Skip to main content

Automatic differentiation: Point and interval; Automatic differentiation: Point and interval Taylor operators; Bounding derivative ranges; Global optimization: Application to phase equilibrium problems; Interval analysis: Application to chemical engineering design problems; Interval analysis: Eigenvalue bounds of interval matrices; Interval analysis: Intermediate terms; Interval analysis: Nondifferentiable problems; Interval analysis: Parallel methods for global optimization; Interval analysis: Subdivision directions in interval branch and bound methods; Interval analysis: Systems of nonlinear equations; Interval analysis: Unconstrained and constrained optimization; Interval analysis: Verifying feasibility; Interval constraints; Interval fixed point theory; Interval global optimization; Interval linear systems; Interval Newton methods INTERVAL ANALYSIS: DIFFERENTIAL EQUATIONS

  • Reference work entry
Encyclopedia of Optimization
  • 127 Accesses

Optimization can involve differential equations , for instance in the formulation of constraints. Interval analysis provides methods for computing interval-valued functions, for example polynomials with interval coefficients, guaranteed to contain solutions to differential equations. Methods have been developed for initial and boundary value problems for both ordinary (ODE) and partial (PDE) differential equations [1]–[32].

For the initial value problem in ODEs, the Cauchy—Peano approach of classical analysis can be made into a constructive method using interval analysis. With interval arithmetic and interval extensions to standard functions, we can computationally verify sufficient conditions for existence of solutions, as well as construct upper and lower bounds on solutions. The techniques of automatic differentiation provide for efficient use of and (using interval arithmetic) bounding of remainder terms in Taylor series expansions, making interval Taylor seriesan effective...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberth, O.: Precise numerical analysis, W.C. Brown, 1988.

    Google Scholar 

  • Aberth, O., and Schaefer, M. J.: ‘Precise computation using range arithmetic, via C++’, ACM Trans. Math. Software 18, no. 4 (1992), 481–491.

    Article  MATH  Google Scholar 

  • Alefeld, G., Frommer, A., and Lang, B. (eds.): Scientific computing and validated numerics, Akademie, 1996.

    Google Scholar 

  • Caprani, O., Madsen, K., and Rall, L. B.: ‘Integration of interval functions’, SIAM J. Math. Anal. 12 (1981), 321–341.

    Article  MATH  MathSciNet  Google Scholar 

  • Corliss, G., and Chang, Y. F.: ‘Solving ordinary differential equations using Taylor series’, ACM Trans. Math. Software 8, no. 2 (1982), 114–144.

    Article  MATH  MathSciNet  Google Scholar 

  • Daniel, J. W., and Moore, R. E.: Computation and theory in ordinary differential equations, Freeman, 1970.

    Google Scholar 

  • Ely, J. S.: ‘Prospects for using variable precision interval software in C++’, for solving some contemporary scientific problems, PhD Thesis Ohio State Univ. (1990).

    Google Scholar 

  • Ely, J. S., and Baker, G. R.: ‘High precision calculations of vortex sheet motion’, J. Comput. Phys. 111, no. 2 (1994), 275–281.

    Article  MATH  MathSciNet  Google Scholar 

  • Fefferman, C. L., and Seco, L. A.: ‘Interval arithmetic in quantum mechanics’, Applications of Interval Computations, in R. B. Kearfott, and V. Kreinovich, (eds.): Kluwer Acad. Publ., 1996.

    Google Scholar 

  • Klatte, R., Kulisch, U., Wiethoff, A., Lawo, C., and Rauch, M.: C-XSC, Springer, 1993.

    Google Scholar 

  • Krückeberg, F.: Defekterfassung bei gewöhnlichen und partiellen Differentialgleichungen, ISNM, 9 Birkhäuser, 1968, pp. 69–82.

    Google Scholar 

  • Krückeberg, F.: ‘Ordinary differential equations’, Topics in Interval Analysis, in E. Hansen (ed.): 1969, pp. 91–97.

    Google Scholar 

  • Lohner, R. J.: ‘Enclosing the solutions of ordinary initial and boundary value problems’, Computer Arithmetic, Scientific Computation and Programming Languages, in E. Kaucher, and et al. (eds.): Teubner, 1987, pp. 255–286.

    Google Scholar 

  • Lohner, R. J.: ‘Einschließungen bei Anfangs-und Randwertaufgaben gewöhnlicher Differentialgleichungen’, Wissenschaftliches Rechen mit Ergebnisverifikation: Eine Einführung, in U. Kulisch (ed.): 1989, pp. 183–207.

    Google Scholar 

  • Moore, R. E.: ‘Interval arithmetic and automatic error analysis in digital computing’, PhD Thesis Stanford Univ. (1962).

    Google Scholar 

  • Moore, R. E.: ‘Automatic local coordinate transformations to reduce the growth of error bounds in interval computation of solutions of ordinary differential equations’, Error in Digital Computation, 2 in L. B. Rall (ed.): Wiley, 1965, pp. 103–140.

    Google Scholar 

  • Moore, R. E.: Interval analysis, Prentice-Hall, 1966.

    Google Scholar 

  • Moore, R. E.: ‘Functional analysis for computers’, Funktionalanalytische Methoden der Numerischen Mathematik, ISNM, 12 Birkhäuser, 1969, pp. 113–126.

    Google Scholar 

  • Moore, R. E.: ‘Two-sided approximation to solutions of nonlinear operator equations-a comparison of methods from classical analysis, functional analysis and interval analysis’, of Lecture Notes Computer Sci., 29 Interval Mathematics, in K. Nickel, (ed.): Springer, 1975.

    Google Scholar 

  • Moore, R. E.: ‘Bounding sets in function spaces with applications to nonlinear operator equations’, SIAM Rev. 20 (1978), 492–512.

    Article  MATH  MathSciNet  Google Scholar 

  • Moore, R. E.: Methods and applications of interval analysis, SIAM, 1979.

    Google Scholar 

  • Moore, R. E.: ‘A generalization of the method of upper and lower solutions for integral equations’, Nonlinear Anal. Th. Methods Appl. 6, no. 8 (1982), 829–831.

    Article  MATH  Google Scholar 

  • Moore, R. E.: ‘A survey of interval methods for differential equations’, Proc. 23rd Conf. Decision and Control, IEEE, 1984, pp. 1529–1535.

    Google Scholar 

  • Moore, R. E.: ‘Upper and lower bounds on solutions of differential and integral equations without using monotonicity, convexity, or maximum principles’, Advances in Computer Methods for Partial Differential Equations V, in R. Vichnevetsky, and R. S. Stepelman (eds.): IMACS, 1984, pp. 458–462.

    Google Scholar 

  • Moore, R. E.: Computational functional analysis, Horwood and Wiley, 1985.

    Google Scholar 

  • Moore, R. E.: ‘Simple simultaneous super-and subfunctions’, J. Integral Eq. 8 (1985), 165–174.

    MATH  Google Scholar 

  • Moore, R. E.: ‘Interval tools for computer aided proofs in analysis’, Computer Aided Proofs in Analysis, in K. R. Meyer, and D. S. Schmidt (eds.): Springer, 1991, pp. 211–216.

    Google Scholar 

  • Moore, R. E.: ‘Numerical solution of differential equations to prescribed accuracy’, Comput. Math. Appl. 28, no. 10-12 (1994), 253–261.

    Article  MATH  MathSciNet  Google Scholar 

  • Moore, R. E., and Shen, Z.: ‘An interval version of Chebyshev's method for nonlinear operator equations’, Nonlinear Anal. Th. Methods Appl. 7, no. 1 (1983), 21–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Nickel, K.: ‘How to fight the wrapping effect’, of Lecture Notes Computer Sci., 212 Interval Mathematics, 1985, in K. Nickel (ed.): Springer pp. 121–132.

    Google Scholar 

  • Rall, L. B.: Automatic differentiation: Techniques and applications, of Lecture Notes Computer Sci., 120 Springer, 1981.

    Google Scholar 

  • Stewart, N. F.: ‘A heuristic to reduce the wrapping effect in the numerical solution of X′ = F(T, X)′’, BIT 11 (1971), 328–337.

    Article  MATH  Google Scholar 

  • Website: http://bt.nscl.msu.edu/pub/

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this entry

Cite this entry

Moore, R.E. (2001). Automatic differentiation: Point and interval; Automatic differentiation: Point and interval Taylor operators; Bounding derivative ranges; Global optimization: Application to phase equilibrium problems; Interval analysis: Application to chemical engineering design problems; Interval analysis: Eigenvalue bounds of interval matrices; Interval analysis: Intermediate terms; Interval analysis: Nondifferentiable problems; Interval analysis: Parallel methods for global optimization; Interval analysis: Subdivision directions in interval branch and bound methods; Interval analysis: Systems of nonlinear equations; Interval analysis: Unconstrained and constrained optimization; Interval analysis: Verifying feasibility; Interval constraints; Interval fixed point theory; Interval global optimization; Interval linear systems; Interval Newton methods INTERVAL ANALYSIS: DIFFERENTIAL EQUATIONS . In: Encyclopedia of Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-306-48332-7_221

Download citation

  • DOI: https://doi.org/10.1007/0-306-48332-7_221

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-7923-6932-5

  • Online ISBN: 978-0-306-48332-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics