Skip to main content

Part of the book series: Ecological Studies ((ECOLSTUD,volume 160))

Conclusion

Acomprehensive, mechanistic simulation of wildland fire and ecosystem dynamics across a landscape may not be possible because of computer limitations, inadequate research, inconsistent data, and extensive parameterization. Therefore empirical and stochastic approaches must be substituted for many mechanistic modules until research and technology improve. Unfortunately, nonmechanistic approaches limit the scope and applicability of spatial ecosystem process models. Ecosystem dynamics models need to be refined so that appropriate compartments that model fire spread and effects are explicitly represented in their structure. Landscape disturbance models need to simulate fire growth unconstrained by vegetation polygon delineations. Most important, these models must be designed in the context of the simulation objective to ensure that appropriate simulation modules are included.

The use of trade or firm names in this paper is for reader information and does not imply endorsement by the U.S. Department of Agriculture of any product or service. This paper was written and prepared by U.S. Government employees on official time, and therefore is in the public domain and not subject to copyright.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aber, J.D., and Federer, C.A. 1992. A generalized, lumped-parameter model of photosynthesis, evapotranspiration, and net primary production in temperate and boreal forest ecosystems. Oecologia 92:463–474.

    Article  Google Scholar 

  • Ågren, G.I., and Axelsson, B. 1980. PT-A tree growth model. Ecol. Bull. (Stockholm) 32: 525–536.

    Google Scholar 

  • Ågren, G.I., McMurtrie, R.E., Parton, W.J., Pastor, J., and Shugart, H.H. 1991. Stateof-the-art of models of production-decomposition linkages in conifer and grassland ecosystems. Ecol. Appl. 1(2):118–138.

    Google Scholar 

  • Albini, F.A. 1976a. Computer-Based Models of Wildland Fire Behavior: A User’s Manual. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 68p.

    Google Scholar 

  • Albini, F.A., and Reinhardt, E.D. 1995. Modeling ignition and burning rate of large woody natural fuels. Int. J. Wildl. Fire 5(2):81–91.

    Article  Google Scholar 

  • Albini, F.A., Brown, J.K., Reinhardt, E.D., and Ottmar, R.D. 1995. Calibration of a large fuel burnout model. Int. J. Wildl. Fire 5(3):173–192.

    Article  Google Scholar 

  • Albini, F.A., Amin, M.R., Hungerford, R.D., Frandsen, W.H., and Ryan, K.C. 1996. Models for fire-driven heat and moisture transport in soils. USDA Forest Service Gen. Tech. Rep. INT-GTR-335. 16p.

    Google Scholar 

  • Andersen, M. 1991. Mechanistic models for the seed shadows of wind-dispersed plants. The Am. Naturalist 137(4):476–497.

    Article  Google Scholar 

  • Anderson, D.G., Catchpole, E.A., DeMestre, N.J., and Parkes, T. 1982. Modeling the spread of grass fires. J. Austral. Math. Soc. (ser. B.) 23:451–466.

    Article  Google Scholar 

  • Anderson, H.E. 1969. Heat transfer and fire spread. Res. Pap. INT-69. Ogden, UT: USDA, Forest Service, Intermountain Forest and Range Experiment Station. 20p.

    Google Scholar 

  • Anderson, H.E. 1982. Aids to determining fuel models for estimating fire behavior. Gen. Tech. Rep. INT-122. Ogden, UT: USDA Forest Service, Intermountain Forestry and Range Experimental Station. 22p.

    Google Scholar 

  • Andrews, P.L. 1986. BEHAVE: Fire behavior prediction and fuel modeling system-BURN subsystem. USDA Forest Service Gen. Tech. Rep. INT-194. 130p.

    Google Scholar 

  • Andrews, P.L. 1990. Application of fire growth simulation models in fire management. In Proceedings of the 10th Conference on Fire and Forest Meteorology, pp. 317–321. April 17–21, Ottawa, Canada. Society of American Foresters, Washington, DC.

    Google Scholar 

  • Arno, S.F., Simmerman, D.G., and Keane, R.E. 1985. Forest succession on four habitat types in western Montana. Gen. Tech. Rep. INT-177. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 74p.

    Google Scholar 

  • Aston, A.R., and Gill, A.M. 1976. Coupled soil moisture, heat, and water vapor transfers under simulated fire conditions. Austral. J. Soil Res. 14:55–66.

    Article  Google Scholar 

  • Baker, W.L. 1989a. Effect of scale and spatial heterogeneity on fire-interval distributions. Can. J. For. Res. 19:700–706.

    Google Scholar 

  • Baker, W. L. 1989b. A review of models of landscape change. Landscape Ecol. 2(2): 111–133.

    Article  Google Scholar 

  • Baker, W.L. 1992a. Effects of settlement and fire suppression on landscape structure. Ecology 73:1879–1887.

    Article  Google Scholar 

  • Baker, W.L. 1992b. The landscape ecology of large disturbances in the design and management of nature reserves. Landscape Ecol. 7(3):181–194.

    Article  Google Scholar 

  • Baker, W.L. 1993. Spatially heterogeneous multi-scale response of landscapes to fire suppression. Oikos 66:66–71.

    Google Scholar 

  • Baker, W.L., Egbert, S.L., and Frazier, G.F. 1991. A spatial model for studying the effects of climatic change on the structure of landscapes subject to large disturbances. Ecol. Model. 56:109–125.

    Article  Google Scholar 

  • Ball, G.L., and Gimblett, R. 1992. Spatial dynamic emergent hierarchies simulation and assessment system. Ecol. Model. 62:107–121.

    Article  Google Scholar 

  • Band, L.E., Peterson, D.L., Running, S.W., Coughlan, J., Lanners, R., Dungan, J., and Nemani, R. 1991. Forest ecosystem processes at the watershed scale: basis for distributed simulation. Ecol. Model. 56:171–196.

    Article  Google Scholar 

  • Barrows, J.S., Sandberg, D.V., and Hart, J.D. 1977. Lightning fires in Northern Rocky Mountain forests. USDA Forest Service Final Report for Contract Grant 16-440-CA. On file, USDA Forest Service, Intermountain Fire Sciences Laboratory, P.O. Box 8089, Missoula, MT. 221p.

    Google Scholar 

  • Bassow, S.L., Ford, E.D., and Kiester, A.R. 1990. A critique of carbon-based tree growth models. In Process Modeling of Forest Ggrowth Responses to Environmental Stress, eds. R.K. Dixon, R.S. Meldahl, G.A. Ruark, and W.G. Warren, pp. 50–57. Portland, OR: Timber Pres

    Google Scholar 

  • Battaglia, M., and Sands, P.J. 1998. Process-based forest productivity models and their application in forest management. For. Ecol. Manag. 102:13–32.

    Article  Google Scholar 

  • Beer, T., and Enting, I.G. 1990. Fire spread and percolation modelling. Mathl. Comput. Model. 13(11):77–96.

    Article  Google Scholar 

  • Beven, K.J., and Kirkby, M.J. 1979. A physically based, variable contributing area model of basin hydrology. Hydrol. Sci. Bull. 24(1):43–69.

    Article  Google Scholar 

  • Bevins, C.D., and Andrews, P.L. 1994. The Loki software architecture for fire and ecosystem modeling: A tinker toy approach. In 12th Conference on Fire and Forest Meteorology, pp. 252–260, October 26–28, Jekyll Island, GA. Society of American Foresters, Washington, DC.

    Google Scholar 

  • Bevins, C.D., Andrews, P.L., and Keane, R.E. 1995. Forest succession modelling using the Loki software architecture. Lesnictvi-Forestry 41(4):158–162.

    Google Scholar 

  • Binley, A.M., Beven, K.J., Calver, A., and Watts, L.G. 1991. Changing responses in hydrology: Assessing the uncertainty in physically based model predictions. Water Resources Res. 27(6):1253–1261.

    Google Scholar 

  • Blake, J.I., and Hoogenboom, G. 1988. A dynamic simulation of loblolly pine (Pinus taeda) seedling establishment based upon carbon and water balances. Can. J. For. Res. 18:833–850.

    Google Scholar 

  • Blyth, E.M., Dolman, A.J., and Noilhan, J. 1994. The effect of forest on mesoscale rainfall: An example from HAPEX-MOBILHY. J. Appl. Meteorol. 33(4):445–454.

    Article  Google Scholar 

  • Bolte, J.P., Fisher, J.A., and Ernst, D.H. 1993. An object-oriented, message-based environment for integrating continuous, event-driven and knowledge-based simulation. In Proceedings of Conference on Application of Advanced Information Technologies: Effective Management of Natural Resources, pp. 290–308, June 18-19, Spokane, WA American Society of Agricultural Engineers.

    Google Scholar 

  • Bossel, H. 1991. Modeling forest dynamics: Moving from description to explanation. Forest Ecol. Manag. 42:129–142.

    Article  Google Scholar 

  • Bossel, H., and Schäfer, H. 1988. Eco-physiological dynamic simulation model of tree growth, carbon, and nitrogen dynamics. In Forest Simulation Systems: Proceedings of the IUFRO Conference, eds. L.C. Wensel, G.S. Biging, November 2–5, 420p. Berkeley, CA: University of California, Division of Agriculture and Natural Resources. pp. 121–122.

    Google Scholar 

  • Botkin, Daniel B. 1993. Forest Dynamics: An Ecological Model. New York: Oxfor University Press.

    Google Scholar 

  • Botkin, D.B., and Schenk, H.J. 1996. Review and analysis of JABOWA and related forest models and their use in climate change studies. NCASI Tech. Bull. 717. 62p.

    Google Scholar 

  • Botkin, D.B., Janak, J.F., and Wallis, J.R. 1972. Some ecological consequences of a computer model of forest growth. J. Ecol. 60:849–872.

    Google Scholar 

  • Boumans, R.M.J., and Sklar, F.H. 1990. A polygon-based spatial (PBS) model for simulating landscape change. Landscape Ecol. 4(2/3):83–97.

    Article  Google Scholar 

  • Boyce, R.B. 1985. Conifer germination and seedling establishment on burned and unburned seedbeds. MS thesis. University of Idaho, Moscow.

    Google Scholar 

  • Boychuk, D., Perera, A.H., Ter-Mikaelian, M.T., Martell, D.L., and Li, C. 1997. Modelling the effect of spatial scale and correlated fire disturbances on forest age distribution. Ecol. Model. 95:143–162

    Article  Google Scholar 

  • Breyfogle, S., and Ferguson, S.A. 1996. User assessment of smoke-dispersion models for wildland biomass burning. USDA Forest Service Gen. Tech. Rep. PNW-GTR-379. 30p.

    Google Scholar 

  • Brown, J.K. 1970. Ratios of surface area to volume for common fire fuels. For. Sci. 16:101–105.

    Google Scholar 

  • Brown, J.K. 1981. Bulk densities of nonuniform surface fuels and their application to fire modeling. For. Sci. 27:667–683.

    Google Scholar 

  • Brown, J.K., and Bevins, C.D. 1986. Surface fuel loadings and predicted fire behavior for vegetation types in the Northern Rocky Mountains. Res. Note INT-358. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 9p.

    Google Scholar 

  • Brown, J.K., Marsden, M.A., Ryan, K.C., and Reinhardt. E.D. 1985. Predicting duff and woody fuel consumed by prescribed fire in the Northern Rocky Mountains. Res. Pap. INT-337. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 23p.

    Google Scholar 

  • Burgan, R.E., and Rothermel, R.C. 1984. BEHAVE: Fire behavior prediction and fuel modeling system-FUEL subsystem. USDA Forest Service Gen. Tech. Rep. INT-167. 126p.

    Google Scholar 

  • Burton, P.J., and Urban, D.L. 1990. An overview of ZELIG, a family of individual-based gap models simulating forest succession. In Symposia Proceedings Vegetation Management: An Integrated Approach, E. Hamilton, (compiler), November, 14–16, pp. 92–96, Victoria, BC. Forestry Canada Pacific Forestry Centre FRDA Rep. 109.

    Google Scholar 

  • Busing, R.T. 1991. A spatial model of forest dynamics. Veg. Sci. 92:167–179.

    Google Scholar 

  • Campbell, G.S., Jungbauer, J.D., Bristow, K.L., and Hungerford, R.D. 1995. Soil temperature and water content beneath a surface fire. Soil Sci. 159(6):363–374.

    CAS  Google Scholar 

  • Canham, C.D., and Marks, P.L. 1985. The response of woody plants to disturbance: patterns of establishment and growth. In The Ecology of Natural Disturbance and Patch Dynamics, pp. 197–216. S.T.A. Piclult and P.S. White, San Diego, CA: Academic Press

    Google Scholar 

  • Catchpole, E.A., Alexander, M.E., and Gill, A.M. 1982. Elliptical fire perimeter and area intensity distributions. Can. J. For. Res. 22:968–972.

    Google Scholar 

  • Cattelino, P.J., Noble, I.R., Slatyer, R.O., and Kessell, S.R. 1979. Predicting multiple pathways of plant succession. Environ. Manag. 3:41–50.

    Article  Google Scholar 

  • Chew, J.D. 1997. Simulating landscape patterns and processes at landscape scales. In Proceedings of the 11th Annual Symposium on Geographic Information Systems, pp. 287–291. Vancouver, B.C. GIS World Publications, Fort Collins, CO.

    Google Scholar 

  • Cipollini, M.L., Wallace-Senft, D.A., and Whigham, D.F. 1994. A model of patch dynamics, seed dispersal, and sex ratio in the dioecious shrub Lindera benzoin (Lauraceae). J. Ecol. 82:621–633.

    Google Scholar 

  • Clark, J.S., Fastie, C., Hurtt, G., Jackson, S.T., Johnson, C., King, G., Lewis, M., Lynch, J., Pacala, S., Prentice, C., Schupp, E.W., Webb, T., and Wyckoff, P. 1998. Reid’s Paradox of rapid plant migration. Biosci. 48:13–18.

    Article  Google Scholar 

  • Clarke, K.C., Brass, J.A., and Riggan, P.J. 1994. A cellular automaton model of wildfire propagation and extinction. Photogramm. Eng. Rem. Sens. 60(11):1355–1367.

    Google Scholar 

  • Crutzen, P.J., and Goldammer, J.G. 1993. Fire in the Environment: The Ecological, Atmospheric and Climatic Importance of Vegetation Fires. New York: Wiley.

    Google Scholar 

  • Dale, V.H., Doyle, T.W., and Shugart, H.H. 1985. A comparison of tree growth models. Ecol. Model. 29:145–169.

    Article  Google Scholar 

  • Dale, V.H., and Hemstrom, M. 1984. CLIMACS: A computer model of forest stand development for western Oregon and Washington. USDA Forest Service Res. Pap. PNW-327. Portland, OR: USDA Forest Service, Pacific Northwest Forest and Range Experiment Station. 60p.

    Google Scholar 

  • Dale, V.H., Hemstrom, M., and Franklin, J. 1986. Modeling the long-term effects of disturbances on forest succession, Olympic Peninsula, Washington. Can. J. For. Res. 16:56–67.

    Article  Google Scholar 

  • Dale, V.H., and Rauscher, H.M. 1994. Assessing impacts of climate change on forests: The state of biological modeling. Clim. Change 28:65–90.

    Article  Google Scholar 

  • Desanker, P.V., and Reed, D.D. 1991. A stochastic model for simulating daily growing season weather variables for input into ecological models. In: M.A. Buford (compiler). Proceedings of the 1991 Symposium on Systems Analysis in Forest Resources, pp. 1–11, March 3–6, Charleston, SC. USDA Forest Service Gen. Tech. Rep. SE-74.

    Google Scholar 

  • DeVries, D.A. 1958. Simultaneous transfer of heat and moisture in porous media. Trans. Am. Geophys. Union 39:909–916.

    Google Scholar 

  • Diaz, S., and Cabido, M. 1997. Plant functional types and ecosystem function in relation to global change. J. Veg. Sci. 8:121–133.

    Google Scholar 

  • Dickinson, R.E., Erroco, R.M., Giorgi, F., and Bates, G.T. 1989. A regional climate model for the western United States. Clim. Change 15:383–422.

    Google Scholar 

  • Dixon, R.K., Meldahl, R.S., Ruark, G.A., and Warren, W.G., eds. 1990. Process Modelling of Forest Growth Responses to Environmental Stress. Portland, OR: Timber Press.

    Google Scholar 

  • Dyer, J.M. 1995. Assessment of climatic warming using a model of forest species migration. Ecol. Model. 79:199–219.

    Article  Google Scholar 

  • Eis, S., and Craigdallie, D. 1983. Reproduction of conifers: A handbook for cone crop assessment, pp. 12–27. Canadian Forest Service Tech. Rep. 31.

    Google Scholar 

  • Everham, E.M., Wooster, K.B., and Hall, C.A.S. Forest landscape climate modeling. In: M.A. Buford (compiler). Proceedings of the 1991 Symposium on Systems Analysis in Forest Resources, March 3–6, pp. 11–16, Charleston, SC. USDA Forest Service Gen. Techn. Rep. SE-74.

    Google Scholar 

  • Fall, J., and Fall, A. 1996. SELES: A spatially explicit landscape event simulator. In Proceedings of the NCGIA Conference on GIS and Environmental Modeling, January 12, pp. 1–12, Santa Fe, NM.

    Google Scholar 

  • Finney, M.A. 1995. The missing tail and other considerations for the use of fire history models. Int. J. Wildl. Fire 5(4):197–202.

    Article  Google Scholar 

  • Finney, M.A. 1998. FARSITE: Fire area simulator-Model development and evaluation. USDA Forest Service Gen. Tech. Rep. RMRS-GTR-4. 47p.

    Google Scholar 

  • Fischer, W.C., and Bradley, A.F. 1987. Fire ecology of western Montana forest habitat types. Gen. Tech. Rep. INT-223. Intermountain Research Station. USDA Forest Service. 95p.

    Google Scholar 

  • Fischer, W.C., Miller, M., Johnston, C.M., Smith, J.K., Simmerman, D.G., and Brown, J.K. 1996. Fire effects information system: User’s guide. USDA Forest Service Gen. Tech. Rep. INT-GTR-327. 131p.

    Google Scholar 

  • Flannigan, M.D., and Wotton, B.M. 1991. Lightning-ignited forest fires in northwestern Ontario. Can. J. For. Res. 21:277–287.

    Google Scholar 

  • Flinn, M.A., and Wein, R.W. 1977. Depth of underground plant organs and theoretical survival during fire. Can. J. Bot. 55:2550–2554.

    Article  Google Scholar 

  • Ford, R., Running, S.W., and Nemani, R. 1994. A modular system for scalable ecological modeling. IEEE Comp. Sci. Eng. 10:32–44.

    Article  Google Scholar 

  • Forman, R.T.T., and Godron, M. 1986. Landscape Ecology. New York: Wiley.

    Google Scholar 

  • Fosberg, M.A. 1970. Drying rates of heartwood below fiber saturation. For. Sci. 16:57–63.

    Google Scholar 

  • Fowler, P.M., and Asleson, D.O. 1984. The location of lightning-caused wildland fires, Northern Idaho. Phys. Geogr. 5(3):240–253.

    Google Scholar 

  • Fox, J.F. 1989. Bias in estimating forest disturbance rates and tree lifetimes. Ecology 70(5): 1267–1272.

    Article  Google Scholar 

  • Frandsen, W.H., and Andrews, P.L. 1979. Fire behavior in nonuniform fuels. Res. Pap. INT-232. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 34p.

    Google Scholar 

  • Frandsen, W.H. 1991a. Heat evolved from smoldering peat. Int. J. Wild. Fire 1:197–204.

    Article  Google Scholar 

  • Frandsen, W.H. 1991b. Burning rate of smoldering peat. Northwest Sci. 65(4):166–172.

    Google Scholar 

  • French, I.A. 1992. Visualization techniques for the computer simulation of bushfires in two dimensions. M.S. thesis. University of New South Wales, Australian Defence Force Academy. 140p.

    Google Scholar 

  • Friend, A.D., Shugart, H.H., and Running, S.W. 1993. A physiology-based gap model of forest dynamics. Ecology. 74(3):792–797.

    Article  Google Scholar 

  • Fuquay, D.M. 1980. Lightning that ignites forest fires. In Proceedings, Sixth Conference on Fire and Meteorology, pp. 109–112. April 22–24, Seattle, WA. Society of American Foresters, Washington, DC.

    Google Scholar 

  • Fuquay, D.M., Baughman, R.G., and Latham, D.J. 1979. A model for predicting lightning-fire ignition in wildland fuels. USDA Forest Service Res. Pap. INT-217. 21p.

    Google Scholar 

  • Fuquay, D.M., Taylor, A.R., Hawe, R.G., and Schmid, C.W. 1972. Lightning discharges that caused forest fires. J. Geophy. Res. 77:2156–2158.

    Article  Google Scholar 

  • Garcia, C.V., Woodard, P.M., Tinus, S.J., Adamowicz, W.L., and Lee, B.S. 1995. A logit model for predicting the daily occurrence of human caused forest fires. Int. J. Wild. Fire 5(2):101–111.

    Article  Google Scholar 

  • Gardner, R.H., Hargrove, W.W., Turner, M.G., and Romme, W.H. 1996. Climate change, disturbances and landscape dynamics. pp. 149–172. In Global Change and Terrestrial Ecosystems, ed. B.H. Walker and W.L. Steffen. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gardner, R.H., Romme, W.H., and Turner, M.G. 1999. Predicting forest fire effects at landscape scales. In Spatial Modeling of Forest Landscape Change: Approaches and Applications, eds. D.J. Mladenoff and W.L. Baker, pp. 163–185. Cambridge: Cambridge University Press.

    Google Scholar 

  • Gay, C.A. 1989. Modeling tree level processes. In Proceedings of the Second US-USSR Symposium Air Pollution Effects on Vegetation Including Forest Ecosystems, eds. I. Nobel and D. Reginald, 143–155. Broomall, PA, September 1989.

    Google Scholar 

  • Giorgi, F., Marinucci, M.R., Bates, G.T., and Canio, G.D. 1993a. Development of a second generation regional climate model (RegCM2). I. Boundary-layer and radiative transfer processes. Mon. Wea. Rev. 121:2794–2813.

    Article  Google Scholar 

  • Giorgi, F., Marinucci, M.R., Bates, G.T., and Canio, G.D. 1993b. Development of a second generation regional climate model (RegCM2). II. Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev. 121:2813–2832.

    Google Scholar 

  • Goldewijk, K.K., van Minnen, J.G., Kreileman, G.J., Vloedbeld, M., and Leemans, R. 1994. Simulating the carbon flux between the terrestrial environment and the atmosphere. Water Air Soil Pollut. 76:199–230.

    Article  Google Scholar 

  • Goodchild, M.F., Parks, B.O., and Steyaert, L.T. 1993. Environmental Modeling with GIS. New York: Oxford University Press.

    Google Scholar 

  • Graham, B.L., Holle, R.L., and Lopez, R.E. 1997. Lightning detection and data use in the United States. Fire Manag. Notes 57(2):4–9.

    Google Scholar 

  • Green, D.G. 1983. Shapes of simulated fires in discrete fuels. Ecol. Model. 20:21–32.

    Article  Google Scholar 

  • Green, D.G. 1989. Simulated effects of fire, dispersal and spatial pattern on competition within forest mosaics. Vegetatio 82:139–153.

    Article  Google Scholar 

  • Greene, D.F., and Johnson, E.A. 1989. A model of wind dispersal of winged or plumed seeds. Ecol. 70:339–347.

    Article  Google Scholar 

  • Greene, D.F., and Johnson, E.A. 1996. Wind dispersal of seeds from a forest into a clearing. Ecol. 77(2):595–609.

    Article  Google Scholar 

  • Grier, C.C. 1975. Wildfire effects on nutrients distribution and leaching in a coniferous ecosystem. Can. J. For. Res. 5:599–607.

    CAS  Google Scholar 

  • Grime, J.P. 1979. Plant Strategies and Vegetation Processes. New York: Wiley.

    Google Scholar 

  • Groot, A. 1988. Methods for estimating seedbed receptivity and for predicting seedling stocking and density in broadcast seeding. Can. J. For. Res. 18:1541–1549.

    Google Scholar 

  • Hanson, J.D., Parton, W.J., and Innis, G.S. 1985. Plant growth and production of grassland ecosystems: a comparison of modelling approaches. Ecol. Model. 29:131–144.

    Article  Google Scholar 

  • Hartford, R.A. 1990. Smoldering combustion limits in peat as influenced by moisture, mineral content, and organic bulk density. In Proceedings of the 10th Conference on Fire and Forest Meteorology, eds. D.C. MacIver, H. Auld, R. Whitewood, pp. 282–286. April 17–21, Ottawa, Ontario. Forestry Canada, Petawawa National Forestry Institute, Chalk River, Ontario.

    Google Scholar 

  • Host, G.E., and Isebrands, J.G. 1994. An interregional validation of ECOPHYS, a growth process model of juvenile poplar clones. Tree Physiol. 14:933–945.

    PubMed  Google Scholar 

  • Hsie, E.Y. 1987. MM4 (Penn State/NCAR) mesoscale model version 4 documentation. NCAR Tech. Note, NCAR/TN294 + STR, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307. 215p.

    Google Scholar 

  • Hungerford, R.D. 1990. Modeling the downward heat pulse from fire in soils and in plant tissue. In Proceedings of the 10th Conference on Fire and Forest Meterology, eds. D.C. MacIver, H. Auld, R. Whitewood, pp. 148–151. April 17–21, Ottawa, Ontario. Forestry Canada, Petawawa National Forestry Institute, Chalk River, Ontario.

    Google Scholar 

  • Hungerford, R.D., Frandsen, W.H., and Ryan, K.C. 1995. Ignition and burning characteristics of organic soils. In Fire in Wetlands: A Management Perspective. Proceedings of the Tall Timbers Fire Ecology Conference No. 19, eds. S.I. Cerulean and R.T. Engstrom, pp. 78–91. Tallahasee, FL. Tall Timbers Research Station.

    Google Scholar 

  • Hungerford, R.D., Nemani, R.R., Running, S.W., and Coughlan, J.C. 1989. MTCLIM: A mountain microclimate simulation model. Research Paper INT-414. Ogden, UT: USDA Forest Service, Intermountain Research Station. 52p.

    Google Scholar 

  • Hunsaker, C.T., Nisbet, R.A., Lam, D.C., Brower, J.A., Baker, W.L., Turner, M.G., and Botkin, D.B. 1993. Spatial models of ecological systems and processes: The role of GIS. In Environmental Modeling with GIS, eds. M.F. Goodchild, B.O. Parks, L.T. Steyaert, pp. 248–264. New York: Oxford University Press.

    Google Scholar 

  • Hunt, E.R., Piper, S.C., Nemani, R., Keeling, C.D., Otto, R.D., and Running, S.W. 1996. Global net carbon exchange and intra-annual atmospheric CO2 concentrations predicted by an ecosystem process model and three-dimensional atmospheric transport model. Global Biogeochem. Cycles 10(3):431–456.

    Article  CAS  Google Scholar 

  • Huston, M., DeAngelis, D., and Post, W. 1988. New computer models unify ecological theory. BioScience 38(10):682–691.

    Article  Google Scholar 

  • Johnson, E.A. 1992. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest. New York: Cambridge University Press.

    Google Scholar 

  • Johnson, E.A., and Gutsell, S.L. 1994. Fire frequency models, methods, and interpretations. Adv. Ecol. Res. 25:239–285.

    Article  Google Scholar 

  • Johnson, E.A., and Van Wagner, C.E. 1985. The theory and use of two fire history models. Can. J. For. Res. 15:214–220.

    Google Scholar 

  • Johnson, W.C., Sharpe, D.M., DeAngelis, D.L., Fields, D.E., and Olson, R.J. 1981. Modeling seed dispersal and forest island dynamics. In Forest Island Dynamics in Man-Dominated Landscapes, eds. R.L. Burgess and D.M. Sharpe, pp. 215–239. New York: Springer.

    Google Scholar 

  • Jury, W.A. 1973. Simultaneous transport of heat and moisture through a medium sand. Ph.D. dissertation. Physics Department, University of Wisconsin, Madison. 19p.

    Google Scholar 

  • Karafyllidis, I., and Thanailakis, A. 1997. Amodel for predicting forest fire spreading using cellular automata. Ecol. Model. 99:87–97.

    Article  Google Scholar 

  • Keane, R.E. 1987. Forest succession in western Montana-A computer model designed for resource management. Res. Note INT-376. USDA Forest Service, Intermountain Research Station. 8p.

    Google Scholar 

  • Keane, R.E., Arno, S.F., and Brown, J.K. 1989. FIRESUM-An ecological process model for fire succession in Western conifer forests. Gen. Tech. Rep. INT-266. Ogden, UT: USDA Forest Service, Intermountain Research Station. 76p.

    Google Scholar 

  • Keane, R.E., Arno, S.F., and Brown, J.K. 1990. Simulating cumulative fire effects in ponderosa pine/Douglas-fir forests. Ecology 71(1):189–203.

    Article  Google Scholar 

  • Keane, R.E., Morgan, P., and Running, S.W. 1996. Fire-BGC-A mechanistic ecological process model for simulating fire succession on coniferous forest landscapes of the Northern Rocky Mountains. USDA Forest Service Res. Pap. INT-484. 122p.

    Google Scholar 

  • Keane, R.E., Long, D.G., Menakis, J.P., Hann, W.J., and Bevins, C. 1996. Simulating coarse scale vegetation dynamics with the Columbia River Basin succession model CRBSUM. USDA Forest Service Gen. Tech. Rep. INT-GTR-340. 50p.

    Google Scholar 

  • Keane, R.E., Hardy, C.C., Ryan, K.C., and Finney, M.A. 1997. Simulating effects of fire on gaseous emissions from future landscape of Glacier National Park, Montana, USA. World Resources Rev. 9(2):177–205.

    Google Scholar 

  • Keane, R.E., and Long, D.G. 1997. A comparison of coarse scale fire effects simulation strategies. Northwest Sci. 72(2):76–90.

    Google Scholar 

  • Keane, R.E., Rarsons, R., and Hessburg, P. 2002. Estimating historical range and variation of landscape path dynamics: Limitations of the simulation approach. Ecol. Model. (In press).

    Google Scholar 

  • Kellomäki, S., and Väisänen, H. 1991. Application of a gap model for the simulation of forest ground vegetation in boreal conditions. For. Ecol. Manag. 42:35–47.

    Article  Google Scholar 

  • Kercher, J.R., and Axelrod, M.C. 1984. A process model of fire ecology and succession in a mixed-conifer forest. Ecology 65(6):1725–1742.

    Article  Google Scholar 

  • Kessell, S.R., Good, R.B., and Hopkins, A.J.M. 1984. Implementation of two new resource management information systems in Australia. Environ. Manag. 8:251–270.

    Article  Google Scholar 

  • Kimmins, J.P. 1993. Scientific foundations for the simulation of ecosystem function and management in FORCYTE-11. Inf. Rep. NOR-X-328. Edmonton, Alberta: Forestry Canada, Northwest Region, Northern Forestry Centre. 88p.

    Google Scholar 

  • Knight, D.H. 1987. Parasites, lightning and the vegetation mosaic in wilderness andscapes. In Landscape Heterogeneity and Disturbance, ed. M.G. Turner, pp. 59–83. New York: Springer-Verlag.

    Google Scholar 

  • Knight, I., and Coleman, J. 1993. A fire perimeter expansion algorithm based on Huygens? wavelet propagation. Int. J. Wild. Fire 3(2):73–84.

    Article  Google Scholar 

  • Korol, R.L., Running, S.W., Milner, K.S., and Hunt, E.R. 1991. Testing a mechanistic carbon balance model against observed tree growth. Can. J. For. Res. 21:1098–1105.

    Google Scholar 

  • Korol, R.L., Running, S.W., and Milner, K.S. 1995. Incorporating intertree competition into an ecosystem model. Can. J. For. Res. 25:413–424.

    Google Scholar 

  • Korzukhin, M.D., Ter-Mikaelian, M.T., and Wagner, R.G. 1996. Process versus empirical models: which approach for forest ecosystem management? Can. J. For. Res. 26: 879–887.

    Google Scholar 

  • Kourtz, P., and O’Reagan, W.G. 1971. A model for a small forest fire to simulate burned and burning areas for use in a detection model. For. Sci. 17(2):163–169.

    Google Scholar 

  • Kutiel, P., and Shaviv, A. 1992. Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. For. Ecol. Manag. 53:329–343.

    Article  Google Scholar 

  • Lall, U., and Sharma, A. 1996. A nearest neighbor bootstrap for time series resampling. Water Resources Res. 32(3): 679–693.

    Article  Google Scholar 

  • Landsberg, J.J., and Gower, S.T. 1997 Applications of Physiological Ecology to Forest Management. San Diego, CA: Academic Press.

    Google Scholar 

  • Latham, D. 1983. LLAFFS-A lightning-locating and fire-forecasting system. USDA Forest Service Res. Pap. INT-315. 44p.

    Google Scholar 

  • Latham, D., Burgan, R., Chase, C., and Bradshaw, L. 1997. Using lightning location in the Wildland Fire Assessment System. USDA Forest Service Gen. Tech. Rep. INTGTR-349. 5p.

    Google Scholar 

  • Latham, D.J., and Schlieter, J.A. 1989. Ignition probabilities of wildland fuels based on simulated lightning discharges. USDA Forest Service Res. Pap. INT-411. 16p.

    Google Scholar 

  • Latham, D. 1994. PLUMP: A plume predictor and cloud model for fire managers. USDA Forest Service INT-GTR-314. 15p.

    Google Scholar 

  • Lauenroth, W.K., Urban, D.L., Coffin, D.P., Parton, W.J., Shugart, H.H., Kirchner, T.B., and Smith, T.M. 1993. Modeling vegetation structure-ecosystem process interactions across sites and ecosystems. Ecol. Model. 67:49–80.

    Article  Google Scholar 

  • Leemans, R. 1992. Simulation and future projection of succession in a Swedish broadleaved forest. For. Ecol. Manag. 48:305–319.

    Article  Google Scholar 

  • Leemans, R., and Prentice, I. 1989. FORSKA, a general forest succession model. Gen. Rep. 89/2, Institute of Ecological Botany, Uppsala, Sweden. 45p.

    Google Scholar 

  • Levitt, J. 1980. Responses of Plants to Environmental Stresses: Chilling, Freezing, and High Temperature Stresses, vol. 1. New York: Academic Press.

    Google Scholar 

  • Levine, E.R., Ranson, K.J., Smith, J.A., Williams, D.L., Knox, R.G., Shugart, H.H., Urban, D.L., and Lawrence, W.T. 1993. Forest ecosystem dynamics; linking forest succession, soil process and radiation models. Ecol. Model. 75:199–219.

    Article  Google Scholar 

  • Li, C., Ter-Mikaelian, M., and Perera, A. 1996. Temporal fire disturbance patterns on a forest landscape. Ecol. Model. 99(2, 3):137–150.

    Google Scholar 

  • Little, S.N., and Ohmann, J.L. 1988. Estimating nitrogen lost from the forest floor during prescribed fires in Douglas-fir/western hemlock clearcuts. For. Sci. 34(1):152–164.

    Google Scholar 

  • Luce, C.H., Kluzek, E., and Bingham, G.E. 1995. Development of a high resolution climatic data set for the Northern Rockies. In Interior West Global Change Workshop, ed. R. Tinus, pp. 106–111. USDA Forest Service Gen. Tech. Rep. RM-GTR-262.

    Google Scholar 

  • Malanson, G.P. 1996. Effects of dispersal and mortality on diversity in a forest stand model. Ecol. Model. 87:103–110.

    Article  Google Scholar 

  • Malanson, G.P., and Armstrong, M.P. 1996. Dispersal probability and forest diversity in a fragmented landscape. Ecol. Model. 87:91–102.

    Article  Google Scholar 

  • Marsden, M.A. 1983. Modeling the effect of wildfire frequency on forest structure and succession in the Northern Rocky Mountains. J. Environ. Manag. 16(1):45–62.

    Google Scholar 

  • Martell, D.L., Bevilacqua, E., and Stocks, B.J. 1989. Modelling seasonal variation in daily people-caused forest fire occurrence. Can. J. For. Res. 19:1555–1563.

    Google Scholar 

  • McArthur, A.G. 1967. Fire behavior in eucalypt forests. Commonwealth of Australia Forestry and Timber Bureau Leaflet No. 107. 80p.

    Google Scholar 

  • McCarthy, M.A., and Gill, A.M. 1997. Fire modeling and biodiversity. In Natural and Altered Landscapes: Disturbance Ecology of Ecosystems, pp. 79–88. Amsterham: Elsevier.

    Google Scholar 

  • McCaughey, W.W., Schmidt, W.C., and Shearer, R.C. 1985. Seed dispersal characteristics of conifers of the Inland Mountain West. In Proceedings of Symposium on Conifer Seed in Inland Mountain West, ed. R.C. Shearer (compiler), pp. 50–61. April 5–6, Missoula, MT.

    Google Scholar 

  • McClanahan, T.R. 1986. Seed dispersal from vegetation islands. Ecol. Model. 32:301–309.

    Article  Google Scholar 

  • McKenzie, D., Peterson, D.L., and Alvarado, E. 1996. Extrapolation problems in modeling fire effects at large spatial scales: A review. Int. J. Wild. Fire 6(4):165–176.

    Article  Google Scholar 

  • McMurtrie, R.E., Leuning, R., Thompson, W.A., and Wheeler, A.M. 1992. A model of canopy photosynthesis and water use incorporating a mechanistic formulation of leaf CO2 exchange. For. Ecol. Manag. 52:261–278.

    Article  Google Scholar 

  • Meetenmeyer, V. 1978. Macroclimate and lignin control of decomposition rates. Ecology 59:465–472.

    Article  Google Scholar 

  • Miller, C. 1994. A model of the interactions among climate, fire, and forest pattern in the Sierra Nevada. MS thesis. Department of Forest Sciences, Colorado State University, Fort Collins. 77p.

    Google Scholar 

  • Miller, C., and Urban, D.L. 1999a. A model of surface fire, climate and forest pattern in the Sierra Nevada, California. Ecol. Model. 114:113–135.

    Article  CAS  Google Scholar 

  • Miller, C., and Urban, D.L. 1999b. Interactions between forest heterogeneity and surface fire regimes in the southern Sierra Nevada. Can. J. For. Res. 29:202–212.

    Article  Google Scholar 

  • Mladenoff, D.J., and Baker, W.L. 1999 Spatial Modeling of Forest Landscape Change. Cambridge: Cambridge University Press.

    Google Scholar 

  • Mladenoff, D.J., Host, G.E., Boeder, J., and Crow, T.R. 1996. LANDIS: A spatial model of forest landscape disturbance, succession and management. In GIS and Environmental Modeling, pp. 175–181. NCGIA, Santa Barbara, CA.

    Google Scholar 

  • Moeur, M. 1985. COVER: A user’s guide to the CANOPY and SHRUBS extension of the Stand Prognosis Model. USDA Forest Service Gen. Tech. Rep. INT-190. 49p.

    Google Scholar 

  • Mohren, G.M.J., Van Gerwen, C.P., and Spitters, C.J.T. 1984. Simulation of primary production in even-aged stands of Douglas-fir. For. Ecol. Manag. 9:27–49.

    Article  Google Scholar 

  • Mohren, G.M.J., Bartelink, H.H., and Lansen, J.J., eds. 1994. Contrasts between biologically based process models and management-oriented growth and yield models. Special issue—For. Ecol. Manag. 69(1–3):1–350.

    Google Scholar 

  • Moore, A.D., and Noble, I.R. 1990. An individual model of vegetation stand dynamics. J. Environ. Manag. 31:61–81.

    Google Scholar 

  • Narasimhan, T.N. 1995. Models and modeling of hydrogeologic processes. Soil Sci. Soc. Am. J. 59:300–306.

    Article  CAS  Google Scholar 

  • Noble, I.R., Bary, G.A.V., and Gill, A.M. 1980. McArthur’s fire danger meters expressed as equations. Austral. J. Ecol. 5:201–203.

    Google Scholar 

  • Noble, I.R., and Slatyer, R.O. 1977. Postfire succession of plants in Mediterranean ecosystems. In Proceedings of Symposium on the Environmental Consequences of Fire and Fuel Management in Mediterranean Ecosystems, eds. H.A. Mooney and C.E. Lowrad, pp. 27–36. USDA Forest Service Gen. Tech. Rep. WO-3.

    Google Scholar 

  • Ohtsuki, T., and Keyes, T. 1986. Biased percolation: Forest fires with wind. J. Phys. Advanus Math. Gen. 19:L281–L287.

    Article  Google Scholar 

  • Ottmar, R.D., Burns, M.F., Hall, J.N., and Hanson, A.D. 1993. CONSUME users guide. USDA Forest Service Gen. Tech. Rep. PNW-GTR-304. 118p.

    Google Scholar 

  • Pacala, S.W., Canham, C.D., and Silander, J.A. 1993. Forest models defined by field measurements: I. The design of a northeastern forest simulator. Can. J. For. Res. 23: 1980–1988.

    Google Scholar 

  • Parton, W.J., Schimel, D.S., Cole, C.V., and Ojima, D. 1987. Analysis of factors controlling soil organic levels of grasslands in the Great Plains. Soil Sc. Soc. Am. J. 51: 1173–1179.

    Article  CAS  Google Scholar 

  • Parton, W.J., Stewart, J.W.B., and Cole, C.V. 1988. Dynamics of C, N, P, and S in grassland soils: A model. Biogeochemistry 5:109–131.

    Article  CAS  Google Scholar 

  • Pastor, J., and Post, W.M. 1985. Development of a linked forest productivity-soil process model. Environmental Sciences Division Publication No. 2455. Oak Ridge, TN: Martin Marietta Energy Systems, Inc. for the U.S. Department of Energy, Environmental Sciences Division. 162p.

    Google Scholar 

  • Pastor, J., and Post, W.M. 1986. Influence of climate, soil moisture, and succession on forest carbon and nitrogen cycles. Biogeochemistry 2:3–27.

    Article  Google Scholar 

  • Peter, S.J. 1992. Heat transfer in soils beneath a surface fire. Ph.D. dissertation. Development of Chemical Engineering, University of New Brunswick, Fredericton. 479p.

    Google Scholar 

  • Peterson, D.L. 1985. Crown scorch volume and scorch height: Estimates of post-fire tree condition. Can. J. For. For. Res. 15:596–598.

    Google Scholar 

  • Pfister, R.D., Kovalchik, B.L., Arno, S.F., and Presby, R.C. 1977. Forest habitat types of Montana. Gen. Tech. Rep. INT-34. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 174p.

    Google Scholar 

  • Philip, J.R., and DeVries, D.A. 1957. Moisture movement in porous materials under temperature gradients. Trans. Am. Geophys. Union 38:222–232.

    Google Scholar 

  • Pielke, R.A., and Avissar, R.A. 1990. Influence of landscape structure on local and regional climate. Landscape Ecol. 4:133–155.

    Article  Google Scholar 

  • Pielke, R.A., Cotton, W.R., Walko, R.L., Tremback, C.J., Nicholls, M.E., Moran, M.D., Wesley, D.A., Lee, T.J., and Copland, J.H. 1992. A comprehensive meteorological modeling system-RAMS. Meteorol. Atmos. Phys. 49:69–91.

    Article  Google Scholar 

  • Pinty, J.P., Mascart, P., Bechtold, P., and Rosset, R. 1992. An application of the vegetation-atmosphere coupling concept to the HAPEX-MOBILHY experiment. Agricult. For. Meteorol. 61:253–279.

    Article  Google Scholar 

  • Pukkala, T. 1987. Simulation model for natural regeneration of Pinus sylvestris, Picea abies, Bedtula pendula and Betula pubescens. Silva Fennica 21(1):37–53.

    Google Scholar 

  • Rajagopalan, B., Lall, U., Tarboton, D.G., and Bowles, D.S. 1997. Multivariate nonparametric resampling scheme for generation of daily weather variables. Stochast. Hydrol. Hydraul. 11(1):65–95.

    Google Scholar 

  • Rastetter, E.B., Ryan, M.G., Shaver, G.R., Melillo, J.M., Wadelhoffer, K.J., Hobbie, J.E., and Aber, J.D. 1991. A general biogeochemical model describing the responses of the C and N cycles in terrestrial ecosystems to changes in CO2, climate, and N deposition. Tree Physiol. 9:101–126.

    PubMed  CAS  Google Scholar 

  • Rastetter, E. B. 1996. Validating models of ecosystem response to global change. Bioscience 46(3):190–197.

    Article  Google Scholar 

  • Ratz, A. 1995. Long-term spatial patterns created by fire: A model oriented towards boreal forests. Int. J. Wildland Fire 5(1):25–34.

    Article  Google Scholar 

  • Reed, K.L. 1980. An ecological approach to modeling growth of forest trees. For. Sci. 26: 33–50.

    Google Scholar 

  • Reed, K.L., and Clark, S.G. 1979. SUCcession SIMulator: A coniferous forest simulator. Model documentation. Bulletin No. 11. Seattle: University of Washington, Coniferous Biome Ecosystem Analysis. 96p.

    Google Scholar 

  • Reed, W.J. 1994. Estimating the historic probability of stand-replacement fire using ageclass distribution of undisturbed forest. For. Sci. 40(1):104–119.

    Google Scholar 

  • Reinhardt, E.D., Keane, R.E., and Brownm, J.K. 1997. First order fire effects model: FOFEM 4.0, user’s guide. USDA Forest Service Gen. Tech. Rep. INT-GTR-344. 65p.

    Google Scholar 

  • Richards, G.D. 1990. An elliptical growth model of forest fire fronts and its numerical solution. Int. J. Numer. Meth. Eng. 30:1163–1179.

    Article  Google Scholar 

  • Richards, G.D. 1995. A general mathematical framework for modeling two-dimensional wildland fire spread. Int. J. Wildl. Fire 5(2):63–72.

    Article  Google Scholar 

  • Roberts, D.W. 1996. Landscape vegetation modeling with vital attributes and fuzzy ststems theory. Ecol. Model. 90:175–184.

    Article  Google Scholar 

  • Roberts, D.W., and Betz, D.W. 1999. Simulating landscape vegetation dynamics of Bryce Canyon National Park with the vital attributes/fuzzy systems model VAFS.LANDSIM. In Spatial Modeling of Forest Landscape Change: Approaches and Applications, eds. D.J. Mladenoff and W.L. Baker, pp. 99–123. Cambridge: Cam bridge University Press.

    Google Scholar 

  • Rothermel, R.C. 1972. A mathematical model for predicting fire spread in wildland fuels. Res. Pap. INT-115. Ogden, UT: USDA Forest Service, Intermountain Forest and Range Experiment Station. 40p.

    Google Scholar 

  • Rothermel, R.C. 1991. Predicting behavior and size of crown fires in the Northern Rocky Mountains. USDA Forest Service Res. Pap. INT-438. 46p.

    Google Scholar 

  • Rothermel, R.C., Wilson, R.A., Morris, G.A., and Sackett, S.S. 1986. Modeling moisture content of fine dead wildland fuels: Input to the BEHAVE fire prediction system. USDA Forest Service Res. Pap. INT-359. 61p.

    Google Scholar 

  • Running, S.W., and Coughlan, J.C. 1988. A general model of forest ecosystem processes for regional applications. I. Hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 42:125–154.

    Article  CAS  Google Scholar 

  • Running, S.W., and Gower, S.T. 1991. FOREST-BGC, a general model of forest ecosystem processes for regional applications. II. Dynamic carbon allocation and nitrogen budgets. Tree Physiol. 9:147–160.

    PubMed  CAS  Google Scholar 

  • Running, S.W., Nemani, R.R., and Hungerford, R.D. 1987. Extrapolation of synoptic meteorological data in mountainous terrain and its use for simulating forest evapotranspiration and photosynthesis. Can. J. For. Res. 17:472–483.

    Google Scholar 

  • Ryan, K.C., Peterson, D.L., and Reinhardt, E.D. 1987. Modeling long-term fire-caused mortality of Douglas-fir. For. Sci. 34(1):190–199.

    Google Scholar 

  • Ryan, K.C., and Reinhardt, E.D. 1988. Predicting postfire mortality of seven western conifers. Can. J. For. Res. 18:1291–1297.

    Google Scholar 

  • Sandberg, D.V. 1980. Duff reduction by prescribed underburning in Douglas-fir. USDA Forest Service Res. Pap. PNW-272. 18p.

    Google Scholar 

  • Sanderlin, J.C., and Sunderson, J.M. 1975. A simulation for wildland fire management planning support (FIREMAN). In Volume II. Prototype Models for FIREMAN (Part II): Campaign Fire Evaluation. Mission Research Corp. Contract No. 231-343, Spec. 222. 249p.

    Google Scholar 

  • Schroeder, C.N. 1974. The development of an optimized computer simulation model for heat and moisture transfer in soils. Ph.D. dissertation. Texas A&M University, College Station. 318p.

    Google Scholar 

  • Scire, J., Strimaitis, D.G., Yamartino, R.J., and Xiamong, Z. 1995. A user’s guide for CALPUFF dispersion model. Document 1321-2. Concord, MA: Sigma Research/Earth Tech. 315p.

    Google Scholar 

  • Segal, M., Avissar, R., McCumber, M.C., and Pielke, R.A. 1988. Evaluation of vegetation effects on the generation and modification of mesoscale circulation. J. Atmos. Sci. 45: 2268–2292.

    Article  Google Scholar 

  • Sestak, M.L., Marlatt, W.E., and Riebau, A.R. 1989. VALBOX: Ventilated valley box model. Unpublished report on file with Michael Sestak, USDI Bureau of Land Management and Colorado State University, Environmental Science and Technology Center, 2401 Research Blvd., Suite 205, Fort Collins, CO 80526.

    Google Scholar 

  • Sestak, M.L., and Riebau, A.R. 1988. SASEM: Simple approach smoke estimation model. Tech. Note 382. USDI Bureau of Land Management, Fort Collins, CO 80526. 31p.

    Google Scholar 

  • Sharpe, P.J.H., Walker, J., Penridge, L.K., Wu, H., and Rykiel, E.J. 1986. Spatial considerations in physiological models of tree growth. Tree Physiol. 2:403–421.

    PubMed  Google Scholar 

  • Shugart, H.H., and Noble, I.R. 1981. A computer model of succession and fire response of the high-altitude Eucalyptus forest of the Brindabella Range, Australian Capital Territory. Austral. J. Ecol. 6:149–164.

    Google Scholar 

  • Shugart, H.H., and Seagle, S.W. 1985. Modeling forest landscapes and the role of disturbance in ecosystems and communities. In The Ecology of Natural Disturbance and Patch Dynamics, eds. S.T.H. Pickett and P.S. White, pp. 353–368. San Diego, CA: Academic Press.

    Google Scholar 

  • Shugart, H.H., and West, D.C. 1980. Forest succession models. Bioscience 30(5):308–313.

    Article  Google Scholar 

  • Shugart, H.H., and West, D.C. 1977. Development of an Appalachian deciduous forest succession model and its application to assessment of the impact of the chestnut blight. J. Environ. Manag. 5:161–179.

    Google Scholar 

  • Sievänen, R., and Burk. T.E., 1993. Adjusting a process-based growth model for varying site conditions through parameter estimation. Can. J. For. Res. 23:1837–1851.

    Google Scholar 

  • Sievänen, R., Hari, P., Orava, P.J., and Pelkonen, P. 1988. A model for the effect of photosynthate allocation and soil nitrogen on plant growth. Ecol. Model. 41:55–65.

    Article  Google Scholar 

  • Simard, A.J. 1996. Fire severity, changing scales, and how things hang together. Int. J Wildl. Fire 1(1):23–34.

    Article  Google Scholar 

  • Sirois, L., Bonan, G.B., and Shugart, H.H. 1994. Development of a simulation model of the forest-tundra transition zone of northeastern Canada. Can. J. For. Res. 24:697–706.

    Google Scholar 

  • Stickney, P.F. 1990. Early development of vegetation following holocaustic fire in Northern Rocky Mountain Forests. Northwest Sci. 64(5):243–249.

    Google Scholar 

  • Strandman, H., Vaisanen, H., and Kellomaki, S. 1993. A procedure for generating synthetic weather records in conjunction of climatic scenario for modelling of ecological impacts of changing climate in boreal conditions. Ecol. Model. 70:195–220.

    Article  Google Scholar 

  • Swartzman, G.L. 1979. Simulation modeling of material and energy flow through an ecosystem: methods and documentation. Ecol. Model. 7:55–81.

    Article  Google Scholar 

  • Thornton, P.E., Running, S.W., and White, M.A. 1997. Generating surfaces of daily meteorological variables over large regions of complex terrain. J. Hydrol. 190:214–251.

    Article  Google Scholar 

  • Tomback, D.F. 1982. Dispersal of whitebark pine seeds by Clark’s nutcracker: A mutualism hypothesis. J. Animal Ecol. 51:451–467.

    Google Scholar 

  • Tomback, D.F., Hoffman, L.A., and Sund, S.K. 1990. Coevolution of whitebark pine and nutcrackers: Implications for forest regeneration. In Proceedings of the Symposium: Whitebark Pine Ecosystems: Ecology and Management of a High Mountain Resource, pp. 118–130. March 29–31. Bozeman, MT. USDA Forest Service Gen. Tech. Rep. INT-270.

    Google Scholar 

  • Turner, M.G., Costanza, R., and Sklar, F.H. 1989. Methods to evaluate the performance of spatial simulation models. Ecol. Model. 48:1–18.

    Article  Google Scholar 

  • Turner, M.G., Hargrove, W.W., Gardner, R.H., and Romme, W.H. 1994. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 5: 731–742.

    Article  Google Scholar 

  • Uman, M.A. 1987. The Lightning Discharge. Orlando, FL. Academic Press.

    Google Scholar 

  • Urban, D.L., Bonan, G.B., Smith, T.M., and Shugart, H.H. 1991. Spatial applications of GAP models. For. Ecol. Manag. 42:95–110.

    Article  Google Scholar 

  • Urban, D.L., and Miller, C. 1996. Modeling Sierran forests: Capabilities and prospectus for gap models. In Final Report to Congress, Status of the Sierra Nevada Volume III, Assessments, Commissioned Reports, and Background Information. University of California, Davis, CA, Centers for Water and Wildland Resources. pp. 733–744.

    Google Scholar 

  • Urban, D.L., and Shugart, H.H. 1992. Individual-based models of forest succession. In Plant Succession Theory and Prediction, eds. D.C. Glenn-Lewin, R.K. Peet, T.T. Veblen, pp. 249–292. London: Chapman and Hall.

    Google Scholar 

  • USA CERL. 1990. GRASS 4.0 Reference Manual. United States Army Corps of Engineers, Construction Engineering Research Laboratory, Champaign, IL. 208p.

    Google Scholar 

  • U.S. Geological Survey. 1987Digital Elevation Models Data User’s Guide. U.S. Department of the Interior. 38p.

    Google Scholar 

  • Van der Pijl, L. 1982. Principles of Dispersal in Higher Plants. Berlin: Springer-Verlag.

    Google Scholar 

  • Van Wagner, C.E. 1973. Height of crown scorch in forest fires. Can. J. For. Res. 3: 373–378.

    Google Scholar 

  • Van Wagner, C.E. 1977. Conditions for the start and spread of crownfire. Can. J. For. Res. 3:373–378.

    CAS  Google Scholar 

  • Van Wagner, C.E. 1978. Age-class distribution and the forest fire cycle. Can. J. For. Res. 8:220–227.

    Google Scholar 

  • Vasconcelos, M.J., and Guertin, D.P. 1992. FIREMAP-Simulation of fire growth with a geographic information system. Int. J. Wildl. Fire 2:87–98.

    Article  Google Scholar 

  • Von Niessen, W., and Blumen, A. 1988. Dynamic simulation of forest fires. Can. J. For Res. 18:805–812.

    Google Scholar 

  • Wallace, G. 1993. A numerical fire simulation model. Int. J. Wildl. Fire 3(2):111–116.

    Article  Google Scholar 

  • Wang, Y.P., and Jarvis, P.G. 1990. Description and validation of an array model-MAESTRO. Agric. For. Meteorol. 51:257–280.

    Article  Google Scholar 

  • Ward, D.E. 1990. Factors influencing the emissions of gases and particulate matter from biomass burning. In Fire in the Tropical Biota, ed. J.G. Goldammer, pp. 418–436. Berlin: Springer.

    Google Scholar 

  • Ward, D.E., Peterson, J., and Hao, W.M. 1993. An inventory of particulate matter and air toxic emissions from prescribed fires in the USA for 1989. In Proceedings of the Air and Waste Management Association 1993 Annual Meeting and Exhibition. Denver, CO, June 14–18, pp. 1–19.

    Google Scholar 

  • Waring, R.H., and Schlesinger, W.H. 1985 Forest Ecosystems Concepts and Management. San Diego, CA: Academic Press.

    Google Scholar 

  • Wiens, J.A. 1989. Spatial scaling in ecology. Funct. Ecol. 3:385–397.

    Google Scholar 

  • White, J.D. 1996. Spatial, and temporal scale effects on assessment of a regional ecosystem model: Modeling climate change in Glacier National Park, USA. Ph.D. dissertation. University of Montana, Missoula. 191p.

    Google Scholar 

  • Zhang, Y., Reed, D.D., Cattelino, P.J., Gale, M.R., Jones, E.A., Liechty, H.O., and Mroz, G.D. 1994. A process-based growth model for young red pine. For. Ecol. Manag. 69: 21–40.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Keane, R.E., Finney, M.A. (2003). The Simulation of Landscape Fire, Climate, and Ecosystem Dynamics. In: Veblen, T.T., Baker, W.L., Montenegro, G., Swetnam, T.W. (eds) Fire and Climatic Change in Temperate Ecosystems of the Western Americas. Ecological Studies, vol 160. Springer, New York, NY. https://doi.org/10.1007/0-387-21710-X_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-21710-X_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95455-4

  • Online ISBN: 978-0-387-21710-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics