Skip to main content

Matroids

  • Reference work entry
Encyclopedia of Optimization
  • 72 Accesses

Matroids have been defined in 1935 as generalization of graphs and matrices. Starting from the 1950s they have had increasing interest and the theoretical results obtained have been used for solving several difficult problems in various fields such as civil, electrical, and mechanical engineering, computer science, and mathematics. A comprehensive treatment of matroids can not be contained in few pages or even in only one book. Thus, the scope of this article is to introduce the reader to this theory, providing the definitions of some different types of matroids and their main properties.

Historical Overview

In 1935, H. Whitney in [38] studied linear dependence and its important application in mathematics. A number of equivalent axiomatic systems for matroids is contained in his pioneering paper, that is considered the first scientific work about matroid theory.

In the 1950s and 1960s, starting from the Whitney’s ideas, W. Tutte in [25], [26], [27], [28], [29], [30], [31], [32], [33]...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aigner, M.: Combinatorial theory, Springer 1979.

    Google Scholar 

  2. Bachem, A., and Kern, W.: Linear programming duality: An introduction to oriented matroids, Springer 1992.

    Google Scholar 

  3. Björner, A., Las Vergnas, M., Sturmfels, B., White, N., and Ziegler, G. M.: Oriented matroids, Vol. 46 of Encycl. Math. Appl., Cambridge Univ. Press, 1993.

    Google Scholar 

  4. Cormen, T. H., Leiserson, C. E., and Rivest, R. L.: Introduction to algorithms, MIT, 1990.

    Google Scholar 

  5. Edmonds, J.: ‘Lehman’s switching game and a theorem of Tutte and Nash-Williams’, J. Res. Nat. Bureau Standards (B) 69 (1965), 73–77.

    MathSciNet  MATH  Google Scholar 

  6. Edmonds, J.: ‘Maximum matching and a polyhedron with {0, 1} vertices’, J. Res. Nat. Bureau Standards (B)69 (1965), 125–130.

    MathSciNet  MATH  Google Scholar 

  7. Edmonds, J.: ‘Minimum partition of a matroid into independent subsets’, J. Res. Nat. Bureau Standards (B)69 (1965), 67–72.

    MathSciNet  MATH  Google Scholar 

  8. Edmonds, J.: ‘Paths, trees, and flowers’, Canad. J. Math.17 (1965), 449–467.

    MathSciNet  MATH  Google Scholar 

  9. Edmonds, J.: ‘Optimum branchings’, J. Res. Nat. Bureau Standards (B)71 (1967), 233–240.

    MathSciNet  MATH  Google Scholar 

  10. Edmonds, J.: ‘Systems of distinct representatives and linear algebra’, J. Res. Nat. Bureau Standards (B)71 (1967), 241–245.

    MathSciNet  MATH  Google Scholar 

  11. Edmonds, J.: ‘Submodular functions, matroids, and certain polyhedra’, in R. Guy, H. Hanani, N. Sauer, and J. Schönheim (eds.): Combinatorial Structures and Their Applications, Gordon and Breach, 1970.

    Google Scholar 

  12. Fujishige, S.: ‘Submodular functions and optimization’, Ann. Discrete Math.47 (1991).

    Google Scholar 

  13. Crapo, H. H., Rota, G. C.: On the foundations of combinatorial theory: Combinatorial geometries, preliminary MIT, 1970.

    Google Scholar 

  14. Kruskal, J. B.: ‘On the shortest spanning subtree of a graph and the traveling salesman problem’, Proc. Amer. Math. Soc.7 (1956), 48–50.

    MathSciNet  Google Scholar 

  15. Kung, J. P.S.: ‘Numerically regular hereditary classes of combinatorial geometries’, Geometriae Dedicata21 (1986), 85–105.

    MathSciNet  MATH  Google Scholar 

  16. Kung, J. P.S.: A source book in matroid theory, Birkhäuser, 1986.

    Google Scholar 

  17. Lawler, E. L.: Combinatorial optimization: Networks and matroids, Holt, Rinehart and Winston, 1976.

    Google Scholar 

  18. Lovász, L., and Plummer, M. D.: Matching theory, Akad. Kiadó, 1986.

    Google Scholar 

  19. Maffioli, F.: Elementi di programmazione matematica, Masson, 1990.

    Google Scholar 

  20. Murota, K., Iri, M., and Nakamura, M.: ‘Combinatorial canonical form of layered mixed matrices and its application to block-triangularization of systems of linear/nonlinear equations’, SIAM J. Alg. Discrete Meth.8 (1987), 123–149.

    MathSciNet  MATH  Google Scholar 

  21. Oxley, J. G.: Matroid theory, Oxford Univ. Press, 1992.

    Google Scholar 

  22. Prim, R. C.: ‘Shortest connection networks and some generalizations’, Bell System Techn. J.36 (1957), 1389–1401.

    Google Scholar 

  23. Recski, A.: Matroid theory and its application in electrical networks and statics, Springer, 1989.

    Google Scholar 

  24. Schrijver, A.: Theory of linear and integer programming, Wiley, 1986.

    Google Scholar 

  25. Tutte, W. T.: ‘A homotopy theorem for matroids I–II’, Trans. Amer. Math. Soc.88 (1958), 144–160; 161–174.

    MathSciNet  Google Scholar 

  26. Tutte, W. T.: ‘Matroids and graphs’, Trans. Amer. Math. Soc.90 (1959), 527–552.

    MathSciNet  MATH  Google Scholar 

  27. Tutte, W. T.: ‘An algorithm for determining wheter a given binary matroid is graphic’, Proc. Amer. Math. Soc.11 (1960), 905–917.

    MathSciNet  Google Scholar 

  28. Tutte, W. T.: ‘On the problem of decomposing a graph into n connected factors’, J. London Math. Soc.36 (1961), 221–230.

    MathSciNet  MATH  Google Scholar 

  29. Tutte, W. T.: ‘From matrices to graphs’, Canad. J. Math.16 (1964), 108–127.

    MathSciNet  MATH  Google Scholar 

  30. Tutte, W. T.: ‘Lectures on matroids’, J. Res. Nat. Bureau Standards (B)69 (1965), 1–47.

    MathSciNet  MATH  Google Scholar 

  31. Tutte, W. T.: Connectivity in graphs, Univ. Toronto Press, 1966.

    Google Scholar 

  32. Tutte, W. T.: ‘Connectivity in matroids’, Canad. J. Math.18 (1966), 1301–1324.

    MathSciNet  MATH  Google Scholar 

  33. Tutte, W. T.: Introduction to the theory of matroids, Amer. Elsevier, 1971.

    Google Scholar 

  34. Welsh, D. J.A.: Matroid theory, Acad. Press, 1976.

    Google Scholar 

  35. White, N.: Theory of matroids, Cambridge Univ. Press, 1986.

    Google Scholar 

  36. White, N.: Combinatorial geometries, Cambridge Univ. Press, 1987.

    Google Scholar 

  37. White, N.: Matroid applications, Cambridge Univ. Press, 1991.

    Google Scholar 

  38. Whitney, H.: ‘On the abstract properties of linear dependence’, Amer. J. Math.57 (1935), 509–533.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Festa, P. (2001). Matroids . In: Floudas, C.A., Pardalos, P.M. (eds) Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_272

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_272

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics