). Structure-based design of novel nonpeptide inhibitors of the Src SH2 domain:phosphotyrosine mimetics exploiting multifunctional group replacement chemistry. Biopolymers (Pept. Sci.) 71:717–729.

    Article  CAS  Google Scholar 

  • Susa, M., and Teti, A. (2000). Tyrosine kinase Src inhibitors: potential therapeutic applications. Drug News Perspect. 13:169–175.

    Article  PubMed  CAS  Google Scholar 

  • Susa, M., Missbach, M., and Green J. (2000). Src inhibitors: drugs for the treatment of osteoporosis, cancer or both? Trends Pharmacol. Sci. 21:489–495.

    Article  Google Scholar 

  • Talamonti, M.S., Roh, M.S., Curley, S.A., and Gallick, G.E. (1993). Increase in activity and level of pp60c-src in progressive stages of human colorectal cancer. J. Clin. Invest. 91:3–60.

    Article  Google Scholar 

  • Tanaka, S., Amling, M., Neff, L., Peyman, A., Uhlmann, E., Levy, J.B., and Baron, R. (1996). c-Cbl is downstream of c-Src in a signalling pathway necessary for bone resorption. Nature 383:528–531.

    Article  PubMed  CAS  Google Scholar 

  • Tatton, L., Morley, G.M., Chopras, R. and Khwaja, A. (2003). The Src-selective kinase inhibitor PP1 also inhibits Kit and BcrAbl tyrosine kinases. J. Biol. Chem. 278:4847–4853.

    Article  PubMed  CAS  Google Scholar 

  • Teitelbaum, S.L. (2000). Bone resorption by osteoclasts. Science 289:1504–1508.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, J.W., Ellis, B., Boerner, R.J., Knight, W.B., White, G.C., II, and Schaller, M.D. (1998). SH2-and SH3-mediated interactions between focal adhesion kinase and Src. J. Biol. Chem. 273:577–583.

    Article  PubMed  CAS  Google Scholar 

  • Thomas, S.M., and Brugge, J.S. (1997) Cellular functions regulated by Src family kinases. Annu. Rev. Cell Dev. Biol. 13:513–609.

    Article  PubMed  CAS  Google Scholar 

  • Toledo, L.M., Lydon, N.B., and Elbaum, D. (1999). The structure-based design of ATP-site directed protein kinases. Curr. Med. Chem. 6:775–805.

    PubMed  CAS  Google Scholar 

  • Traxler, P. (1997). Protein tyrosine kinase inhibitors in cancer treatment. Expert Opin. Ther. Patents 7:571–587.

    Article  CAS  Google Scholar 

  • Traxler, P. (1998). Tyrosine kinase inhibitors in cancer treatment (part II). Expert Opin. Ther. Patents 8:1599–1628.

    Article  CAS  Google Scholar 

  • Tsai, Y.T., Su, Y.H., Fang, S.S., Huang, T.N., Qiu, Y., Jou, Y.S., Shih, H.M., Kung, H.J., and Chen, R.H. (2000). Etk, a Btk family tyrosine kinase, mediates cellular transformation by linking Src to STAT3 activation. Mol. Cell. Biol. 20:2043–2054.

    Article  PubMed  CAS  Google Scholar 

  • Tsatsanis, C., and Spandidos, D.A. (2000). The role of oncogenic kinases in human cancer. Int. J. Mol. Med. 5:583–590.

    PubMed  CAS  Google Scholar 

  • Turkson, J., Bowman, T., Garcia, R., Caldenhoven, E., De Groot, R.P., and Jove, R. (1998). STAT3 activation by Src induces specific gene regulation and is required for cell transformation. Mol. Cell. Biol. 18:2545–2552.

    PubMed  CAS  Google Scholar 

  • Uehara, Y., and Fukuzawa, H. (1991). Use and selectivity of herbimycin A as inhibitor of protein-tyrosine kinases. Methods Enzymol. 201:370–379.

    PubMed  CAS  Google Scholar 

  • Uludag, H. (2002). Bisphosphonates as a foundation of drug delivery to bone. Curr. Pharm. Des. 8:929–1944.

    Article  Google Scholar 

  • Van Oijen, M.G., Rijkseng, G., Ten Broek, F.W., and Slootweg, P.J. (1998). Overexpression of c-Src in areas of hyperproliferation in head and neck cancer, premalignant lesions and benign mucosal disorders. J. Oral Pathol. Med. 27:147–152.

    Article  PubMed  Google Scholar 

  • Verbeek, B.S., Vroom, T.M., Adriaansen-Slot, S.S., Ottenhoff-Kalff, A.E., Geertzema, J.G., Hennipman, A., and Rijksen, G. (1996). c-Src protein expression is increased in human breast cancer. An immunohistochemical and biochemical analysis. J. Pathol. 180:383–388.

    Article  PubMed  CAS  Google Scholar 

  • Vetter, S.W., and Zhang, Z.Y. (2002). Probing the phosphopeptide specificities of protein tyrosine phosphatases, SH2 and PTB domains with combinatorial library methods. Curr. Protein Pept. Sci. 3:265–397.

    Article  Google Scholar 

  • Vidal, M., Gigoux, V., and Garbay, C. (2001). SH2 and SH3 domains as targets for antiproliferative agents. Crit. Rev. Oncol. Hematol. 40:175–186.

    PubMed  CAS  Google Scholar 

  • Violette, S.M., Shakespeare, W.C., Bartlett, C., Guan, W., Smith, J.A., Rickles, R.J.; Bohacek, R.S., Holt, D.A., Baron, R., and Sawyer, T.K. (2000). A Src SH2 selective binding compound inhibits osteoclast-mediated resorption. Chem. Biol. 7:225–235.

    Article  PubMed  CAS  Google Scholar 

  • Violette, S.M., Guan, W., Bartlett, C., Smith, J.A., Bardelay, C., Antoine, E., Rickles, R.J., Mandine, E., van Schravendijk, M.R., Adams, S. E., Lynch, B.A., Shakespeare, W.C., Yang, M., Jacobsen, V.A., Takeuchi, C.S., Macek, K.J., Bohacek, R.S., Dalgarno, D.C., Weigele, M., Lesuisse, D., Sawyer, T.K., and Baron, R. (2001). Bone-targeted Src SH2 inhibitors block Src cellular activity and osteoclast-mediated resorption. Bone 28:54–64.

    Article  PubMed  CAS  Google Scholar 

  • von Bubnoff, N., Veach, D.R., Miller, T., Li, W., Sanger, J., Peschel, C., Bornmann, W.G., Clarkson, B., and Duyster, J. (2003). Inhibition of wild-type and mutant Bcr-Abl by pyrido-pyrimidine-type small molecule kinase inhibitors. Cancer Res. 63:6395–6404

    Google Scholar 

  • von Stechow, D., Alexander, J., Chorev, M., Fish, S., Iuliucci, J., Wang, Y., Metcalf, C., Keenan, T., Sundaramoorthi, R., Shakespeare, W., van Schravendijk, M.R., Dalgarno, D., and Sawyer, T. (2001). Novel Src tyrosine kinase inhibitors prevent ovariectomy-induced bone loss in a Swiss-Webster mouse model of post-menopausal osteoporosis. J. Bone Miner. Res. 16(Suppl. 1), Abstract F425.

    Google Scholar 

  • Vu, C.B. (2000). Recent advances in the design and synthesis of SH2 inhibitors of Src, Grb2, and ZAP-70. Curr. Med. Chem. 7:1081–1100.

    PubMed  CAS  Google Scholar 

  • Waksman, G. Kominos, D., Robertson, S.C., Pant, N., Baltimore, D., Birge, R.B., Cowburn, D., Hanafusa, H., Mayer, B.J., Overduin, M., Resh, M.D., Rios, C.B., Silverman, L., and Kuriyan, J. (1992). Crystal structure of the phosphotyrosine recognition domain SH2 of v-Src complexed with tyrosinephosphorylated peptides. Nature 358:646–653.

    Article  PubMed  CAS  Google Scholar 

  • Waksman, G., Shoelson, S.E., Pant, N., Cowburn, D., and Kuriyan, J. (1993). Binding of a high affinity phosphotyrosyl peptide to the Src SH2 domain: crystal structures of the complexed and peptide-free forms. Cell 72:779–790.

    Article  PubMed  CAS  Google Scholar 

  • Waksman, G., Kumaran, S., and Lubman, O. (2004). SH2 domains: role, strucure and implications for molecular medicine. Exp. Rev. Molec. Med. 6:1–21.

    Article  Google Scholar 

  • Wang, Y.D., Miller, K., Boschelli, D.H., Ye, F., Wu, B., Floyd, M.B., Powell, D.W., Wissner, A., Weber, J.M., Boschelli, F. (2000). Inhibitors of Src tyrosine kinase: the preparation and structure-activity relationship of 4-anilino-3-cyanoquinolines and 4-anilinoquinazolines. Bioorg. Med. Chem. Lett. 10:2477–2480.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Metcalf, C.A., III, Shakespeare, W.C., Sundaramoorthi, R., Keenan, T.P., Bohacek, R.S., van Schravendijk, M.R., Violette, S.M., Narula, S.S., Dalgarno, D.C., Haraldson, C., Keats, J., Liou, S., Mani, U., Pradeepan, S., Ram, M., Adams, S., Weigele, M., and Sawyer TK. (2003). Bone-targeted 2,6,9-trisubstituted purines: novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg. Med. Chem. Lett. 13:3067–3070.

    Article  PubMed  CAS  Google Scholar 

  • Warmuth, M., Damoiseaux, R., Liu, Y., Fabbro, D., and Gray, N. (2003a). Src family kinases: potential targets for the treatment of human cancer and leukemia. Curr. Pharm. Design 9:2043–2059.

    Article  CAS  Google Scholar 

  • Warmuth, M., Simon, N., Mitina, O., Mathes, R., Fabbro, D., Manley, P. W., Buchdunger, E., Forster, K., Moarefi, I., and Hallek, M. (2003b). Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood 101:664–672.

    Article  PubMed  CAS  Google Scholar 

  • Waszkowycz, B. (2002). Structure-based approaches to drug design and virtual screening. Curr. Opin. Drug Discov. Devel. 5:407–413.

    PubMed  CAS  Google Scholar 

  • Wisniewski, D., Lambek, C.I., Liu, C., Strife, A., Veach, D.R., Nagar, B., Young, M.A., Schindler, T., Bornmann, W.G., Bertino, J.R., Kuriyan, J., and Clarkson, B. (2002). Characterization of potent inhibitors of the Bcr-Abl and the c-Kit receptor tyrosine kinases. Cancer Res. 62:4244–4255.

    PubMed  CAS  Google Scholar 

  • Woolfrey, J.R., and Weston, G.S. (2002). The use of computational methods in the discovery and design of kinase inhibitors. Curr. Pharm. Des. 8:1527–1545.

    Article  PubMed  CAS  Google Scholar 

  • Wong, B.R., Besser, D., Kim, N., Arron, J.R., Vologodskaia, M., Hanafusa, H., and Choi, Y. (1999). TRANCE, a TNF family member, activates Atk/PKB through a signalling complex involving TRAF6 and c-Src. Mol. Cell 4:1041–1049.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Doshi, A., Lei, M., Eck, M.J., and Harrison S.C. (1999). Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3:629–638.

    Article  PubMed  CAS  Google Scholar 

  • Xu, W., Harrison, S.C., and Eck, M.J. (1997). Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, H., and Hendrickson, W.A. (1996). Structural basis for activation of human lymphocyte kinase Lck upon tyrosine phosphorylation. Nature 384:484–489.

    Article  PubMed  CAS  Google Scholar 

  • Yoneda, T., Lowe, C., Lee, C.-H., Gutierrez, G. Niewolna, M., Williams, P.J., Izbicka, E., Uehara, Y., Mundy, G. R. (1993). Herbimycin A, a pp60c-src tyrosine kinase inhibitor, inhibits osteoclastic bone resorption in vitro and hypercalcemia in vivo. J. Clin. Invest. 91:2791–2795.

    PubMed  CAS  Google Scholar 

  • Zhu, X., Kim, J.L., Newcomb, J.R., Rose, P.E., Stover, D.R., Toledo, L.M., Zhao, H., Morgenstern, K.A. (1999). Structural analysis of the lymphocyte-specific Lck in complex with non-selective and Src family-selective kinase inhibitors. Struct. Fold. Des. 7:651–661.

    Article  CAS  Google Scholar 

  • Zimmerman, J., Buchdunger, E., Mett, H., Meyer, T., and Lydon, N.B. (1997). Potent and selective inhibitors of the Abl-kinase: phenylaminopyrimidine (PAP) derivatives. Bioorg. Med. Chem. Lett. 7:187–192.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Sawyer, T.K. et al. (2005). SMART Drug Design: Novel Phosphopeptide and ATP Mimetic-Based Small Molecule Inhibitors of the Oncogenic Protein Kinase pp60src (Src). In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_11

Download citation

Publish with us

Policies and ethics