Skip to main content

Old Methods for New Ideas: Genetic Dissection of the Determinants of Gene Expression Levels

  • Chapter
Genome Exploitation

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Basten, C.J., Weir, B.S., and Zeng, Z.-B., 1994, Zmap—A QTL Cartographer, In Smith, C. et al., editor, In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production: Computing Strategies and Software, volume 22, pages 65–66, Guelph, Ontario, Canada, 5th World Congress on Genetics Applied to Livestock Production, Organizing Committee.

    Google Scholar 

  • Basten, C.J., Weir, B.S., and Zeng, Z.-B., 2002, QTL Cartographer, Department of Statistics, North Carolina University, Raleigh, NC, Version 1.16.

    Google Scholar 

  • Black, M.A., and Doerge, R.W., 2002, Calculation of the minimum number of replicate spots required for detection of significant gene expression fold change in microarray experiments, Bioinformatics, 18:1609–1616.

    Article  PubMed  CAS  Google Scholar 

  • Borevitz, J.O., Liang, D., Plouffe, D., Chang, H., Zhu, T., Weigel, D., Berry, C.C., Winzeler, E., and Chory, J., 2003, Large-scale identification of single-feature polymorphisms in complex genomes, Genome Research, 13:513–523.

    Article  PubMed  CAS  Google Scholar 

  • Brem, R.B., Yvert, G., Clinton, R., and Kruglyak, L., 2002, Genetic dissection of transcriptional regulation in budding yeast, Science 296:752–755.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Broman, K.W., and Speed, T.P., 2002, A model selection approach for the identification of quantitative trait loci in experimental crosses, J. R. Statist. Soc. B, 64:641–656.

    Article  MATH  MathSciNet  Google Scholar 

  • Chong, L., and Ray, L.B., 2002, Whole-istic biology, Science, 295:1661.

    Article  CAS  Google Scholar 

  • Churchill, G.A., 2002, Fundamentals of experimental design for cdna microarrays, Nature Genetics Supplement, 32:490–496.

    Article  CAS  Google Scholar 

  • Churchill, G.A., and Doerge, R.W., 1994, Empirical threshold values for quantitative trait mapping, Genetics, 138:963–971.

    PubMed  CAS  Google Scholar 

  • Cowles, C.R., Hirschhorn, J.N., Altshuler, D., and Lander, E.S., 2002, Detection of regulatory variation in mouse genes, Nature Genetics, 32:432–437.

    Article  PubMed  CAS  Google Scholar 

  • Doerge, R.W., 2002, Mapping and analysis of quantitative trait loci in experimental populations, Nature Reviews Genetics, 3:43–52.

    Article  PubMed  CAS  Google Scholar 

  • Duggan, D.J., Bittner, M., Chen, Y., Meltzer, P., and Trent, J.M., 1999, Expression profiling using cDNA microarrays, Nature Genetics Suppliment, 21:10–14.

    Article  CAS  Google Scholar 

  • Eisen, M.B., Spellman, P.T., Brown, P.O., and Botstein, D., 1998, Cluster analysis and display of genome-wide expression patterns, Proc. Natl. Acad. Sci. USA, 95:14863–14868.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Holter, N.S., Mitra, Maritan, A., Cieplak, M. Banavar, J.R., and Fedoroff, N.V., 2000, Fundamental patterns underlying gene expression profiles: simplicity from complexity, Proc. Natl. Acad. Sci. USA, 97:8409–8414.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Hughes, T., Marton, M., Jones, A., Roberts, C., Stoughton, R., Armour, C., Bennett, H., Dai, H., He, Y., Kidd, M., King, A., Meyer, M., Slade, D., Lum, P., Stepaniants, S., Shoemaker, D., Gachotte, D., Chakraburtty, K., Simon, J., Bard, M., and Friend, S., 2000, Functional discovery via a compendium of expression profile, Cell, 102:109–126.

    Article  PubMed  CAS  Google Scholar 

  • Jang, W., Chen, H.C., Sicotte, H., and Schuler, G.D., 1999, Making effective use of human genomic sequence data, Trends in Genetics, 15:284–286.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.C., 2003, Studying complex biological systems using multifactorial perturbation, Nature Reviews Genetics, 4:145–151.

    Article  PubMed  CAS  Google Scholar 

  • Jansen, R.C., and Nap, J.P., 2001, Genetical genomics: the added value from segregation, Trends in Genetics, 17:388–391.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, C., and Zeng, Z.-B., 1995, Multiple trait analysis of genetic mapping for quantitative trait loci, Genetics, 140:1111–1127.

    PubMed  CAS  Google Scholar 

  • Jin, W., Riley, R.M., Wolfinger, R.D., White, K.P., Passador-Gurgel, G., and Gibson, G., 2001, The contributions of sex, genotype and age to transcriptional variance in Drosophila melanogaster, Nature Genetics, 29:389–395.

    Article  PubMed  CAS  Google Scholar 

  • Kerr, M.K., and Churchill, G.A., 2001a, Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments, Proc. Natl. Acad. Sci. USA, 98:8961–8965.

    Article  MATH  PubMed  ADS  CAS  Google Scholar 

  • Kerr, M.K., and Churchill, G.A., 2001b, Experimental design for gene expression microarrays, Biostatistics, 2:183–201.

    Article  MATH  PubMed  Google Scholar 

  • Kerr, M.K., and Churchill, G.A., 2001c, Statistical design and the analysis of gene expression microarray data, Genet. Res., Camb., 77:123–128.

    CAS  Google Scholar 

  • Kerr, M.K., Martin, M., and Churchill, G.A., 2000, Analysis of variance for gene expression microarray data, Journal of Computational Biology, 7:819–837.

    Article  PubMed  CAS  Google Scholar 

  • Kitano, H., 2002, Systems biology: a brief overview, Science, 295:1662–1664.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Kodadek, T., 2001, Protein microarrays: prospects and problems, Chem. Biol., 8:105–115.

    Article  PubMed  CAS  Google Scholar 

  • Lander, E.S., and Botstein, D., 1989, Mapping mendelian factors underlying quantitative traits using rflp linkage maps, Genetics, 121:185–199.

    PubMed  CAS  Google Scholar 

  • Lincoln, S.E., Daly, M.J., and Lander, E.S., 1992, Mapping Genes Controlling Quantative Traits with MAPMAKER/QTL, Whitehead Institute for Biomedical Research, Cambridge, MA 02142 USA, two edition, Version 1.1.

    Google Scholar 

  • Lipshutz, R.J., Fodor, S.P.A., Gingeras, T.R., and Lockhart, D.J., 1999, High density synthetic oligonucleotide arrays, Nature Genetics Suppliment, 21:20–24.

    Article  CAS  Google Scholar 

  • MacBeath, G., 2002, Protein microarrays and proteomics, Nature Genetics Suppliment, 32:526–532.

    Article  CAS  Google Scholar 

  • Mackay, T.F., 2001, Quantitative trait loci in Drosophila, Nature Reviews Genetics, 2:11–20.

    Article  PubMed  CAS  Google Scholar 

  • Mauricio, R., 2001, Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology, Nature Reviews Genetics, 2:370–381.

    Article  PubMed  CAS  Google Scholar 

  • Mouse Genome Sequencing Consortium, 2002, Initial sequencing and comparative analysis of the mouse genome, Nature, 420:520–562.

    Article  CAS  Google Scholar 

  • Newton, M.A., Kendziorski, C.M., Richmond, C.S., Blattner, F.R., and Tsui, K.W., 2001, On differential variability of expression ratios: Improving statistical inference about gene expression changes from microarray data, Journal of Computational Biology, 8:37–52.

    Article  PubMed  CAS  Google Scholar 

  • Oleksiak, M.F., Churchill, G.A., and Crawford, D.L., 2002, Variation in gene expression within and among natural populations, Nature Genetics, 32:261–266.

    Article  PubMed  CAS  Google Scholar 

  • Rossant, J., and Spence, A., 1998, Chimeras and mosaics in mouse mutant analysis, Trends in Genetics, 14:358–363.

    Article  PubMed  CAS  Google Scholar 

  • Schadt, E.E., Monks, S.A., Drake, T.A., Lusis, A.J., Che, N., Collnayo, V., Ruff, T.G., Milligan, S.B., Lamb, J.R., Cavet, G., Linsley, P.S., Mao, M., Stoughton, R.B., and Friend, S.H., 2003, Genetics of gene expression surveyed in maize, mouse, and man, Nature, 422:297–302.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Schena, M., Shalon, D., Heller, R., Brown, A.C.P.O., and Davies, R.W., 1996, Parallel human genome analysis: Microarray-based expression monitoring of 1000 genes, Proc. Natl. Acad. Sci. USA, 93:10614–10619.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Searle, S.R., 1971, Linear Models, John Wiley and Sons, Inc., New York, NY.

    MATH  Google Scholar 

  • Service, R.F., 1999, Physics: The automated approach to protein structure, Science, 285:1345.

    Article  CAS  Google Scholar 

  • Steinmetz, L.M., Sinha, H., Richards, D.R., Spiegelman, J.I., Oefner, P.J., McCusker, J.H., and Davis, R.W., 2002, Dissecting the architecture of a quantitative trait locus in yeast, Nature, 416:326–330.

    Article  PubMed  ADS  CAS  Google Scholar 

  • The Arabidopsis Genome Initiative, 2000, Analysis of the genome sequence of the flowering plant Arabidopsis Thaliana, Nature, 408:796–815.

    Article  ADS  Google Scholar 

  • Wayne, M.L., and McIntyre, L.M., 2002, Combining mapping and arraying: an approach to candidate gene identification, Proc. Natl. Acad. Sci. USA, 99:14903–14906.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Yan, H., Dobbie, Z., Gruber, S.B., Markowitz, S., Romans, K., Giardiello, F.M., Kinzler, K.W., and Vogelstein, B., 2002a, Small changes in expression affect predisposition to tumorigenesis, Nature Genetics, 30:25–26.

    Article  PubMed  CAS  Google Scholar 

  • Yan, H., Yuan, W., Velculescu, V.E., Vogelstein, B., and Kinzler, K.W., 2002b, Allelic variation in human gene expression, Science, 297:1143.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zeng, Z.-B., 1993, Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci, Proc. Natl. Acad. Sci. USA, 90:10972–10976.

    Article  PubMed  ADS  CAS  Google Scholar 

  • Zeng, Z.-B., 1994, Precision mapping of quantitative trait loci, Genetics, 136:1457–1468.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kim, K., West, M.A.L., Michelmore, R.W., St. Clair, D.A., Doerge, R.W. (2005). Old Methods for New Ideas: Genetic Dissection of the Determinants of Gene Expression Levels. In: Gustafson, J.P., Shoemaker, R., Snape, J.W. (eds) Genome Exploitation. Springer, Boston, MA. https://doi.org/10.1007/0-387-24187-6_7

Download citation

Publish with us

Policies and ethics