Skip to main content

Thermodynamic Ecology of Hydrogen-Based Syntrophy

  • Chapter
Symbiosis

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 4))

Conclusion

The energy available for metabolism in many anoxic ecosystems is so minimal that organisms are forced to live at the fundamental energetic threshold for life. Because organisms in these environments are energy limited, and because the amount of energy generated during catabolism hardly exceeds the biological energy quantum, competition for reducing equivalents (mainly H2) is based firmly on the bioenergetic yield of catabolism. Competition between H2 consumers gives rise to a cooperative thermodynamic situation, allowing H2 producers to convert most organic material to CO2 acetate, and H2 Hydrogen production is dependent on constant H2 consumption without which H2 production is thermodynamically inhibited; this syntrophic process is termed interspecies H2 ransfer. The term thermodynamic ecology is used here to describe the overriding principle governing microbial competition and cooperation in relevant anoxic ecosystems. The principle of thermodynamic ecology is environmentally important and can be applied to numerous anoxic environments to understand the pathways of organic-matter remineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alperin, M. J., and Reeburgh, W. S. (1984) In: R. Crawford and R. Hanson (eds) Microbial Growth on C-1 Compounds, Washington DC: Amer. Soc. Microbiol. pp. 282–289

    Google Scholar 

  • Baena, S., Fardeau, M. L., Labat, M., Ollivier, B., Thomas, P., Garcia, J. L., and Patel, B. K. C. (1998) Anaerobe 4, 241–250.

    Article  CAS  Google Scholar 

  • Baena, S., Fardeau, M. L., Ollivier, B., Labat, M., Thomas, P., Garcia, J. L., and Patel, B. K. C. (1999) Int. J. Syst. Bacteriol. 49, 975–982.

    CAS  PubMed  Google Scholar 

  • Barker, H. A. (1981) Ann. Rev. Biochem. 50, 23–40.

    CAS  PubMed  Google Scholar 

  • Berner, R. A. (1980) Early diagenesis: a theoretical approach. Princeton University Press, Princeton, N.J.

    Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jørgensen, B. B., Witte, U, and Pfannkuche, O. (2000) Nature 407, 623–626.

    Article  CAS  PubMed  Google Scholar 

  • Boone, D. R., Johnson, R. L, and Liu, Y.(1989)Appl.Environ. Microbiol. 55, 1735–1741.

    CAS  PubMed  Google Scholar 

  • Bryant, M. P., Campbell, L. L., Reddy, C. A., and Crabill, M. R. (1977) Appl. Environ. Microbiol. 33, 1162–1169.

    CAS  PubMed  Google Scholar 

  • Bryant, M. P., Wolin, E. A., Wolin, M. J., and Wolfe, R. S. (1967) Arch. Mikrobiol. 59, 20–31.

    Article  CAS  PubMed  Google Scholar 

  • Conrad, R., and Wetter, B. (1990) Arch. Microbiol. 155, 94–98.

    Article  CAS  Google Scholar 

  • Cord-Ruwisch, R., Steitz, H.-J., and Conrad, R. (1988)Arch. Microbiol. 149, 350–357.

    Article  CAS  Google Scholar 

  • Fardeau, M. L., Patel, B. K. C., Magot, M., and Ollivier, B. (1997) Anaerobe 3, 405–410.

    Article  CAS  Google Scholar 

  • Goodwin, S., Giraldogomez, E., Mobarry, B., and Switzenbaum, M. S. (1991)Microbial. Ecol 22, 161–174.

    Google Scholar 

  • Harmsen, H. J. M., Kengen, K. M. P., Akkermans, A. D. L., and Stams, A. J. M. (1995) Syst. Appl. Microbiol. 18, 67–73.

    CAS  Google Scholar 

  • Harwood, C. S., Burchhardt, G., Herrmann, H., and Fuchs, G. (1999) FEMS Microbiol. Rev. 22, 439–458.

    Google Scholar 

  • Heider, J., and Fuchs, G. (1997) Anaerobe 3, 1–22

    Article  CAS  Google Scholar 

  • Hinrichs, K. U., Hayes, J. M., Sylva, S. P., Brewer, P. G., and DeLong, E. F. (1999) Nature 398, 802–805.

    CAS  PubMed  Google Scholar 

  • Hoehler, T. M. (1998) Ph.D. Thesis, University of North Carolina.

    Google Scholar 

  • Hoehler, T. M., and Alperin, M. J. (1996) In: M. E. Lidstrom and R. F. Tabita (eds) Microbial Growth on C-1 Compounds, Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 326–333

    Google Scholar 

  • Hoehler, T. M., Alperin, M. J., Albert, D. B., and Martens, C. S. (1994) Global Biogeochem. Cycles 8, 451–463.

    Article  CAS  Google Scholar 

  • Hoehler, T. M., Alperin, M. J., Albeit, D. B., and Martens, C. S. (1998) Geochim. Cosmochim. Acta 62, 1745–1756.

    Article  CAS  Google Scholar 

  • Koch, M., Dolfing, J., Wuhrmann, K., and Zehnder, A. J. B. (1983) Appl. Environ. Microbiol. 45, 1411–1414.

    CAS  PubMed  Google Scholar 

  • Krylova, N. I., Janssen, P. H., and Conrad, R. (1997) FEMS Microbiol. Ecol. 23, 107–117.

    CAS  Google Scholar 

  • Lee, M. J., and Zinder, S. H. (1988) Appl. Environ. Microbiol. 54, 124–129.

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., and King, M. J. (1983) Appl. Environ. Microbiol. 45, 187–192.

    CAS  PubMed  Google Scholar 

  • Lovley, D. R., and Goodwin, S. (1988) Geochim. Cosmochim. Acta 52, 2993–3003.

    Article  CAS  Google Scholar 

  • Lovley, D. R., and Phillips, E. J. P. (1987) Appl. Environ. Microbiol. 53, 2636–2641.

    CAS  PubMed  Google Scholar 

  • McInerney, M. J. (1988) In: A. J. B. Zehnder (ed.) Biology of Anaerobic Microorganisms. Wiley series in ecological and applied microbiology,) New York: Wiley, pp. xii, 872.

    Google Scholar 

  • McInerney, M. J., Bryant, M. P., Hespell, R. B., and Costerton, J. W. (1981) Appl. Environ. Microbiol. 41, 1029–1039.

    CAS  PubMed  Google Scholar 

  • Mitchell, P. (1966) Biol. Rev. Cambridge Philosophical Society 41,445–502.

    CAS  Google Scholar 

  • Petersen, S. P., and Ahring, B. K. (1991) FEMS Microbiol. Ecol. 86, 149–157.

    Article  CAS  Google Scholar 

  • Reddy, C. A., Bryant, M. P., and Wolin, M. J. (1972) J. Bacteriol. 109, 539–545.

    CAS  PubMed  Google Scholar 

  • Schink, B. ( 1985)Arch.Microbiol. 142, 295–301.

    Article  CAS  Google Scholar 

  • Schink, B. (1990) In: R. K. Finn and P. Prave (eds.) Biotechnology, Focus 2, Munich: Hanser Publisher. pp. 63–89.

    Google Scholar 

  • Schink, B. (1997) Microbiol. Mol. Biol. Rev. 61, 262.

    CAS  PubMed  Google Scholar 

  • Schnurer, A., Schink, B., and Svensson, B. H. (1996) Int. J. Syst. Bacteriol. 46, 1145–1152.

    CAS  PubMed  Google Scholar 

  • Schocke, L., and Schink, B. (1997)Microbiology UK 143,2345–2351.

    Google Scholar 

  • Schocke, L., and Schink, B. (1998) Eur. J. Biochem. 256, 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Schocke, L., and Schink, B. (1999) Arch. Microbiol. 171, 331–337.

    CAS  Google Scholar 

  • Scholten, J. C. M., and Conrad, R. (2000) Appl. Environ. Microbiol. 66, 2934–2942.

    Article  CAS  PubMed  Google Scholar 

  • Seitz, H. J., Schink, B., Pfennig, N., and Conrad, R. (1990) Arch. Microbiol. 155, 82–88.

    CAS  Google Scholar 

  • Shaw, D. G., Alperin, M. J., Reeburgh, W. S., and McIntosh, D. J. (1984) Geochim. Cosmochim. Acta 48, 1819–1825.

    CAS  Google Scholar 

  • Status, A. J. M., and Hansen, T. A.(1984)Arch.Microbiol. 137, 329–337.

    Google Scholar 

  • Thiele, J. H., and Zeikus, J. G. (1988)Appl. Environ. Microbiol. 54, 20–29.

    CAS  PubMed  Google Scholar 

  • Valentine, D. L., and Reeburgh, W. S. (2000) Environ. Microbiol. 2, 477–484.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D. L., Blanton, D. C., and Reeburgh, W. S., (2000a) Arch. Microbiol. 174, 415–421.

    Article  CAS  PubMed  Google Scholar 

  • Valentine, D. L., Reeburgh, W. S., and Blanton, D. C. (2000b) J. Microbiol. Meth. 39, 243–251.

    Article  CAS  Google Scholar 

  • Whiticar, M. J., (1999) Chem. Geol. 161, 291–314.

    Article  CAS  Google Scholar 

  • Whiticar, M. J., Faber, E., and Schoell, M. (1986) Geochim. Cosmochim. Acta 50, 693–709.

    Article  CAS  Google Scholar 

  • Wolin, M. J. (1982) In: A T. Bull and J. H. Slater (eds.) Microbial Interactions and Communities, vol. 1, New York: Academic Press, pp. 323–356

    Google Scholar 

  • Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J. R., Schnell, J., and Widdel, F. (1988) Arch. Microbiol. 150, 254–266.

    Article  CAS  Google Scholar 

  • Zinder, S. H., and Koch, M. (1984) Arch.Microbiol.138, 263–272.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Valentine, D.L. (2001). Thermodynamic Ecology of Hydrogen-Based Syntrophy. In: Seckbach, J. (eds) Symbiosis. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 4. Springer, Dordrecht. https://doi.org/10.1007/0-306-48173-1_9

Download citation

  • DOI: https://doi.org/10.1007/0-306-48173-1_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0189-5

  • Online ISBN: 978-0-306-48173-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics