Skip to main content

Cytokines and Lymphomas

  • Chapter
Book cover Cytokines and Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray PW, Aggarwal BB, Benton CV, et al. Cloning and expression of cDNA for human lymphotoxin, a lymphokine with tumor necrosis activity. Nature. 1984;312:721–724.

    Article  PubMed  CAS  Google Scholar 

  2. Pennica D, Nedwin GE, Hayflick JS, et al. Human tumor necrosis factor: precursor structure, expression and homology to lymphotoxin. Nature. 1984;312:724–729.

    Article  PubMed  CAS  Google Scholar 

  3. Aggarwal BB, Eessalu TE, Hass PE. Characterization of receptors for human tumor necrosis factor and their regulation by gamma-interferon. Nature. 1985;318:665–667.

    Article  PubMed  CAS  Google Scholar 

  4. Aggarwal BB, Moffat B, Harkins RN. Human lymphotoxin. Production by a lymphoblastoid cell line, purification, and initial characterization. J Biol Chem. 1984;259:686–691.

    PubMed  CAS  Google Scholar 

  5. Younes A, Kadin ME. Emerging applications of the tumor necrosis factor family of ligands and receptors in cancer therapy. Journal of Clinical Oncology. 2003;21:3526–3534.

    Article  PubMed  CAS  Google Scholar 

  6. Siegel RM, Lenardo MJ. To B or not to B: TNF family signaling in lymphocytes. Nat Immunol. 2001;2:577–578.

    Article  PubMed  CAS  Google Scholar 

  7. Locksley RM, Killeen N, Lenardo MJ. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell. 2001; 104:487–501.

    Article  PubMed  CAS  Google Scholar 

  8. Mak TW, Yeh WC. Signaling for survival and apoptosis in the immune system. Arthritis Res. 2002;4Suppl 3:S243–252.

    Article  PubMed  Google Scholar 

  9. Gaur U, Aggarwal BB. Regulation of proliferation, survival and apoptosis by members of the TNF superfamily. Biochem Pharmacol. 2003;66:1403–1408.

    Article  PubMed  CAS  Google Scholar 

  10. Bhardwaj A, Aggarwal BB. Receptor-mediated choreography of life and death. J Clin Immunol. 2003;23:317–332.

    Article  PubMed  CAS  Google Scholar 

  11. Aggarwal BB. Signaling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3:745–756.

    Article  PubMed  CAS  Google Scholar 

  12. Ashkenazi A. Targeting death and decoy receptors of the tumor-necrosis factor superfamily. Nat Rev Cancer. 2002;2:420–430.

    Article  PubMed  CAS  Google Scholar 

  13. Younes A, Aggarwal BB. Clinical implications of the tumor necrosis factor family in benign and malignant hematologic disorders. Cancer. 2003;98:458–467.

    Article  PubMed  CAS  Google Scholar 

  14. van Kooten C, Banchereau J. CD40-CD40 ligand. J Leukoc Biol. 2000;67:2–17.

    PubMed  Google Scholar 

  15. Younes A, Carbone A. CD30/CD30 ligand and CD40/CD40 ligand in malignant lymphoid disorders. Int J Biol Markers. 1999;14:135–143.

    PubMed  CAS  Google Scholar 

  16. Asimakopoulos FA, White NJ, Nacheva EP, Green AR. The human CD40 gene lies within chromosome 20q deletions associated with myeloid malignancies. Br J Haematol. 1996;92:127–130.

    Article  PubMed  CAS  Google Scholar 

  17. Siddiqa A, Sims-Mourtada JC, Guzman-Rojas L, et al. Regulation of CD40 and CD40 ligand by the AT-hook transcription factor AKNA. Nature. 2001;410:383–387.

    Article  PubMed  CAS  Google Scholar 

  18. Clark LB, Foy TM, Noelle RJ. CD40 and its ligand. Advances in Immunology. 1996;63:43–78.

    PubMed  CAS  Google Scholar 

  19. Gordon J. CD40 and its ligand: central players in B lymphocyte survival, growth, and differentiation. Blood Rev. 1995;9:53–56.

    Article  PubMed  CAS  Google Scholar 

  20. Grammer AC, Bergman MC, Miura Y, Fujita K, Davis LS, Lipsky PE. The CD40 ligand expressed by human B cells costimulates B cell responses. J Immunol. 1995;154:4996–5010.

    PubMed  CAS  Google Scholar 

  21. Armitage RJ, Maliszewski CR, Alderson MR, Grabstein KH, Spriggs MK, Fanslow WC. CD40L: a multi-functional ligand. Semin Immunol. 1993;5:401–412.

    Article  PubMed  CAS  Google Scholar 

  22. Clodi K, McDuff B, Zhao S, et al. Elevated soluble CD40 ligand levels in the serum of patients with B cell lymphoma. Blood. 1997;suppl 1:75 (abstract).

    Google Scholar 

  23. Kato K, Santana-Sahagan E, Rassenti LZ, et al. The soluble CD40 ligand sCD154 in systemic lupus erythematosus. J Clin Invest. 1999;104:947–955.

    PubMed  CAS  Google Scholar 

  24. Vakkalanka RK, Woo C, Kirou KA, Koshy M, Berger D, Crow MK. Elevated levels and functional capacity of soluble CD40 ligand in systemic lupus erythematosus sera. Arthritis Rheum. 1999;42:871–881.

    Article  PubMed  CAS  Google Scholar 

  25. Younes A, Snell V, Consoli U, et al. Elevated levels of biologically active soluble CD40 ligand in the serum of patients with chronic lymphocytic leukemia. Br J Haematol. 1998;100:135–141.

    Article  PubMed  CAS  Google Scholar 

  26. Fiumara P, Younes A. CD40 ligand (CD154) and tumor necrosis factor-related apoptosis inducing ligand (Apo-2L) in hematological malignancies. Br J Haematol. 2001;113:265–274.

    Article  PubMed  CAS  Google Scholar 

  27. Schattner EJ. CD40 ligand in CLL pathogenesis and therapy. Leuk Lymphoma. 2000;37:461–472.

    PubMed  CAS  Google Scholar 

  28. Romano MF, Lamberti A, Turco MC, Venuta S. CD40 and B chronic lymphocytic leukemia cell response to fludarabine: the influence of NF-kappaB/Rel transcription factors on chemotherapy-induced apoptosis. Leuk Lymphoma. 2000;36:255–262.

    PubMed  CAS  Google Scholar 

  29. Renard N, Ribeiro P, Warzocha K, et al. Modulation of costimulatory molecules on follicular lymphoma cells by TNF and CD40. Leuk Lymphoma. 1999;33:331–341.

    PubMed  CAS  Google Scholar 

  30. Clodi K, Asgary Z, Zhao S, et al. Coexpression of CD40 and CD40 ligand in B-cell lymphoma cells. Br J Haematol. 1998;103:270–275.

    Article  PubMed  CAS  Google Scholar 

  31. Clodi K, Snell V, Zhao S, Cabanillas F, Andreeff M, Younes A. Unbalanced expression of Fas and CD40 in mantle cell lymphoma. Br J Haematol. 1998;103:217–219.

    Article  PubMed  CAS  Google Scholar 

  32. Wingett DG, Vestal RE, Forcier K, Hadjokas N, Nielson CP. CD40 is functionally expressed on human breast carcinomas: variable inducibility by cytokines and enhancement of Fas-mediated apoptosis. Breast Cancer Res Treat. 1998;50:27–36.

    Article  PubMed  CAS  Google Scholar 

  33. Werneburg BG, Zoog SJ, Dang TT, Kehry MR, Crute JJ. Molecular characterization of CD40 signaling intermediates. J Biol Chem. 2001;276:43334–43342.

    Article  PubMed  CAS  Google Scholar 

  34. Pullen SS, Dang TT, Crute JJ, Kehry MR. CD40 signaling through tumor necrosis factor receptor-associated factors (TRAFs). Binding site specificity and activation of downstream pathways by distinct TRAFs. J Biol Chem. 1999;274:14246–14254.

    Article  PubMed  CAS  Google Scholar 

  35. Hsing Y, Hostager BS, Bishop GA. Characterization of CD40 signaling determinants regulating nuclear factor-kappa B activation in B lymphocytes. J Immunol. 1997;159:4898–4906.

    PubMed  CAS  Google Scholar 

  36. Kehry MR. CD40-mediated signaling in B cells. Balancing cell survival, growth, and death. J Immunol. 1996;156:2345–2348.

    PubMed  CAS  Google Scholar 

  37. Voorzanger-Rousselot N, Favrot M, Blay JY. Resistance to cytotoxic chemotherapy induced by CD40 ligand in lymphoma cells. Blood. 1998;92:3381–3387.

    PubMed  CAS  Google Scholar 

  38. Castillo R, Mascarenhas J, Telford W, Chadburn A, Friedman SM, Schattner EJ. Proliferative response of mantle cell lymphoma cells stimulated by CD40 ligation and IL-4. Leukemia. 2000;14:292–298.

    Article  PubMed  CAS  Google Scholar 

  39. Gruss HJ, Hirschstein D, Wright B, et al. Expression and function of CD40 on Hodgkin and Reed-Sternberg cells and the possible relevance for Hodgkin's disease. Blood. 1994;84:2305–2314.

    PubMed  CAS  Google Scholar 

  40. Gruss HJ, Scheffrahn I, Hubinger G, Duyster J, Hermann F. The CD30 ligand and CD40 ligand regulate CD54 surface expression and release of its soluble form by cultured Hodgkin and Reed-Sternberg cells. Leukemia. 1996;10:829–835.

    PubMed  CAS  Google Scholar 

  41. Gruss HJ, Ulrich D, Braddy S, Armitage RJ, Dower SK. Recombinant CD30 ligand and CD40 ligand share common biological activities on Hodgkin and Reed-Sternberg cells. Eur J Immunol. 1995;25:2083–2089.

    PubMed  CAS  Google Scholar 

  42. Younes A. The dynamics of life and death of malignant lymphocytes. Curr Opin Oncol. 1999;11:364–369.

    Article  PubMed  CAS  Google Scholar 

  43. Choi MS, Boise LH, Gottschalk AR, Quintans J, Thompson CB, Klaus GG. The role of bcl-XL in CD40-mediated rescue from anti-mu-induced apoptosis in WEHI-231 B lymphoma cells. Eur J Immunol. 1995;25:1352–1357.

    PubMed  CAS  Google Scholar 

  44. Ghia P, Boussiotis VA, Schultze JL, et al. Unbalanced expression of bcl-2 family proteins in follicular lymphoma: contribution of CD40 signaling in promoting survival. Blood. 1998;91:244–251.

    PubMed  CAS  Google Scholar 

  45. Kitada S, Zapata JM, Andreeff M, Reed JC. Bryostatin and CD40-ligand enhance apoptosis resistance and induce expression of cell survival genes in B-cell chronic lymphocytic leukaemia. Br J Haematol. 1999;106:995–1004.

    Article  PubMed  CAS  Google Scholar 

  46. Takahashi S, Yotnda P, Rousseau RF, et al. Transgenic expression of CD40L and interleukin-2 induces an autologous antitumor immune response in patients with non-Hodgkin's lymphoma. Cancer Gene Ther. 2001;8:378–387.

    Article  PubMed  CAS  Google Scholar 

  47. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ. CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood. 2000;96:2917–2924.

    PubMed  CAS  Google Scholar 

  48. Dilloo D, Brown M, Roskrow M, et al. CD40 ligand induces an antileukemia immune response in vivo. Blood. 1997;90:1927–1933.

    PubMed  CAS  Google Scholar 

  49. Younes A, Carbone A. Clinicopathologic and molecular features of Hodgkin's lymphoma. Cancer Biol Ther. 2003;2:500–507.

    PubMed  CAS  Google Scholar 

  50. Younes A, Consoli U, Snell V, et al. CD30 ligand in lymphoma patients with CD30+ tumors. J Clin Oncol. 1997;15:3355–3362.

    PubMed  CAS  Google Scholar 

  51. Younes A, Consoli U, Zhao S, et al. CD30 ligand is expressed on resting normal and malignant human B lymphocytes. Br J Haematol. 1996;93:569–571.

    Article  PubMed  CAS  Google Scholar 

  52. Gattei V, Degan M, Gloghini A, et al. CD30 ligand is frequently expressed in human hematopoietic malignancies of myeloid and lymphoid origin. Blood. 1997;89:2048–2059.

    PubMed  CAS  Google Scholar 

  53. Nadali G, Vinante F, Chilosi M, Pizzolo G. Soluble molecules as biological markers in Hodgkin's disease. Leuk Lymphoma. 1997;26Suppl 1:99–105.

    Article  PubMed  CAS  Google Scholar 

  54. Pizzolo G, Vinante F, Nadali G, et al. High serum level of soluble CD30 in acute primary HIV-1 infection. Clin Exp Immunol. 1997;108:251–253.

    Article  PubMed  CAS  Google Scholar 

  55. Chiarle R, Podda A, Prolla G, Gong J, Thorbecke GJ, Inghirami G. CD30 in normal and neoplastic cells. Clin Immunol. 1999;90:157–164.

    Article  PubMed  CAS  Google Scholar 

  56. Diehl V, Bohlen H, Wolf J. CD30: cytokine-receptor, differentiation marker or a target molecule for specific immune response? [editorial]. Ann Oncol. 1994;5:300–302.

    PubMed  CAS  Google Scholar 

  57. Kadin ME. Regulation of CD30 antigen expression and its potential significance for human disease. Am J Pathol. 2000;156:1479–1484.

    PubMed  CAS  Google Scholar 

  58. Lee SY, Choi Y. TRAF-interacting protein (TRIP): a novel component of the tumor necrosis factor receptor (TNFR)-and CD30-TRAF signaling complexes that inhibits TRAF2-mediated NF-kappaB activation. J Exp Med. 1997;185:1275–1285.

    Article  PubMed  CAS  Google Scholar 

  59. Duckett CS, Gedrich RW, Gilfillan MC, Thompson CB. Induction of nuclear factor kappaB by the CD30 receptor is mediated by TRAF1 and TRAF2. Mol Cell Biol. 1997;17:1535–1542.

    PubMed  CAS  Google Scholar 

  60. Kieff E. Tumor necrosis factor receptor-associated factor (TRAF)-1, TRAF-2, and TRAF-3 interact in vivo with the CD30 cytoplasmic domain; TRAF-2 mediates CD30-induced nuclear factor kappa B activation. Proc Natl Acad Sci USA. 1997;94:12732.

    PubMed  CAS  Google Scholar 

  61. Boucher LM, Marengere LE, Lu Y, Thukral S, Mak TW. Binding sites of cytoplasmic effectors TRAF1, 2, and 3 on CD30 and other members of the TNF receptor superfamily. Biochem Biophys Res Commun. 1997;233:592–600.

    Article  PubMed  CAS  Google Scholar 

  62. Aizawa S, Nakano H, Ishida T, et al. Tumor necrosis factor receptor-associated factor (TRAF) 5 and TRAF2 are involved in CD30-mediated NFkappaB activation. J Biol Chem. 1997;272:2042–2045.

    Article  PubMed  CAS  Google Scholar 

  63. Zheng B, Fiumara P, Li YV, et al. MEK/ERK pathway is aberrantly active in Hodgkin disease: a signaling pathway shared by CD30, CD40, and RANK that regulates cell proliferation and survival. Blood. 2003; 102:1019–1027.

    Article  PubMed  CAS  Google Scholar 

  64. Vinante F, Rigo A, Scupoli MT, Pizzolo G. CD30 triggering by agonistic antibodies regulates CXCR4 expression and CXCL12 chemotactic activity in the cell line L540. Blood. 2002;99:52–60.

    Article  PubMed  CAS  Google Scholar 

  65. Cerutti A, Kim EC, Shah S, et al. Dysregulation of CD30+ T cells by leukemia impairs isotype switching in normal B cells. Nat Immunol. 2001;2:150–156.

    Article  PubMed  CAS  Google Scholar 

  66. Horie R, Watanabe T. CD30: expression and function in health and disease. Semin Immunol. 1998;10:457–470.

    Article  PubMed  CAS  Google Scholar 

  67. DeYoung AL, Duramad O, Winoto A. The TNF receptor family member CD30 is not essential for negative selection. J Immunol. 2000;165:6170–6173.

    PubMed  CAS  Google Scholar 

  68. Levi E, Pfeifer WM, Kadin ME. CD30-activation-mediated growth inhibition of anaplastic large-cell lymphoma cell lines: apoptosis or cell-cycle arrest? Blood. 2001;98:1630–1632.

    Article  PubMed  CAS  Google Scholar 

  69. Hsu PL, Hsu SM. Autocrine growth regulation of CD30 ligand in CD30-expressing Reed-Sternberg cells: distinction between Hodgkin's disease and anaplastic large cell lymphoma. Lab Invest. 2000;80:1111–1119.

    PubMed  CAS  Google Scholar 

  70. Mori M, Manuelli C, Pimpinelli N, et al. CD30-CD30 ligand interaction in primary cutaneous CD30(+) T-cell lymphomas: A clue to the pathophysiology of clinical regression. Blood. 1999;94:3077–3083.

    PubMed  CAS  Google Scholar 

  71. Wahl AF, Klussman K, Thompson JD, et al. The anti-CD30 monoclonal antibody SGN-30 promotes growth arrest and DNA fragmentation in vitro and affects antitumor activity in models of Hodgkin's disease. Cancer Res. 2002;62:3736–3742.

    PubMed  CAS  Google Scholar 

  72. Schnell R, Borchmann P, Schulz H, Engert A. Current strategies of antibody-based treatment in Hodgkin's disease. Ann Oncol. 2002;13Suppl 1:57–66.

    PubMed  Google Scholar 

  73. Sundarapandiyan K, Keler T, Behnke D, et al. Bispecific antibody-mediated destruction of Hodgkin's lymphoma cells. J Immunol Methods. 2001;248:113–123.

    Article  PubMed  CAS  Google Scholar 

  74. Koon HB, Junghans RP. Anti-CD30 antibody-based therapy. Curr Opin Oncol. 2000;12:588–593.

    Article  PubMed  CAS  Google Scholar 

  75. Klimka A, Barth S, Matthey B, et al. An anti-CD30 single-chain Fv selected by phage display and fused to Pseudomonas exotoxin A (Ki-4(scFv)-ETA') is a potent immunotoxin against a Hodgkin-derived cell line. Br J Cancer. 1999;80:1214–1222.

    Article  PubMed  CAS  Google Scholar 

  76. Terenzi A, Bolognesi A, Pasqualucci L, et al. Anti-CD30 (BER=H2) immunotoxins containing the type-1 ribosome-inactivating proteins momordin and PAP-S (pokeweed antiviral protein from seeds) display powerful antitumour activity against CD30+ tumour cells in vitro and in SCID mice. Br J Haematol. 1996;92:872–879.

    Article  PubMed  CAS  Google Scholar 

  77. Falini B, Bolognesi A, Flenghi L, et al. Response of refractory Hodgkin's disease to monoclonal anti-CD30 immunotoxin. Lancet. 1992;339:1195–1196.

    Article  PubMed  CAS  Google Scholar 

  78. Hombach A, Jung W, Pohl C, et al. A CD16/CD30 bispecific monoclonal antibody induces lysis of Hodgkin's cells by unstimulated natural killer cells in vitro and in vivo. Int J Cancer. 1993;55:830–836.

    PubMed  CAS  Google Scholar 

  79. Emery JG, McDonnell P, Burke MB, et al. Osteoprotegerin is a receptor for the cytotoxic ligand TRAIL. J Biol Chem. 1998;273:14363–14367.

    Article  PubMed  CAS  Google Scholar 

  80. Degli-Esposti M. To die or not to die—the quest of the TRAIL receptors. J Leukoc Biol. 1999;65:535–542.

    PubMed  CAS  Google Scholar 

  81. Schneider P, Tschopp J. Apoptosis induced by death receptors. Pharm Acta Helv. 2000;74:281–286.

    Article  PubMed  CAS  Google Scholar 

  82. Green DR. Apoptotic pathways: paper wraps stone blunts scissors. Cell. 2000; 102:1–4.

    Article  PubMed  CAS  Google Scholar 

  83. Green DR, Evan GI. A matter of life and death. Cancer Cell. 2002;1:19–30.

    Article  PubMed  CAS  Google Scholar 

  84. Zelent A. Hot on the TRAIL of acute promyelocytic leukemia. Nat Med. 2001;7:662–664.

    Article  PubMed  CAS  Google Scholar 

  85. Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ. Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood. 2001;98:3058–3065.

    Article  PubMed  CAS  Google Scholar 

  86. Walczak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med. 1999;5:157–163.

    Article  PubMed  CAS  Google Scholar 

  87. Plasilova M, Zivny J, Jelinek J, et al. TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia. 2002;16:67–73.

    Article  PubMed  CAS  Google Scholar 

  88. Marsters SA, Pitti RA, Sheridan JP, Ashkenazi A. Control of apoptosis signaling by Apo2 ligand. Recent Prog Horm Res. 1999;54:225–234.

    PubMed  CAS  Google Scholar 

  89. Lincz LF, Yeh TX, Spencer A. TRAIL-induced eradication of primary tumour cells from multiple myeloma patient bone marrows is not related to TRAIL receptor expression or prior chemotherapy. Leukemia. 2001;15:1650–1657.

    Article  PubMed  CAS  Google Scholar 

  90. Kim K, Fisher MJ, Xu SQ, el-Deiry WS. Molecular determinants of response to TRAIL in killing of normal and cancer cells. Clin Cancer Res. 2000;6:335–346.

    PubMed  CAS  Google Scholar 

  91. Griffith TS, Lynch DH. TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol. 1998;10:559–563.

    Article  PubMed  CAS  Google Scholar 

  92. French LE, Tschopp J. The TRAIL to selective tumor death. Nat Med. 1999;5:146–147.

    Article  PubMed  CAS  Google Scholar 

  93. Fricker J. On the TRAIL to a new cancer therapy. Mol Med Today. 1999;5:374.

    Article  PubMed  CAS  Google Scholar 

  94. Gazitt Y. TRAIL is a potent inducer of apoptosis in myeloma cells derived from multiple myeloma patients and is not cytotoxic to hematopoietic stem cells. Leukemia. 1999;13:1817–1824.

    Article  PubMed  CAS  Google Scholar 

  95. El-Deiry WS. Insights into cancer therapeutic design based on p53 and TRAIL receptor signaling. Cell Death Differ. 2001;8:1066–1075.

    Article  PubMed  CAS  Google Scholar 

  96. Clodi K, Wimmer D, Li Y, et al. Expression of tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) receptors and sensitivity to TRAIL-induced apoptosis in primary B-cell acute lymphoblastic leukaemia cells. Br J Haematol. 2000;111:580–586.

    Article  PubMed  CAS  Google Scholar 

  97. Ashkenazi A, Pai RC, Fong S, et al. Safety and antitumor activity of recombinant soluble Apo2 ligand. J Clin Invest. 1999;104:155–162.

    PubMed  CAS  Google Scholar 

  98. Snell V, Clodi K, Zhao S, et al. Activity of TNF-related apoptosis-inducing ligand (TRAIL) in haematological malignancies. Br J Haematol. 1997;99:618–624.

    Article  PubMed  CAS  Google Scholar 

  99. Zhao S, Asgary Z, Wang Y, Goodwin R, Andreeff M, Younes A. Functional expression of TRAIL by lymphoid and myeloid tumour cells. Br J Haematol. 1999;106:827–832.

    Article  PubMed  CAS  Google Scholar 

  100. Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol. 2002;168:1356–1361.

    PubMed  CAS  Google Scholar 

  101. Takeda K, Smyth MJ, Cretney E, et al. Critical role for tumor necrosis factor-related apoptosis-inducing ligand in immune surveillance against tumor development. J Exp Med. 2002;195:161–169.

    Article  PubMed  CAS  Google Scholar 

  102. Kuang AA, Diehl GE, Zhang J, Winoto A. FADD is required for DR4-and DR5-mediated apoptosis: lack of trail-induced apoptosis in FADD-deficient mouse embryonic fibroblasts. J Biol Chem. 2000;275:25065–25068.

    Article  PubMed  CAS  Google Scholar 

  103. Suliman A, Lam A, Datta R, Srivastava RK. Intracellular mechanisms of TRAIL: apoptosis through mitochondrial-dependent and-independent pathways. Oncogene. 2001;20:2122–2133.

    Article  PubMed  CAS  Google Scholar 

  104. Green DR. Apoptosis. Death deceiver [news; comment]. Nature. 1998;396:629–630.

    Article  PubMed  CAS  Google Scholar 

  105. Debatin IJ. TRAIL induces apoptosis and activation of NFkB. Eur Cytokine Netw. 1998;9:687–688.

    PubMed  Google Scholar 

  106. Choi C, Kutsch O, Park J, Zhou T, Seol DW, Benveniste EN. Tumor necrosis factor-related apoptosis-inducing ligand induces caspase-dependent interleukin-8 expression and apoptosis in human astroglioma cells. Mol Cell Biol. 2002;22:724–736.

    Article  PubMed  CAS  Google Scholar 

  107. Tran SE, Holmstrom TH, Ahonen M, Kahari VM, Eriksson JE. MAPK/ERK overrides the apoptotic signaling from Fas, TNF, and TRAIL receptors. J Biol Chem. 2001;276:16484–16490.

    Article  PubMed  CAS  Google Scholar 

  108. Chen X, Thakkar H, Tyan F, et al. Constitutively active Akt is an important regulator of TRAIL sensitivity in prostate cancer. Oncogene. 2001;20:6073–6083.

    Article  PubMed  CAS  Google Scholar 

  109. Fulda S, Kufer MU, Meyer E, van Valen F, Dockhorn-Dwomiczak B, Debatin KM. Sensitization for death receptor-or drug-induced apoptosis by re-expression of caspase-8 through demethylation or gene transfer. Oncogene. 2001;20:5865–5877.

    Article  PubMed  CAS  Google Scholar 

  110. Fulda S, Meyer E, Debatin KM. Inhibition of TRAIL-induced apoptosis by Bcl-2 overexpression. Oncogene. 2002;21:2283–2294.

    Article  PubMed  CAS  Google Scholar 

  111. Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ. Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol. 1998;161:2833–2840.

    PubMed  CAS  Google Scholar 

  112. Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T, Debatin KM. Inhibition of nuclear factor kappaB activation attenuates apoptosis resistance in lymphoid cells. Blood. 1998;91:4624–4631.

    PubMed  CAS  Google Scholar 

  113. Shiiki K, Yoshikawa H, Kinoshita H, et al. Potential mechanisms of resistance to TRAIL/Apo2L-induced apoptosis in human promyelocytic leukemia HL-60 cells during granulocytic differentiation. Cell Death Differ. 2000;7:939–946.

    Article  PubMed  CAS  Google Scholar 

  114. Zhang XD, Franco A, Myers K, Gray C, Nguyen T, Hersey P. Relation of TNF-related apoptosis-inducing ligand (TRAIL) receptor and FLICE-inhibitory protein expression to TRAIL-induced apoptosis of melanoma. Cancer Res. 1999;59:2747–2753.

    PubMed  CAS  Google Scholar 

  115. Bin L, Li X, Xu LG, Shu HB. The short splice form of Casper/c-FLIP is a major cellular inhibitor of TRAIL-induced apoptosis. FEBS Lett. 2002;510:37–40.

    Article  PubMed  CAS  Google Scholar 

  116. LeBlanc H, Lawrence D, Varfolomeev E, et al. Tumor-cell resistance to death receptor—induced apoptosis through mutational inactivation of the proapoptotic Bcl-2 homolog Bax. Nat Med. 2002;8:274–281.

    Article  PubMed  CAS  Google Scholar 

  117. Lee SH, Shin MS, Kim HS, et al. Alterations of the DR5/TRAIL receptor 2 gene in non-small cell lung cancers. Cancer Res. 1999;59:5683–5686.

    PubMed  CAS  Google Scholar 

  118. Lee SH, Shin MS, Kim HS, et al. Somatic mutations of TRAIL-receptor 1 and TRAIL-receptor 2 genes in non-Hodgkin's lymphoma. Oncogene. 2001;20:399–403.

    Article  PubMed  CAS  Google Scholar 

  119. Pai SI, Wu GS, Ozoren N, et al. Rare loss-of-function mutation of a death receptor gene in head and neck cancer. Cancer Res. 1998;58:3513–3518.

    PubMed  CAS  Google Scholar 

  120. Wang J, Zheng L, Lobito A, et al. Inherited human Caspase 10 mutations underlie defective lymphocyte and dendritic cell apoptosis in autoimmune lymphoproliferative syndrome type II. Cell. 1999;98:47–58.

    Article  PubMed  CAS  Google Scholar 

  121. Bonavida B, Ng CP, Jazirehi A, Schiller G, Mizutani Y. Selectivity of TRAIL-mediated apoptosis of cancer cells and synergy with drugs: the trail to non-toxic cancer therapeutics (review). Int J Oncol. 1999;15:793–802.

    PubMed  CAS  Google Scholar 

  122. Gura T. How TRAIL kills cancer cells, but not normal cells. Science. 1997;277:768.

    Article  PubMed  CAS  Google Scholar 

  123. Ohtsuka T, Buchsbaum D, Oliver P, Makhija S, Kimberly R, Zhou T. Synergistic induction of tumor cell apoptosis by death receptor antibody and chemotherapy agent through JNK/p38 and mitochondrial death pathway. Oncogene. 2003;22:2034–2044.

    Article  PubMed  CAS  Google Scholar 

  124. Ichikawa K, Liu W, Zhao L, et al. Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med. 2001;7:954–960.

    Article  PubMed  CAS  Google Scholar 

  125. Josien R, Wong BR, Li HL, Steinman RM, Choi Y. TRANCE, a TNF family member, is differentially expressed on T cell subsets and induces cytokine production in dendritic cells. J Immunol. 1999;162:2562–2568.

    PubMed  CAS  Google Scholar 

  126. Khosla S. Minireview: the OPG/RANKL/RANK system. Endocrinology. 2001;142:5050–5055.

    Article  PubMed  CAS  Google Scholar 

  127. Wong BR, Josien R, Choi Y. TRANCE is a TNF family member that regulates dendritic cell and osteoclast function. J Leukoc Biol. 1999;65:715–724.

    PubMed  CAS  Google Scholar 

  128. Yasuda H, Shima N, Nakagawa N, et al. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA. 1998;95:3597–3602.

    Article  PubMed  CAS  Google Scholar 

  129. Kitazawa R, Kitazawa S, Maeda S. Promoter structure of mouse RANKL/TRANCE/OPGL/ODF gene. Biochim Biophys Acta. 1999; 1445:134–141.

    PubMed  CAS  Google Scholar 

  130. Kong YY, Yoshida H, Sarosi I, et al. OPGL is a key regulator of osteoclastogenesis, lymphocyte development and lymph-node organogenesis. Nature. 1999;397:315–323.

    Article  PubMed  CAS  Google Scholar 

  131. Aubin JE, Bonnelye E. Osteoprotegerin and its ligand: A new paradigm for regulation of osteoclastogenesis and bone resorption. Medscape Womens Health. 2000;5:5.

    PubMed  CAS  Google Scholar 

  132. Yun TJ, Tallquist MD, Aicher A, et al. Osteoprotegerin, a crucial regulator of bone metabolism, also regulates B cell development and function. J Immunol. 2001;166:1482–1491.

    PubMed  CAS  Google Scholar 

  133. Takahashi N, Udagawa N, Suda T. A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem Biophys Res Commun. 1999;256:449–455.

    Article  PubMed  CAS  Google Scholar 

  134. Brown JM, Corey E, Lee ZD, et al. Osteoprotegerin and rank ligand expression in prostate cancer. Urology. 2001;57:611–616.

    Article  PubMed  CAS  Google Scholar 

  135. Fiumara P, Snell V, Li Y, et al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood. 2001;98:2784–2790.

    Article  PubMed  CAS  Google Scholar 

  136. Roux S, Meignin V, Quillard J, et al. RANK (receptor activator of nuclear factor-kappaB) and RANKL expression in multiple myeloma. Br J Haematol. 2002;117:86–92.

    Article  PubMed  CAS  Google Scholar 

  137. Sezer O, Heider U, Jakob C, Eucker J, Possinger K. Human bone marrow myeloma cells express RANKL. J Clin Oncol. 2002;20:353–354.

    PubMed  Google Scholar 

  138. Okada T, Akikusa S, Okuno H, Kodaka M. Bone marrow metastatic myeloma cells promote osteoclastogenesis through RANKL on endothelial cells. Clinical & Experimental Metastasis. 2003;20:639–646.

    Article  CAS  Google Scholar 

  139. Damay BG, Haridas V, Ni J, Moore PA, Aggarwal BB. Characterization of the intracellular domain of receptor activator of NF-kappaB (RANK). Interaction with tumor necrosis factor receptor-associated factors and activation of NF-kappab and c-Jun N-terminal kinase. J Biol Chem. 1998;273:20551–20555.

    Article  Google Scholar 

  140. Damay BG, Ni J, Moore PA, Aggarwal BB. Activation of NF-kappaB by RANK requires tumor necrosis factor receptor-associated factor (TRAF) 6 and NF-kappaB-inducing kinase. Identification of a novel TRAF6 interaction motif. J Biol Chem. 1999;274:7724–7731.

    Article  Google Scholar 

  141. Lomaga MA, Yeh WC, Sarosi I, et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev. 1999;13:1015–1024.

    PubMed  CAS  Google Scholar 

  142. Wong BR, Josien R, Lee SY, Vologodskaia M, Steinman RM, Choi Y. The TRAF family of signal transducers mediates NF-kappaB activation by the TRANCE receptor. J Biol Chem. 1998;273:28355–28359.

    Article  PubMed  CAS  Google Scholar 

  143. O'Brien CA, Gubrij I, Lin SC, Saylors RL, Manolagas SC. STAT3 activation in stromal/osteoblastic cells is required for induction of the receptor activator of NF-kappaB ligand and stimulation of osteoclastogenesis by gpl30-utilizing cytokines or interleukin-1 but not 1,25-dihydroxyvitamin D3 or parathyroid hormone. J Biol Chem. 1999;274:19301–19308.

    Article  PubMed  Google Scholar 

  144. Burgess TL, Qian Y, Kaufman S, et al. The ligand for osteoprotegerin (OPGL) directly activates mature osteoclasts. J Cell Biol. 1999;145:527–538.

    Article  PubMed  CAS  Google Scholar 

  145. Nakagawa N, Kinosaki M, Yamaguchi K, et al. RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem Biophys Res Commun. 1998;253:395–400.

    Article  PubMed  CAS  Google Scholar 

  146. Kong YY, Boyle WJ, Penninger JM. Osteoprotegerin ligand: a common link between osteoclastogenesis, lymph node formation and lymphocyte development. Immunol Cell Biol. 1999;77:188–193.

    Article  PubMed  CAS  Google Scholar 

  147. Fata JE, Kong YY, Li J, et al. The osteoclast differentiation factor osteoprotegerin-ligand is essential for mammary gland development. Cell. 2000;103:41–50.

    Article  PubMed  CAS  Google Scholar 

  148. Dougall WC, Glaccum M, Charrier K, et al. RANK is essential for osteoclast and lymph node development. Genes Dev. 1999;13:2412–2424.

    Article  PubMed  CAS  Google Scholar 

  149. Hsu H, Lacey DL, Dunstan CR, et al. Tumor necrosis factor receptor family member RANK mediates osteoclast differentiation and activation induced by osteoprotegerin ligand. Proc Natl Acad Sci USA. 1999;96:3540–3545.

    Article  PubMed  CAS  Google Scholar 

  150. Whyte MP, Obrecht SE, Finnegan PM, et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347:175–184.

    Article  PubMed  CAS  Google Scholar 

  151. Croucher PI, Shipman CM, Lippitt J, et al. Osteoprotegerin inhibits the development of osteolytic bone disease in multiple myeloma. Blood. 2001;98:3534–3540.

    Article  PubMed  CAS  Google Scholar 

  152. Lipton A, Ali SM, Leitzel K, et al. Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res. 2002;8:2306–2310.

    PubMed  CAS  Google Scholar 

  153. Seidel C, Hjertner O, Abildgaard N, et al. Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood. 2001;98:2269–2271.

    Article  PubMed  CAS  Google Scholar 

  154. Hofbauer LC, Neubauer A, Heufelder AE. Receptor activator of nuclear factor-kappaB ligand and osteoprotegerin: potential implications for the pathogenesis and treatment of malignant bone diseases. Cancer. 2001;92:460–470.

    Article  PubMed  CAS  Google Scholar 

  155. Zhang J, Dai J, Qi Y, et al. Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest. 2001;107:1235–1244.

    Article  PubMed  CAS  Google Scholar 

  156. Mackay F, Schneider P, Rennert P, Browning J. BAFF AND APRIL: a tutorial on B cell survival. Annu Rev Immunol. 2003;21:231–264.

    Article  PubMed  CAS  Google Scholar 

  157. Mackay F, Ambrose C. The TNF family members BAFF and APRIL: the growing complexity. Cytokine Growth Factor Rev. 2003;14:311–324.

    Article  PubMed  CAS  Google Scholar 

  158. Kalled SL, Ambrose C, Hsu YM. BAFF: B cell survival factor and emerging therapeutic target for autoimmune disorders. Expert Opin Ther Targets. 2003;7:115–123.

    Article  PubMed  CAS  Google Scholar 

  159. Hase H, Kanno Y, Kojima M, et al. BAFF/BLyS can potentiate B-cell selection with the B-cell co-receptor complex. Blood. 2003.

    Google Scholar 

  160. Vaux DL. The buzz about BAFF. J Clin Invest. 2002;109:17–18.

    Article  PubMed  CAS  Google Scholar 

  161. Roschke V, Sosnovtseva S, Ward CD, et al. BLyS and APRIL form biologically active heterotrimers that are expressed in patients with systemic immune-based rheumatic diseases. J Immunol. 2002;169:4314–4321.

    PubMed  CAS  Google Scholar 

  162. Gordon NC, Pan B, Hymowitz SG, et al. BAFF/BLyS receptor 3 comprises a minimal TNF receptor-like module that encodes a highly focused ligand-binding site. Biochemistry. 2003;42:5977–5983.

    Article  PubMed  CAS  Google Scholar 

  163. Gross JA, Johnston J, Mudri S, et al. TACI and BCMA are receptors for a TNF homologue implicated in B-cell autoimmune disease. Nature. 2000;404:995–999.

    Article  PubMed  CAS  Google Scholar 

  164. Seshasayee D, Valdez P, Yan M, Dixit VM, Tumas D, Grewal IS. Loss of TACI causes fatal lymphoproliferation and autoimmunity, establishing TACI as an inhibitory BLyS receptor. Immunity. 2003;18:279–288.

    Article  PubMed  CAS  Google Scholar 

  165. Thompson JS, Bixler SA, Qian F, et al. BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science. 2001;293:2108–2111.

    Article  PubMed  CAS  Google Scholar 

  166. Xu S, Lam KP. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol Cell Biol. 2001;21:4067–4074.

    Article  PubMed  CAS  Google Scholar 

  167. Marsters SA, Yan M, Pitti RM, Haas PE, Dixit VM, Ashkenazi A. Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Curr Biol. 2000;10:785–788.

    Article  PubMed  CAS  Google Scholar 

  168. Wu Y, Bressette D, Carrell JA, et al. Tumor necrosis factor (TNF) receptor superfamily member TACI is a high affinity receptor for TNF family members APRIL and BLyS. J Biol Chem. 2000;275:35478–35485.

    Article  PubMed  CAS  Google Scholar 

  169. von Bulow GU, Russell H, Copeland NG, Gilbert DJ, Jenkins NA, Bram RJ. Molecular cloning and functional characterization of murine transmembrane activator and CAML interactor (TACI) with chromosomal localization in human and mouse. Mamm Genome. 2000; 11:628–632.

    Article  Google Scholar 

  170. Medema JP, Planelles-Carazo L, Hardenberg G, Hahne M. The uncertain glory of APRIL. Cell Death Differ. 2003; 10:1121–1125.

    Article  PubMed  CAS  Google Scholar 

  171. Ware CF. APRIL and BAFF connect autoimmunity and cancer. J Exp Med. 2000;192:F35–38.

    Article  PubMed  CAS  Google Scholar 

  172. Wang H, Marsters SA, Baker T, et al. TACI-ligand interactions are required for T cell activation and collagen-induced arthritis in mice. Nat Immunol. 2001;2:632–637.

    Article  PubMed  CAS  Google Scholar 

  173. Kern C, Cornuel JF, Billard C, et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood. 2004;103:679–688.

    Article  PubMed  CAS  Google Scholar 

  174. Groom J, Kalled SL, Cutler AH, et al. Association of BAFF/BLyS overexpression and altered B cell differentiation with Sjogren's syndrome. J Clin Invest. 2002;109:59–68.

    Article  PubMed  CAS  Google Scholar 

  175. Klein B, Tarte K, Jourdan M, et al. Survival and proliferation factors of normal and malignant plasma cells. Int J Hematol. 2003;78:106–113.

    Article  PubMed  CAS  Google Scholar 

  176. Kolb JP, Kern C, Quiney C, Roman V, Billard C. Re-establishment of a normal apoptotic process as a therapeutic approach in B-CLL. Curr Drug Targets Cardiovasc Haematol Disord. 2003;3:261–286.

    Article  PubMed  CAS  Google Scholar 

  177. Xu LG, Shu HB. TNFR-associated factor-3 is associated with BAFF-R and negatively regulates BAFF-R-mediated NF-kappa B activation and IL-10 production. J Immunol. 2002;169:6883–6889.

    PubMed  CAS  Google Scholar 

  178. Xia XZ, Treanor J, Senaldi G, et al. TACI is a TRAF-interacting receptor for TALL-1, a tumor necrosis factor family member involved in B cell regulation. J Exp Med. 2000;192:137–143.

    Article  PubMed  CAS  Google Scholar 

  179. Schiemann B, Gommerman JL, Vora K, et al. An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001;293:2111–2114.

    Article  PubMed  CAS  Google Scholar 

  180. Huard B, Schneider P, Mauri D, Tschopp J, French LE. T cell costimulation by the TNF ligand BAFF. J Immunol. 2001;167:6225–6231.

    PubMed  CAS  Google Scholar 

  181. Varfolomeev E, Kischkel F, Martin F, et al. APRIL-deficient mice have normal immune system development. Mol Cell Biol. 2004;24:997–1006.

    Article  PubMed  CAS  Google Scholar 

  182. He B, Raab-Traub N, Casali P, Cerutti A. EBV-encoded latent membrane protein 1 cooperates with BAFF/BLyS and APRIL to induce T cell-independent Ig heavy chain class switching. J Immunol. 2003;171:5215–5224.

    PubMed  CAS  Google Scholar 

  183. Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol. 2002;3:822–829.

    Article  PubMed  CAS  Google Scholar 

  184. Mackay F, Woodcock SA, Lawton P, et al. Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med. 1999;190:1697–1710.

    Article  PubMed  CAS  Google Scholar 

  185. Do RK, Chen-Kiang S. Mechanism of BLyS action in B cell immunity. Cytokine Growth Factor Rev. 2002;13:19–25.

    Article  PubMed  CAS  Google Scholar 

  186. Mackay F, Mackay CR. The role of BAFF in B-cell maturation, T-cell activation and autoimmunity. Trends Immunol. 2002;23:113–115.

    Article  PubMed  CAS  Google Scholar 

  187. Kalled SL. BAFF: a novel therapeutic target for autoimmunity. Curr Opin Investig Drugs. 2002;3:1005–1010.

    PubMed  CAS  Google Scholar 

  188. Mariette X, Roux S, Zhang J, et al. The level of BLyS (BAFF) correlates with the titre of autoantibodies in human Sjogren's syndrome. Ann Rheum Dis. 2003;62:168–171.

    Article  PubMed  CAS  Google Scholar 

  189. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol. 2004;172:3268–3279.

    PubMed  CAS  Google Scholar 

  190. Novak AJ, Darce JR, Arendt BK, et al. Expression of BCMA, TACI, and BAFF-R in multiple myeloma: a mechanism for growth and survival. Blood. 2004; 103:689–694.

    Article  PubMed  CAS  Google Scholar 

  191. Moreaux J, Legouffe E, Jourdan E, et al. BAFF and APRIL protect myeloma cells from apoptosis induced by IL-6 deprivation and dexamethasone. Blood. 2003.

    Google Scholar 

  192. Hirano T, Taga T, Yamasaki K, et al. Molecular cloning of the cDNAs for interleukin-6/B cell stimulatory factor 2 and its receptor. Ann N Y Acad Sci. 1989;557:167–178, discussion 178–180.

    Article  PubMed  CAS  Google Scholar 

  193. Hirano T. Interleukin 6 and its receptor: ten years later. Int Rev Immunol. 1998;16:249–284.

    PubMed  CAS  Google Scholar 

  194. Le JM, Vilcek J. Interleukin 6: a multifunctional cytokine regulating immune reactions and the acute phase protein response. Lab Invest. 1989;61:588–602.

    PubMed  CAS  Google Scholar 

  195. Akira S, Hirano T, Taga T, Kishimoto T. Biology of multifunctional cytokines: IL 6 and related molecules (IL 1 and TNF). Faseb J. 1990;4:2860–2867.

    PubMed  CAS  Google Scholar 

  196. Jones SA, Horiuchi S, Topley N, Yamamoto N, Fuller GM. The soluble interleukin 6 receptor: mechanisms of production and implications in disease. Faseb J. 2001;15:43–58.

    Article  PubMed  CAS  Google Scholar 

  197. Emilie D, Leger-Ravet MB, Devergne O, et al. Intratumoral production of IL-6 in B cell chronic lymphocytic leukemia and B lymphomas. Leuk Lymphoma. 1993;11:411–417.

    PubMed  CAS  Google Scholar 

  198. Kato H, Kinoshita T, Suzuki S, et al. Production and effects of interleukin-6 and other cytokines in patients with non-Hodgkin's lymphoma. Leuk Lymphoma. 1998;29:71–79.

    Article  PubMed  CAS  Google Scholar 

  199. Klein S, Jucker M, Diehl V, Tesch H. Production of multiple cytokines by Hodgkin's disease derived cell lines. Hematol Oncol. 1992;10:319–329.

    PubMed  CAS  Google Scholar 

  200. Hsu SM, Xie SS, Hsu PL, Waldron JA, Jr. Interleukin-6, but not interleukin-4, is expressed by Reed-Sternberg cells in Hodgkin's disease with or without histologic features of Castleman's disease. Am J Pathol. 1992;141:129–138.

    PubMed  CAS  Google Scholar 

  201. Jucker M, Abts H, Li W, et al. Expression of interleukin-6 and interleukin-6 receptor in Hodgkin's disease. Blood. 1991;77:2413–2418.

    PubMed  CAS  Google Scholar 

  202. Seymour JF, Talpaz M, Cabanillas F, Wetzler M, Kurzrock R. Serum interleukin-6 levels correlate with prognosis in diffuse large-cell lymphoma. J Clin Oncol. 1995;13:575–582.

    PubMed  CAS  Google Scholar 

  203. Kurzrock R, Redman J, Cabanillas F, Jones D, Rothberg J, Talpaz M. Serum interleukin 6 levels are elevated in lymphoma patients and correlate with survival in advanced Hodgkin's disease and with B symptoms. Cancer Res. 1993;53:2118–2122.

    PubMed  CAS  Google Scholar 

  204. Fayad L, Cabanillas F, Talpaz M, McLaughlin P, Kurzrock R. High serum interleukin-6 levels correlate with a shorter failure-free survival in indolent lymphoma. Leuk Lymphoma. 1998;30:563–571.

    PubMed  CAS  Google Scholar 

  205. Younes A, Romaguera J, Hagemeister F, et al. A pilot study of rituximab in patients with recurrent, classic Hodgkin disease. Cancer. 2003;98:310–314.

    Article  PubMed  CAS  Google Scholar 

  206. Lauta VM. A review of the cytokine network in multiple myeloma: diagnostic, prognostic, and therapeutic implications. Cancer. 2003;97:2440–2452.

    Article  PubMed  CAS  Google Scholar 

  207. Ishihara K, Hirano T. IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev. 2002;13:357–368.

    Article  PubMed  CAS  Google Scholar 

  208. Kurzrock R. Cytokine deregulation in cancer. Biomed Pharmacother. 2001;55:543–547.

    Article  PubMed  CAS  Google Scholar 

  209. Heinrich PC, Behrmann I, Muller-Newen G, Schaper F, Graeve L. Interleukin-6-type cytokine signalling through the gpl30/Jak/STAT pathway. Biochem J. 1998;334 (Pt 2):297–314.

    PubMed  CAS  Google Scholar 

  210. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Muller-Newen G, Schaper F. Principles of interleukin (IL)-6-type cytokine signalling and its regulation. Biochem J. 2003;374:1–20.

    Article  PubMed  CAS  Google Scholar 

  211. Skinnider BF, Mak TW. The role of cytokines in classical Hodgkin lymphoma. Blood. 2002;99:4283–4297.

    Article  PubMed  CAS  Google Scholar 

  212. Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9:4653–4665.

    PubMed  CAS  Google Scholar 

  213. Fiorentino DF, Bond MW, Mosmann TR. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J Exp Med. 1989;170:2081–2095.

    Article  PubMed  CAS  Google Scholar 

  214. de Waal Malefyt R, Abrams J, Bennett B, Figdor CG, de Vries JE. Interleukin 10(IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med. 1991;174:1209–1220.

    Article  PubMed  Google Scholar 

  215. Pistoia V. Production of cytokines by human B cells in health and disease. Immunol Today. 1997;18:343–350.

    Article  PubMed  CAS  Google Scholar 

  216. Nakajima H, Gleich GJ, Kita H. Constitutive production of IL-4 and IL-10 and stimulated production of IL-8 by normal peripheral blood eosinophils. J Immunol. 1996;156:4859–4866.

    PubMed  CAS  Google Scholar 

  217. Lin TJ, Befus AD. Differential regulation of mast cell function by IL-10 and stem cell factor. J Immunol. 1997;159:4015–4023.

    PubMed  CAS  Google Scholar 

  218. Teunissen MB, Koomen CW, Jansen J, et al. In contrast to their murine counterparts, normal human keratinocytes and human epidermoid cell lines A431 and HaCaT fail to express IL-10 mRNA and protein. Clin Exp Immunol. 1997;107:213–223.

    Article  PubMed  CAS  Google Scholar 

  219. Pestka S, Krause CD, Sarkar D, Walter MR, Shi Y, Fisher PB. Interleukin-10 and Related Cytokines and Receptors. Annu Rev Immunol. 2004;22:929–979.

    Article  PubMed  CAS  Google Scholar 

  220. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 2001;19:683–765.

    Article  PubMed  CAS  Google Scholar 

  221. Asadullah K, Sterry W, Volk HD. Interleukin-10 therapy—review of a new approach. Pharmacol Rev. 2003;55:241–269.

    Article  PubMed  CAS  Google Scholar 

  222. Yue FY, Dummer R, Geertsen R, et al. Interleukin-10 is a growth factor for human melanoma cells and down-regulates HLA class-I, HLA class-II and ICAM-1 molecules. Int J Cancer. 1997;71:630–637.

    Article  PubMed  CAS  Google Scholar 

  223. Bohlen H, Kessler M, Sextro M, Diehl V, Tesch H. Poor clinical outcome of patients with Hodgkin's disease and elevated interleukin-10 serum levels. Clinical significance of interleukin-10 serum levels for Hodgkin's disease. Ann Hematol. 2000;79:110–113.

    Article  PubMed  CAS  Google Scholar 

  224. Khatri VP, Caligiuri MA. A review of the association between interleukin-10 and human B-cell malignancies. Cancer Immunol Immunother. 1998;46:239–244.

    Article  PubMed  CAS  Google Scholar 

  225. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3:133–146.

    Article  PubMed  CAS  Google Scholar 

  226. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. Immunity. 2003;19:641–644.

    Article  PubMed  CAS  Google Scholar 

  227. Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13:155–168.

    Article  PubMed  CAS  Google Scholar 

  228. Masiero L, Figg WD, Kohn EC. New anti-angiogenesis agents: review of the clinical experience with carboxyamido-triazole (CAI), thalidomide, TNP-470 and interleukin-12. Angiogenesis. 1997;1:23–35.

    Article  PubMed  CAS  Google Scholar 

  229. Portielje JE, Gratama JW, van Ojik HH, Stoter G, Kruit WH. IL-12: a promising adjuvant for cancer vaccination. Cancer Immunol Immunother. 2003;52:133–144.

    PubMed  CAS  Google Scholar 

  230. Ansell SM. Adding cytokines to monoclonal antibody therapy: does the concurrent administration of interleukin-12 add to the efficacy of rituximab in B-cell non-hodgkin lymphoma? Leuk Lymphoma. 2003;44:1309–1315.

    Article  PubMed  CAS  Google Scholar 

  231. Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111:677–690; quiz 691.

    Article  PubMed  CAS  Google Scholar 

  232. Terabe M, Park JM, Berzofsky JA. Role of IL-13 in regulation of anti-tumor immunity and tumor growth. Cancer Immunol Immunother. 2004;53:79–85.

    Article  PubMed  CAS  Google Scholar 

  233. Guo J, Apiou F, Mellerin MP, Lebeau B, Jacques Y, Minvielle S. Chromosome mapping and expression of the human interleukin-13 receptor. Genomics. 1997;42:141–145.

    Article  PubMed  CAS  Google Scholar 

  234. Skinnider BF, Kapp U, Mak TW. Interleukin 13: a growth factor in hodgkin lymphoma. Int Arch Allergy Immunol. 2001;126:267–276.

    Article  PubMed  CAS  Google Scholar 

  235. Skinnider BF, Kapp U, Mak TW. The role of interleukin 13 in classical Hodgkin lymphoma. Leuk Lymphoma. 2002;43:1203–1210.

    Article  PubMed  CAS  Google Scholar 

  236. Skinnider BF, Elia AJ, Gascoyne RD, et al. Signal transducer and activator of transcription 6 is frequently activated in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2002;99:618–626.

    Article  PubMed  CAS  Google Scholar 

  237. Fiumara P, Cabanillas F, Younes A. Interleukin-13 levels in serum from patients with Hodgkin disease and healthy volunteers. Blood. 2001;98:2877–2878.

    Article  PubMed  CAS  Google Scholar 

  238. Mueller TD, Zhang JL, Sebald W, Duschl A. Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta. 2002;1592:237–250.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Georgakis, G.V., Younes, A. (2005). Cytokines and Lymphomas. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics