Skip to main content

Aeromedical Evacuation of Patients with Contagious Infections

  • Chapter
Aeromedical Evacuation

Conclusions

Under normal conditions, the risks of transmitting infections in aircraft are probably equal to, or lower than, the risks in other crowded enclosures. This is most likely related to the excellent ventilation systems built into most modern aircraft. However, when the ventilation system is not functioning (as is often the case prior to take-off) the aircraft cabin environment increases the risk for transmission of airborne viruses such as measles and influenza.

The most effective method to minimize disease transmission is to defer AE of infectious patients until after the period of communicability. Unfortunately, there are many situations in which infectious patients must be evacuated, and AE planners must be ready to respond.

Most patients with infectious diseases, including biologic warfare casualties, can be safely evacuated using standard precautions. However, certain contagious diseases (ie, tuberculosis, pneumonic plague, VHF) require transmission- based precautions to protect the other patients, medical personnel, and aircrew. AE planning for these patients must take into account international public health regulations. Given adequate resources, foresight, and expertise, the AE of infected patients and biologic warfare casualties can be safely accomplished.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin TE. Al-Jubail—an aeromedical staging facility during the Gulf conflict: Discussion paper. J Roy Soc Med 1992;85:32–36.

    CAS  Google Scholar 

  2. Clayton AJ, O’Connell DC, Gaunt RA, Clarke RE. Study of the microbiological environment within long-and medium-range Canadian Forces aircraft. Aviat Space Environ Med 1976;47:471–482.

    CAS  PubMed  Google Scholar 

  3. Harper GJ. The influence of environment on the survival of airborne virus particles in the laboratory. In: Des Archiv Fur Die Virusforschung. Vienna: Springer Verlag; 1963:1–3 (monograph printed in English).

    Google Scholar 

  4. Buckland FE, Tyrell DAJ. Loss of infectivity on drying various viruses. Nature 1962;195:1063–1064.

    CAS  PubMed  Google Scholar 

  5. Hemmes JH, Winkler KC, Kool SM. Virus survival as a seasonal factor in influenza and poliomyelitis. Nature 1960;188:430.

    CAS  PubMed  Google Scholar 

  6. Nardell EA. Dodging droplet nuclei: Reducing the probability of nosocomial tuberculosis transmission in the AIDS era. Am Rev Respir Dis 1990;142:501–503.

    CAS  PubMed  Google Scholar 

  7. Harding RM, Mills EJ. Aviation Medicine. 3rd ed. London: BMJ Publishing Group; 1993:120–122.

    Google Scholar 

  8. Flight Manual, USAF Series C-141B Aircraft (TO 1C-141B-1). Washington, DC: US Government Printing Office; 1998:1-31–1-38.

    Google Scholar 

  9. Ewing JR. C-17 Globemaster III: AMC’s Airlifter of the Future. Abstract presented at the Aerospace Medical Association’s 69th Annual Scientific Meeting. Seattle; 1998.

    Google Scholar 

  10. Flight Manual, USAF Series C-130-B, C-130E, and C-130H Aircraft (TO 1C-130-B-1). Washington, DC: US Government Printing Office; 1995 (revised 1996):4-11–4-15.

    Google Scholar 

  11. Centers for Disease Control. Guidelines for preventing the transmission of tuberculosis in health-care facilities, 1994. MMWR 1994;43(suppl):RR–13.

    Google Scholar 

  12. Schulman JL, Kilbourne ED. Airborne transmission of influenza virus infection in mice. Nature 1962;195:1129–1130.

    CAS  PubMed  Google Scholar 

  13. Andrews CH, Glover RE. Spread of infection from the respiratory tract of the ferret. I. Transmission of influenza A virus. Br J Exp Pathol 1941;22:91–97.

    Google Scholar 

  14. Nardell EA, Keegan J, Cheney SA, Etkind SC. Airborne infection: Theoretical limits of protection achievable by building ventilation. Am Rev Respir Dis 1991;144:302–306.

    CAS  PubMed  Google Scholar 

  15. Harding R. Cabin air quality in aircraft. Br Med J 1994;308:427–428.

    CAS  Google Scholar 

  16. Driver CR, Valway SE, Morgan WM, Onorato IM, Castro KG. Transmission of Mycobacterium tuberculosis associated with air travel. JAMA 1994;272:1034.

    Article  Google Scholar 

  17. Hendley JO. Risk of acquiring respiratory tract infections during air travel. JAMA 1987;258: 2764.

    Google Scholar 

  18. Nagda NL (Geomet Technologies). Airliner cabin environment: Contaminant measurements, health risks, and mitigation options. Washington, DC: U.S. Department of Transportation, 1989.

    Google Scholar 

  19. Clayton AJ. Lassa fever—to air evacuate or not. AGARD-CP 1975;169:A6.

    Google Scholar 

  20. Renemann HH. Transportation by air of a Lassa fever patient in 1974. AGARD-CP 1975;169:A5.

    Google Scholar 

  21. Wick RL, Irvine LA. The microbiological composition of airliner cabin air. Aviat Space Environ Med 1995;66:220–224.

    PubMed  Google Scholar 

  22. Ritzinger FR. Aeromedical Review 4-65 Disease transmission by aircraft. USAF School of Aerospace Medicine: Brooks AFB, TX, May 1965.

    Google Scholar 

  23. Tauxe RV, Tormey MP, Mascola L, Hargrett-Bean NT, Blake PA. Salmonellosis outbreak on transatlantic flights: foodborne illness on aircraft: 1947–1984. Am J Epidemiol 1987;125:150–157.

    CAS  PubMed  Google Scholar 

  24. Houk VN, Baker JH, Sorensen K, Kent DC. The epidemiology of tuberculosis infection in a closed environment. Arch Environ Health 1968; 16:26–35.

    CAS  PubMed  Google Scholar 

  25. Center for Disease Control. Exposure of passengers and flight crew to Mycobacterium tuberculosis on commercial aircraft, 1992–1995. MMWR 1995;44:137–140.

    Google Scholar 

  26. Miller MA, Valway S, Onorato IM. Tuberculosis risk after exposure on airplanes. Tuber Lung Dis 1996;77:414–419.

    Article  CAS  PubMed  Google Scholar 

  27. McFarland JW, Hickman C, Osterholm M, MacDonald KL. Exposure to Mycobacterium tuberculosis during air travel. Lancet 1993;342:112–113.

    Article  CAS  PubMed  Google Scholar 

  28. Baxter T. Low infectivity of tuberculosis. Lancet 1993;342:371.

    Article  CAS  PubMed  Google Scholar 

  29. Kenyon TA, Valway SE, Ihle WW, Onorato IM, Castro KG. Transmission of multidrug-resistant Mycobacterium tuberculosis during a long airplane flight. N Engl J Med 1996;334: 933–938.

    Article  CAS  PubMed  Google Scholar 

  30. Moser MR, Bender TR, Margolis HS, Noble GR, Kendal AP, Ritter DG. An outbreak of influenza aboard a commercial airliner. Am J Epidemiol 1979;110:1–6.

    CAS  PubMed  Google Scholar 

  31. American Public Health Association. Chin, James (Ed.). Control of Communicable Diseases Manual. 17th ed. Baltimore: United Book Press Co; 2000:271.

    Google Scholar 

  32. Centers for Disease Control. Management of patients with suspected viral hemorrhagic fever. MMWR 1988;37:1–15.

    Google Scholar 

  33. Slater PE. An outbreak of measles associated with a New York/Tel Aviv flight. Travel Med Int 1995;13:92–95.

    Google Scholar 

  34. Hagelsten JO, Jessen K. Air-transport, a main cause of smallpox epidemics today. Aerosp Med 1973;44:772–774.

    CAS  PubMed  Google Scholar 

  35. Fenner F, Henderson DA, Arita I, Jezek Z, Ladnyi ID. Smallpox and its Eradication. Geneva: World Health Organization; 1988: 1074.

    Google Scholar 

  36. Centers for Disease Control. Smallpox—Stockholm. MMWR 1963;12:174–176, 183, 268.

    Google Scholar 

  37. Garrett L. The Coming Plague: Newly Emerging Diseases in a World Out of Balance. New York: Farrar, Straus and Giroux; 1994:90–94.

    Google Scholar 

  38. Fisher-Hoch SP, Price ME, Craven RB, et al. Safe intensive-care management of a severe case of Lassa fever with simple barrier nursing techniques. Lancet 1985;2:1227–1229.

    CAS  PubMed  Google Scholar 

  39. Cooper CB, Gransden WR, Webster M, King M, O’Mahony M, Young S, Banatvala JE. A case of Lassa fever: Experience at St. Thomas’s Hospital. Br Med J 1982;2:1003–1005.

    Google Scholar 

  40. Troup JM, White HA, Fom AL, Carey DE. An outbreak of Lassa fever on the Jos Plateau, Nigeria, in January–February, 1970. A preliminary report. Am J Trop Med Hyg 1970;19:695.

    CAS  PubMed  Google Scholar 

  41. Woodruff AW, Monath TP, Mahmoud AA, Pain AK, Morris CA. Lassa fever in Britain: An imported case. Br Med J 1973;3:616.

    CAS  PubMed  Google Scholar 

  42. World Health Organization (WHO). Lassa fever. Wkly Epidemiol Rec 1975;50:27.

    Google Scholar 

  43. Pate JR. Follow-up on Lassa fever, Washington, DC. MMWR 1976;25:68.

    Google Scholar 

  44. Schlaeffer F, Bar-Lavie Y, Sikuler E, Alkan M, Keynan A. Evidence against high contagiousness of Lassa fever. Trans Roy Soc Trop Med Hyg 1988;82:311.

    Article  CAS  PubMed  Google Scholar 

  45. Hotton JM, et al. Aeromedical evacuation of patients with Lassa fever. Aviat Space Environ Med 1991;62:909–910.

    CAS  PubMed  Google Scholar 

  46. World Health Organization. Viral Hemorrhagic Fevers: Report of the WHO Expert Committee. Geneva: World Health Organization; 1985. WHO Technical Report 721.

    Google Scholar 

  47. Flight Manual, USAF Series C-130H Aircraft (TO 1C-130H-1). Washington, DC: US Government Printing Office; 1996:4–17.

    Google Scholar 

  48. Centers for Disease Control. Update: Management of patients with suspected viral hemorrhagic fever—United States. MMWR 1995;44:475–479.

    Google Scholar 

  49. Hill EE, McKee KT. Isolation and biocontainment of patients with highly hazardous infectious diseases. J US Army Med Dept 1991;PB 8-91-1/2:10–4.

    Google Scholar 

  50. Wilson KE, Driscoll DM. Mobile high-containment isolation: A unique patient care modality. Am J Infect Control 1987;15:120–124.

    Article  CAS  PubMed  Google Scholar 

  51. Christopher GW, Eitzen EM, Jr. Air evacuation under high level biosafety containment: The Aeromedical Isolation Team. Emerg Infect Dis 1999;5:241–246.

    CAS  PubMed  Google Scholar 

  52. Clausen L, Bothwell TH, Isaacson M, et al. Isolation and handling of patients with dangerous infectious disease. South Afr Med J 1978;53:238–242.

    CAS  Google Scholar 

  53. Clayton AJ. Containment aircraft transit isolator. Aviat Space Environ Med 1979;50:1067–1072.

    CAS  PubMed  Google Scholar 

  54. Human Systems Center (Brooks AFB, Tex), Products and Progress. http://www.brooks.af.mil/hsc/ya/yac/aerp.htm.

  55. Flight Manual, USAF Series C-9A Aircraft (TO 1C9-A-1). Washington, DC: US Government Printing Office; 1997:1-346–1-348.

    Google Scholar 

  56. Merwin CA. US Air Force patient airlift: From balloons to high-speed jets. J Air Med Trans 1990;19:18–25.

    Google Scholar 

  57. Coates JB. Internal Medicine in World War II. vol II. Infectious Diseases. Washington, DC: Office of the Surgeon General, Department of the Army; 1963:342, 378–381.

    Google Scholar 

  58. Reed K (Battelle Corp). Draft of United States Air Force Concept of Operations (CONOPS) for Management of Biological Warfare Casualties. Unpublished 2nd draft. 1997.

    Google Scholar 

  59. Perin M. Transportation in commercial aircraft of passengers having contagious diseases. Aviat Space Environ Med 1976;47:1109–1113.

    CAS  PubMed  Google Scholar 

  60. Wills C. Yellow fever, black goddess: The co-evolution of people and plagues. Reading, Mass: Helix Books, Addison-Wesley Publishing Co; 1996:13–14.

    Google Scholar 

  61. Centers for Disease Control. Detection of notifiable diseases through surveillance for imported plague—New York, September–October 1994. MMWR 1994;43:805–807.

    Google Scholar 

  62. World Health Assembly. International Health Regulations (IHR). 22nd WHA. 1969, 1983 (3rd annotated ed), 1992 (updated reprint).

    Google Scholar 

  63. Provisional Draft of the Revised International Health Regulations. Geneva: World Health Organization; 1995.

    Google Scholar 

  64. Department of the Air Force. Quarantine Regulations of the Armed Forces. Departments of the Navy, Army, and the Air Force. Washington, DC: US Government Printing Office; 1992. AFR 161-4.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Withers, M.R., Christopher, G.W., Hatfill, S.J., Gutierrez-Nunez, J.J. (2003). Aeromedical Evacuation of Patients with Contagious Infections. In: Hurd, W.W., Jernigan, J.G. (eds) Aeromedical Evacuation. Springer, New York, NY. https://doi.org/10.1007/0-387-22699-0_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-22699-0_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98604-3

  • Online ISBN: 978-0-387-22699-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics