Skip to main content

Cis-Trans Carotenoids in Photosynthesis: Configurations, Excited-State Properties and Physiological Functions

  • Chapter
The Photochemistry of Carotenoids

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 8))

Summary

Correlations between the 1H-NMR, electronic-absorption and resonance-Raman spectra and the cis-trans configurations have been identified for β-carotene and other carotenoids: (1) the chemical shifts of the olefinic 1Hs in NMR, (2) the wavelength of the A g →B +u absorption and the relative intensity of the A g →A +g vs. the A g →B +u absorption in electronic absorption, and (3) the C=C stretching frequency, the relative intensity of the C10–C11 vs. the C14–C15 stretching vibration and the appearance of key modes in resonance Raman can be used to identify the all-trans or a mono-cis configuration.

The natural selection of the carotenoid configurations is described; i.e., the all-trans configuration is selected by the light-harvesting complexes (LHCs), whereas the 15-cis configuration is selected by the reaction centers (RCs). The excited-state properties of the all-trans and the 15-cis configurations are attempted to be correlated with their physiological functions. The conjugated system of the all-trans carotenoids in the LHCs have approximate C2h symmetry, giving rise to two distinct low-lying excited states denoted B +u and 2Ag g Characterization of these singlet states leads to the conclusion that they provide two channels for singlet-energy transfer to (bacterio)chlorophyll. The 15-cis configuration has a unique property of extremely-efficient isomerization toward the all-trans configuration upon triplet excitation. This is based on the characterization of the singlet and triplet species of β-carotene and the products of isomerization. Resonance Raman spectroscopy, together with normal-coordinate analysis of the RC-bound spheroidene, has revealed twisting and large changes in bond order of the conjugated backbone upon triplet excitation, which is proposed to enhance the rate of relaxation to the ground state and the dissipation of triplet energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

BChl:

bacteriochlorophyll

Cb.:

Chlorobium

DMF:

dimethylformamide

H−1H; HPLC:

high-pressure liquid chromatography

k:

stretching force constant

LHCs:

light-harvesting complexes

n:

number of conjugated double bonds

n:

solvent refractive index

PPP-SD-CI:

Pariser-Parr-Pople calculation including the singly- and doubly-excited configurational interactions

PS:

photosystem

Rb.:

Rhodobacter

RCs:

reaction centers

Rs.:

Rhodospirillum

S0:

the ground state

S1:

the first singlet-excited state

S2:

the second singlet-excited state

Sc.:

Synechococcus

T1:

the lowest triplet-excited state

ε:

molar extinction coefficient

ν1:

C=C stretching mode

ν2:

C-C stretching mode

References

  • Agalidis I, Lutz M and Reiss-Husson F (1980) Binding of carotenoids on reaction centers from Rhodopseudomonas sphaeroides R26. Biochim Biophys Acta 589: 264–274

    CAS  PubMed  Google Scholar 

  • Andersson PO and Gillbro T (1995) Photophysics and dynamics of the lowest excited singlet state in long substituted polyenes with implications to the very long-chain limit. J Chem Phys 103:2509–2519

    Article  CAS  Google Scholar 

  • Andersson PO, Gillbro T, Asato AE, and Liu RSH (1992) Dual singlet state emission in a series of mini-carotenes. J Lumin 51: 11–20

    CAS  Google Scholar 

  • Andersson PO, Bachilo SM, Chen R-L and Gillbro T (1995) Solvent and temperature effects on dual fluorescence in a series of carotenes. Energy gap dependence of the internal conversion rate. J Phys Chem 99: 16199–16209

    CAS  Google Scholar 

  • Arnoux B, Ducruix A, Reiss-Husson F, Lutz M, Norris J, Schiffer M and Chang C-H (1989) Structure of spheroidene in the photosynthetic reaction center from Y Rhodobacter sphaeroides.. FEBS Lett 258: 47–50

    Article  CAS  PubMed  Google Scholar 

  • Bautista JA, Chynwat V, Cua A, Jansen FJ, Lugtenburg J, Gosztola D, Wasielewski MR and Frank HA (1998) The spectroscopic and photochemical properties of locked-15,15′-cis-spheroidene in solution and incorporated into the reaction center of Rhodobacter sphaeroides R-26.1. Photosynth Res 55:49–65

    Article  CAS  Google Scholar 

  • Bialek-Bylka GE, Tomo T, Satoh K and Koyama Y (1995) 15-Cis-β-carotene found in the reaction center of spinach Photosystem II. FEBS Lett 363: 137–140

    CAS  PubMed  Google Scholar 

  • Bialek-Bylka GE, Hiyama T, Yumoto K and Koyama Y (1996) 15-Cis-β-carotene found in the reaction center of spinach Photosystem I. Photosynth Res 49: 245–250

    Article  CAS  Google Scholar 

  • Bialek-Bylka GE, Sakano Y, Mizoguchi T, Shimamura T, Phillip D, Koyama Y and Young AJ (1998a) Central-cis isomers of lutein found in the major light-harvesting complex of Photosystem II (LHC IIb) of higher plants. Photosynth Res 56: 255–264

    Article  CAS  Google Scholar 

  • Bialek-Bylka GE, Fujii R, Chen C-H, Oh-oka H, Kamiesu A, Satoh K, Koike H and Koyama Y (1998b) 15-Cis-carotenoids found in the reaction center of a green sulfur bacterium Chlorobium tepidum and in the Photosystem I reaction center of a cyanobacterium Synechococcus vulcanus. Photosynth Res 58: 1–8

    Article  Google Scholar 

  • Blankenship RE (1992) Origin and early evolution of photosynthesis. Photosynth Res 33: 91–111

    Article  CAS  PubMed  Google Scholar 

  • Callis PR, Scott TW and Albrecht AC (1983) Perturbation selection rules for multiphoton electronic spectroscopy of neutral alternant hydrocarbons. J Chem Phys 78: 16–22

    Article  CAS  Google Scholar 

  • Cogdell RJ, Monger TG and Parson WW (1975) Carotenoid triplet states in reaction centers from Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. Biochim Biophys Acta 408: 189–199

    CAS  PubMed  Google Scholar 

  • DeCoster B, Christensen RL, Gebhard R, Lugtenburg J, Farhoosh R and Frank HA (1992) Low-lying electronic states of carotenoids. Biochim Biophys Acta 1102: 107–114

    Google Scholar 

  • Emenhaiser C, Englert G, Sander LC, Ludwig B and Schwartz SJ (1996) Isolation and structural elucidation of the predominant geometrical isomers of α-carotene. J Chromatogr A 719:333–343

    Google Scholar 

  • Englert G (1982) N.M.R. of carotenoids. In: Britton G and Goodwin TW (eds) Carotenoid Chemistry and Biochemistry, pp 107–134. Pergamon Press, Oxford

    Google Scholar 

  • Englert G (1995) NMR spectroscopy. In: Britton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, Vol 1B, pp 147–260. Birkhauser Verlag, Basel

    Google Scholar 

  • Englert G, Noack K, Broger EA, Glinz E, Vecchi M and Zell R (1991) Synthesis, isolation, and full spectroscopic characterization of eleven (Z)-isomers of (3R, 3′ R)-zeaxanthin. Helv Chim Acta 74: 969–982

    Article  CAS  Google Scholar 

  • Englman R and Jortner J (1970) Energy gap law for radiationless transitions in large molecules. Mol Phys 18: 145–164

    CAS  Google Scholar 

  • Frank HA, Desamero RZB, Chynwat V, Gebhard R, van der Hoef I, Jansen FJ, Lugtenburg J, Gosztola D and Wasielewski MR (1997) Spectroscopic properties of spheroidene analogs having different extents of π-electron conjugation. J Phys Chem A 101: 149–157.

    CAS  Google Scholar 

  • Fujii R, Chen C-H, Mizoguchi T and Koyama Y (1998a) 1H-NMR, electronic-absorption and resonance-Raman spectra of isomeric okenone as compared with those of isomeric carotene, canthaxanthirf, β-apo-8′-carotenal and spheroidene. Spectrochim Acta Part A 54: 727–743

    Google Scholar 

  • Fujii R, Onaka K, Kuki M, Koyama Y and Watanabe Y (1998b) The 2Ag g energies of all-trans-neurosporene and spheroidene as determined by fluorescence spectroscopy. Chem Phys Lett 288: 847–853

    Article  CAS  Google Scholar 

  • Fujiwara M, Hayashi H, Tasumi M, Kanaji M, Koyama Y and Sato K (1987) Structural studies on a Photosystem II reaction-center complex consisting of D-1 and D-2 polypeptides and cytochrome b-559 by resonance Raman spectroscopy and high-performance liquid chromatography. Chem Lett: 2005–2008

    Google Scholar 

  • Gebhard R, van der Hoef K, Violette CA, de Groot HJM, Frank HA and Lugtenburg J (1991) 13C Magic angle spinning NMR evidence for a 15,15′-Z configuration of the spheroidene chromophore in the Rhodobacter sphaeroides reaction center; synthesis of 13C-and 2H-labelled spheroidenes. Pure Appl Chem 63: 115–122

    CAS  Google Scholar 

  • Golbeck JH (1992) Structure and function of Photosystem I. Annu Rev Plant Physiol Plant Mol Biol, 43: 293–324

    Article  CAS  Google Scholar 

  • Gruszecki WI, Matula M, Ko-chi N, Koyama Y and Krupa Z (1997) Cis-trans-isomerization of violaxanthin in LHC II: Violaxanthin isomerization cycle within the violaxanthin cycle. Biochim Biophys Acta 1319: 267–274

    Google Scholar 

  • Hashimoto H and Koyama Y (1988) Time-resolved resonance Raman spectroscopy of triplet β-carotene produced from all-trans, 7-cis, 9-cis, 13-m, and 15-cis isomers and high-pressure liuid chromatography analyses of photoisomerization via the triplet state. J Phys Chem 92: 2101–2108

    CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1989) The C=C stretching Raman lines of β-carotene isomers in the S1 state as detected by pump-probe resonance Raman spectroscopy. Chem Phys Lett 154: 321–325

    Article  CAS  Google Scholar 

  • Hashimoto H and Koyama Y (1991) The S0 and T1 states of isomeric canhaxanthin as compared with those of β-carotene: effect of the terminal carbonyl groups detected by Raman spectroscopy. Photochem Photobiol 54: 67–73

    CAS  Google Scholar 

  • Hashimoto H, Mukai Y and Koyama Y (1988a) Transient Raman spectra of all-trans, 7-cis, 9-cis, 11-cis and 13-cis retinylidene-acetaldehyde. Structures of triplet species as revealed by Raman spectroscopy. Chem Phys Lett 152: 319–324

    Article  CAS  Google Scholar 

  • Hashimoto H, Koyama Y and Shimamura T (1988b) Isolation of cis-trans isomers of canthaxanthin by high-performance liquid chromatography using a calcium hydroxide column and identification of their configurations by HNMR spectroscopy. J Chromatogr 448: 182–187

    CAS  Google Scholar 

  • Hashimoto H, Koyama Y, Ichimura K and Kobayashi T (1989) Time-resolved absorption spectroscopy of the triplet state produced from the all-trans, 7-cis, 9-cis, 13-cis, and 15-cis isomers of β-carotene. Chem Phys Lett 162: 517–522

    CAS  Google Scholar 

  • Hashimoto H, Koyama Y, Hirata Y and Malaga N (1991) S1 and T1 species of β-carotene generated by direct photoexcitation from the all-trans, 9-cis, 13-cis, and 15-cis isomers as revealed by picosecond transient absorption and transient Raman spectroscopies. J Phys Chem 95: 3072–3076

    Article  CAS  Google Scholar 

  • Hashimoto H, Miki Y, Kuki M, Shimamura T, Utsumi H and Koyama Y (1993) Isolation by high-pressure liquid chromatography of the cis-trans isomers of β-apo-8′-carotenal. Determination of their S0-state configurations by NMR spectroscopy and prediction of their S1-and T1-state configurations by transient Raman spectroscopy. J Am Chem Soc 115: 9216–9225

    CAS  Google Scholar 

  • Hashimoto H, Koyama Y and Mori Y (1997) Mechanism activating the 21Ag state in all-trans-β-carotene crystal to resonance Raman scattering. Jpn J Appl Phys 36: 916–918

    Google Scholar 

  • Hauska G, Hager-Braun C, Schneebauer N, Schütz M, Zimmermann R and Nelson N (1995) Biochemical aspects of the reaction center in green sulfur bacteria—comparison with other FeS-types. In: Mathis P (ed) Photosynthesis: From Light to Biosphere, Vol 11, pp 11–16. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Hengartner U, Bernhard K and Meyer K (1992) Synthesis, isolation, and NMR-spectroscopic characterization of fourteen (Z)-isomers of lycopene and of some acetylenic didehydro-and tetrahydrolycopenes. Helv Chim Acta 75: 1848–1865

    Article  CAS  Google Scholar 

  • Hu Y, Hashimoto H, Moine G, Hengartner U and Koyama Y (1997) Unique properties of the 11-cis and 11,11′-di-cis isomers of β-carotene as revealed by electronic absorption, resonance Raman and 1H and 13C NMR spectroscopy and by HPLC analysis of their thermal isomerization. J Chem Soc Perkin Trans 2: 2699–2710

    Google Scholar 

  • Jiang Y-S, Kurimoto Y, Shimamura T, Ko-chi N, Ohashi N, Mukai Y and Koyama Y (1996) Isolation by high-pressure liquid chromatography, configurational determination by 1H-NMR, and analyses of electronic absorption and Raman spectra of isomeric spheroidene. Biospectroscopy 2: 47–58

    Article  CAS  Google Scholar 

  • Kandori H, Sasabe H and Mimuro M (1994) Direct determination of a lifetime of the S2 state of β-carotene by femtosecond time-resolved fluorescence spectroscopy. J Am Chem Soc 116: 2671–2672

    Article  CAS  Google Scholar 

  • Katayama N, Hashimoto H, Koyama Y and Shimamura T (1990) High performance liquid chromatography of cis-trans isomers of neurosporene: Discrimination of cis and trans configurations at the end of an open conjugated chain. J Chromatogr 519: 221–227

    Article  CAS  Google Scholar 

  • Khachik F, Englert G, Daitch CE, Beecher GR and Tonucci LH (1992) Isolation and structural elucidation of the geometrical isomers of lutein and zeaxanthin in extracts from human plasma. J Chromatogr 582: 153–166

    CAS  PubMed  Google Scholar 

  • Koepke J, Hu X, Muenke C, Schulten K and Michel H (1996) The crystal structure of the light-harvesting complex II (B800–850) from Rhodospirillum molischianum. Structure 4: 581–597

    Article  CAS  PubMed  Google Scholar 

  • Koyama Y (1991) Structures and functions of carotenoids in photosynthetic systems. J Photochem Photobiol B: Biol 9: 265–280

    CAS  Google Scholar 

  • Koyama Y (1995) Resonance Raman spectroscopy. In: Briton G, Liaaen-Jensen S and Pfander H (eds) Carotenoids, Vol 1B Spectroscopy, pp 135–146. Birkhäuser Verlag, Besel

    Google Scholar 

  • Koyama Y and Hashimoto H (1993) Spectroscopic studies of carotenoids in photosynthetic systems. In: Young A and Britton G (eds) Carotenoid in Photosynthesis, pp 327–408. Chapman and Hall, London

    Google Scholar 

  • Koyama Y and Mukai Y (1993) Excited states of retinoids, carotenoids and chlorophylls as revealed by time-resolved, electronic absorption and resonance Raman spectroscopy. In: Clark R and Hester R (eds) Biomolecular Spectroscopy Part B, pp 49–137. John Wiley and Sons Ltd, Chichester

    Google Scholar 

  • Koyama Y, Kito M, Takii T, Saiki K, Tsukida K and Yamashita J (1982) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria: Comparison of the resonance Raman spectrum of the reaction center of Rhodopseudomonas sphaeroides G1C with those of cis-trans isomers of β-carotene. Biochim Biophys Acta 680: 109–118

    CAS  Google Scholar 

  • Koyama Y, Takii T, Saiki K and Tsukida K (1983) Configuration of the carotenoid in the reaction centers of photosynthetic bacteria. (2) Comparison of the resonance Raman lines of the reaction centers with those of the 14 different cis-trans isomers of β-carotene. Photobiochem Photobiophys 5: 139–150

    CAS  Google Scholar 

  • Koyama Y, Kanaji M and Shimamura T (1988a) Configurations of neurosporene isomers isolated from the reaction center and the light-harvesting complex of Rhodobacter sphaeroides G1C. A resonance Raman, electronic absorption, and 1HNMR study. Photochem Photobiol 48: 107–114

    CAS  Google Scholar 

  • Koyama Y, Hosomi M, Miyata A, Hashimoto H, Reames SA, Nagayama K, Kato-Jippo T and Shimamura T (1988b) Supplementary and revised assignment of the peaks of the 7,9-, 9,9′-, 13,13′-, 9,13′-di-cis and 9,9′,13-tri-cis isomers of β-carotene in high-performance liquid chromatography using acolumn of calcium hydroxide. J Chromatogr 439: 417–422

    Article  CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Nakata M and Tasumi M (1988c) Raman and infrared spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Key bands distinguishing stretched or terminal-bent configurations from central-bent configurations. J Raman Spectrosc 19: 37–49

    Article  CAS  Google Scholar 

  • Koyama Y, Hosomi M, Hashimoto H and Shimamura T (1989) 1HNMR spectra of the all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Elongation of the double bond and shortening of the single bond toward the center of the conjugated chain as revealed by vicinal coupling constants. J Mol Struct 193: 185–201

    Article  CAS  Google Scholar 

  • Koyama Y, Takatsuka I, Kanaji M, Tomimoto K, Kito M, Shimamura T, Yamashita J, Saiki K and Tsukida K (1990) Configurations of carotenoids in the reaction center and the light-harvesting complex of Rhodospirillum rubrum. Natural selection of carotenoid configurations by pigment protein complexes. Photochem Photobiol 51: 119–128

    CAS  Google Scholar 

  • Koyama Y, Mukai Y and Kuki M (1992) Excited-State properties and physiological functions of biological polyenes: ‘The triplet-excited region’ of retinoids and carotenoids. SPIE (Laser Spectroscopy of Biomolecules) 1921: 191–202

    Google Scholar 

  • Koyama Y, Kuki M, Andersson PO and Gillbro T (1996) Singlet excited states and the light-harvesting function of carotenoids in bacterial photosynthesis. Photochem Photobiol 63: 243–256

    CAS  Google Scholar 

  • Kuki M, Koyama Y and Nagae H (1991) Triplet-sensitized and thermal isomerization of all-trans, 7-cis, 9-cis, 13-cis and 15-cis isomers of β-carotene: Configurational dependence of the quantum yield of isomerization via the T1 state. J Phys Chem 95: 7171–7180

    Article  CAS  Google Scholar 

  • Kuki M, Nagae H, Cogdell RJ, Shimada K and Koyama Y (1994) Solvent effect on spheroidene in nonpolar and polar solutions and the environment of spheroidene in the light-harvesting complexes of Rhodobacter sphaeroides 2.4.1 as revealed by the energy of the 1A g 1B +u absorption and the frequencies of the vibronically coupled C=C stretching Raman lines in the 1A g and 21A g states. Photochem Photobiol 59: 116–124

    CAS  Google Scholar 

  • Lancaster CRD and Michel H (1997) The coupling of light-induced electron transfer and proton uptake as derived from crystal structures of reaction centres from Rhodopseudomonas viridis modified at the binding site of the secondary quinone, Qb. Structures: 1339–1359

    Google Scholar 

  • Lutz M, Kleo J and Reiss-Husson F (1976) Resonance Raman scattering of bacteriochlorophyll, bacteriopheophytin and spheroidene in reaction centers of Rhodopseudomonas spheroides. Biochem Biophys Res Commun 69: 711–717

    Article  CAS  PubMed  Google Scholar 

  • Lutz M, Agalidis I, Hervo G, Cogdell RJ and Reiss-Husson F (1978) On the state of carotenoids bound to reaction centers of photosynthetic bacteria: A resonance Raman study. Biochim Biophys Acta 503: 287–303

    CAS  PubMed  Google Scholar 

  • McDermott G, Prince SM, Freer AA, Hawthornthwaite-Lawless AM, Papiz MZ, Cogdell RJ and Isaacs NW (1995) Crystal structure of anintegral membrane light-harvesting complex from photosynthetic bacteria. Nature 374: 517–521

    Article  CAS  Google Scholar 

  • Mukai Y, Hashimoto H and Koyama Y (1990) Dependence of the triplet potential of retinal homologues on the chain length: Resonance Raman spectroscopy and analysis of triplet-sensitized isomerization. J Phys Chem 94: 4042–4051

    Article  CAS  Google Scholar 

  • Mukai Y, Abe M, Katsuta Y, Tomozoe S, Ito M and Koyama Y (1995) Structure of all-trans-retinal in the T1 state as determined by Raman spectroscopy: A set of carbon-carbon and carbon-oxygen stretching force constants determined by the normal coordinate analysis of the T1 Raman lines of the undeuterated and variously deuterated retinals. J Phys Chem 99: 7160–7171

    Article  CAS  Google Scholar 

  • Nagae H (1997) Theory of solvent effects on electronic absorption spectra of rodlike or disklike solute molecules: Frequency shifts. J Chem Phys 106: 5159–5170

    Article  CAS  Google Scholar 

  • Nagae H, Kakitani T, Katoh T and Mimuro M (1993) Calculation of the excitation transfer matrix elements between the S2 or S1 state of carotenoid and the S2 or S1 state of bacteriochlorophyll. J Chem Phys 98: 8012–8023

    Article  CAS  Google Scholar 

  • Nagae H, Kuki M, Cogdell RJ and Koyama Y (1994) Shifts of the 1A g 1B +u electronic absorption of carotenoids in nonpolar and polar solvents. J Chem Phys 101: 6750–6765

    Article  Google Scholar 

  • Oh-oka H, Kakutani S, Kamei S, Matsubara H, Iwaki M and Itoh S (1995) Highly purified photosynthetic reaction center (PscA/cytochrome c551)2 complex of the green sulfur bacterium Chlorobium limicola. Biochemistry 34: 13091–13097

    Article  CAS  PubMed  Google Scholar 

  • Ohashi N, Ko-chi N, Kuki M, Shimamura T, Cogdell RJ and Koyama Y (1996) The structures of S0 spheroidene in the light-harvesting (LH2) complex and S0 and T1 spheroidene in the reaction center of Rhodobacter sphaeroides 2.4.1 as revealed by Raman spectroscopy. Biospectroscopy 2: 59–69

    Article  CAS  Google Scholar 

  • Pariser R (1956) Theory of the electronic spectra and structure of the polyacenes and of alternant hydrocarbons. J Chem Phys 24:250–268

    Article  CAS  Google Scholar 

  • Ricci M, Bradforth SE, Jimenez R and Fleming GR (1996) Internal conversion and energy transfer dynamics of spheroidene in solution and in the LH-1 and LH-2 light-harvesting complexes. Chem Phys Lett 259: 381–390

    Article  CAS  Google Scholar 

  • Sashima T, Shiba M, Hashimoto H, Nagae H and Koyama Y (1998a) The 2Ag energy of crystalline all-trans-spheroidene as determined by resonance-Raman excitation profiles. Chem Phys Lett 290: 36–42

    Article  CAS  Google Scholar 

  • Sashima T, Nagae H, Kuki M and Koyama Y (1998b) A new singlet-excited state of all-trans-spheroidene as detected by resonance-Raman excitation-profiles. Chem Phys Lett 299: 187–194

    Google Scholar 

  • Tang J and Albrecht AC (1970) Developments in the theories of vibrational Raman intensities. In: Szymanski HA (ed) Raman Spectroscopy Theory and Practice, Vol 2, pp 33–68. Plenum Press, New York

    Google Scholar 

  • Tavan P and Schulten K (1986) The low-lying electronic excitations in long polyenes: A PPP-MRD-CI study. J Chem Phys 85: 6602–6609

    Article  CAS  Google Scholar 

  • Tavan P and Schulten K (1987) Electronic excitations in finite and infinite polyenes. Phys Rev B 36: 4337–4358

    Article  CAS  Google Scholar 

  • Thornber JP, Morishige DT, Anandan S and Peter GF (1991) Chlorophyll-carotenoid proteins of higher plant thylakoids. In: Scheer H (ed) Chlorophylls, pp 549–585. CRC Press, Boca Raton

    Google Scholar 

  • Tsukida K, Saiki K, Takii T and Koyama Y (1982) Separation and determination of cis/trans-β-carotenes by high-performance liquid chromatography. J Chromatogr 245: 359–364

    Article  CAS  Google Scholar 

  • Wasielewski MR, Johnson DG, Bradford EG and Kispert LD (1989) Temperature dependence of the lowest excited singlet-state lifetime of all-trans-β-carotene and fully deuterated all-trans-β-carotene J Chem Phys 91: 6691–6697

    Article  CAS  Google Scholar 

  • Watanabe J, Takahashi H, Nakahara J and Kushida T (1993) Subpicosecond dynamic Stokes shift in β-carotene solution probed by excitation energy dependence of fluorescence spectrum. Chem Phys Lett 213: 351–355

    Article  CAS  Google Scholar 

  • Zechmeister L (1962) Cis-trans isomeric carotenoids vitamins A and arylpolyenes. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic Publishers

About this chapter

Cite this chapter

Koyama, Y., Fujii, R. (1999). Cis-Trans Carotenoids in Photosynthesis: Configurations, Excited-State Properties and Physiological Functions. In: Frank, H.A., Young, A.J., Britton, G., Cogdell, R.J. (eds) The Photochemistry of Carotenoids. Advances in Photosynthesis and Respiration, vol 8. Springer, Dordrecht. https://doi.org/10.1007/0-306-48209-6_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48209-6_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5942-5

  • Online ISBN: 978-0-306-48209-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics