Skip to main content

Influence of Salinity on Photosynthesis of Halophytes

  • Chapter
Salinity: Environment - Plants - Molecules

Abstract

Tolerance of the photosynthetic apparatus of halophytes to saline conditions is brought about by adaptations at a range of scales, from biochemical adaptations to specialized morphologies. Of paramount importance is the capability to minimize water loss through reduced stomatal conductance while maintaining photosynthetic carbon gain. Recent work suggests the capacity to with stand photooxidative stress is also an important component of the suite of traits that confer tolerance of halophytes to saline conditions. Eutrophication of saline habitats, increases in atmospheric CO2. and rising sea levels are likely to modify photosynthesis of halophytes under saline conditions, and may therefore alter ecological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, P., Nelson, D.E., Yamada, S., Chmara, W., Jensen, R.G., Bohnert, H.J. and Griffiths, H. (1998) Growth and development of Mesembryanthemum crystallinum (Azoaceae), New Phytologist 138, 171–190.

    Article  CAS  Google Scholar 

  • Allen, J.A., Chambers, J.L. and Pezeshki, S.R. (1997) Effects of salinity on baldcypress seedlings, Physiological responses and their relation to salinity tolerance, Wetlands 17, 310–320.

    Google Scholar 

  • Anderson, J.M., Chow, W.S. and Goodchild, D.J. (1988) Thylakoid membrane or ganization in sun/shade acclimation, Australian Journal of Plant Physiology 15, 11–26.

    Google Scholar 

  • Andrade, J.L., Meinzer, F.C., Goldstein, G., Holbrook, N.M., Cavelier, J., Jackson, P. and Silvera, K. (1998) Regulation of water flux through trunks, branches, and leaves in trees of a lowland tropical forest, Oecologia 115, 463–471.

    Article  Google Scholar 

  • Ayala, F. and O’Leary, J.W. (1995) Growth and Physiology of Salicornia bigelovii Torr. at suboptimal salinity, International Journal of Plant Science 156, 197–205.

    Article  Google Scholar 

  • Ball, M.C. (1986) Photosynthesis in mangroves, Wetlands (Australia) 6, 12–22.

    Google Scholar 

  • Ball, M.C. (1988) Salinity tolerance in the mangroves Aegiceras corniculatum and Avicennia marina I. Water use in realtion to growth, carbon partitioning and salt balance, Australian Journal of Plant Physiology 15, 447–464.

    Google Scholar 

  • Ball, M.C. (1996) Comparative ecophysiology of mangrove forest and tropical lowland moist rainforest, in S.S. Mulkey, R.L. Chazdon and A.P. Smith (eds.), Tropical Forest Plant Ecophysiology, Chapman and Hall, New York, pp 461–496.

    Google Scholar 

  • Ball, M.C. and Anderson, J.M. (1986) Sensitivity of photosystem II to NaCl in relation to salinity tolerance. Compariative studies with thylakoids of the salt-tolerant mangrove, Avicennia marina, and the salt-sensitive pea, Pisum sativum, Australian Journal of Plant Physiology 13, 689–698.

    CAS  Google Scholar 

  • Ball, M.C., Chow, W.S. and Anderson, J.A. (1987) Salinity-induced potassium deficiency casses loss of functional photosystem II in leaves of the grey mangrove, Avicennia marina, through depletion of the atrazine-binding polypeptide, Australian Journal of Plant Physiology 14, 351–361.

    CAS  Google Scholar 

  • Ball, M.C., Cochrane, M.J. and Rawson, H.M. (1997) Growth and water use of the mangroves Rhizophora apiculata and R. stylosa in response to salinity and humdity under ambient and elevated concentrations of atmospheric CO2. Plant, Cell and Environment 20, 1158–11

    Google Scholar 

  • Ball, M.C., Cowan, I.R. and Farquhar, G.D. (1988) Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove forest, Australian Journal of Plant Physiology 15, 263–276.

    Google Scholar 

  • Ball, M. C. and Farquhar, G. D. (1984 a) Photosynthetic and stomatal responses of two mangrove species, Aegiceras corniculatum and Avicennia marina, to long term salinity and humidity conditions, Plant Physiology 74, 1–6.

    Google Scholar 

  • Ball, M.C. and Farquhar, G. D. (1984 b) Photosynthetic and stomatal responses of the grey mangrove, Avicennia marina, to transient salinity conditions, Plant Physiology 74, 7–11.

    Google Scholar 

  • Ball, M.C. and Munns, R. (1992) Plant responses to salinity under elevated atmospheric concentrations of CO2, Australian Journal of Botany 40, 515–5

    Article  CAS  Google Scholar 

  • Ball, M.C. and Pidsley, S.M. (1995) Growth responses to salinity in realtin to distribution of two mangrove species, Sonneratia alba and S. lanceolata, in northern Australia, Functional Ecology 9, 77–85.

    Google Scholar 

  • Bjorkman, O, Demmig, B. and Andrews, T.J. (1988) Mangrove photosynthesis, response to high irradiance stress, Australian Journal of Plant Physiology 15, 43–61.

    Google Scholar 

  • Bohnert, H.J., Nelson, D.E. and Jensen, R.G. (1995) Adaptions to environmental stresses, The Plant Cell 7, 1099–1111.

    PubMed  CAS  Google Scholar 

  • Bohnert, H.J. and Jensen, R.G. (1996) Metabolic engineering for increased salt tolerance — The next step, Australian Journal of Plant Physiology 23, 661–667.

    Google Scholar 

  • Bongi, G. and Loreto, F. (1989) Gas exchange propterties of salt-stressed olive (Olea europea L.) leaves, Plant Physiology 90, 1408–1416.

    CAS  Google Scholar 

  • Boto, K.G. and Wellington J.T. (1983) Phosphorus and nitrogen nutritional status of a northern mangrove forest, Marine Ecology Progress Series 11, 63–69.

    Google Scholar 

  • Bradley, P.M. and Morris, J.T. (1992) Effect of salinity on the critical nitrogen concentration of Spartina alterniflora Loisel., Aquatic Botany 43, 149–161.

    Article  Google Scholar 

  • Brugnoli, E. and Bjorkman, O. (1992) Growth of cotton under continous salinity stress, influence on allocation pattern, stomatal and non-stomatal components of photosynthesis and dissipation of excess light energy, Planta 187, 335–347.

    Article  CAS  Google Scholar 

  • Brugnoli, E. and Lauteri, M. (1991) Effects of salinity on stomatal conductance, photosynthetic capacity, and carbon isotope discrimination of salt-tolerant (Gossypium hirsutum L.) and salt-sensitive (Phaseolus vulgaris L.) C3 non-halophytes, Plant Physiology 95, 628–635.

    CAS  Google Scholar 

  • Carter, D.R. and Cheeseman, J.C. (1997) The effects of external NaCl on thylakoid stacking in lettuce plants. Plant Cell and Environment 16, 215–222.

    Google Scholar 

  • Chalmers, A.G. (1979) The effects of fertilization on nitrogen distribution in Spartina alterniflora salt march, Estuarine and Coastal Marine Science 8, 327–337.

    Article  CAS  Google Scholar 

  • Cheeseman, J.M. (1988) Mechanisms of salinity tolerance in plants, Plant Physiology 87, 547–550.

    CAS  Google Scholar 

  • Cheeseman, J.M., Clough, B.F., Carter, D.R., Lovelock, C.E., Eong, O.J. and Sim, R.G. (1991) The analysis of photosynthetic performance in leaves under field conditions — a case study using Bruguiera mangroves, Photosynthesis Research 29, 11–22.

    CAS  Google Scholar 

  • Cheeseman, J.M., Herendeen, L.B., Cheeseman, A.T. and Clough, B.F. (1997) Photosynthesis and photoprotection in mangroves under field conditions, Plant, Cell and Environment 20, 579–588.

    Article  CAS  Google Scholar 

  • Clough, B.F., Andrews, T.J. and Cowan, I.R. (1982) Physiological processes in mangroves, in B.F. Clough (ed.), Proceedings of the Australian National Mangrove Workshop, Australian Institute of Marine Science, Cape Ferguson 18–20 April 1979, Australian Institute of Marine Science in association with Australian National University Press, Canberra, pp 193–210..

    Google Scholar 

  • Clough, B.F. and Sim, R.G. (1989) Changes in gas exchange characteristics and water use efficiency of mangroves in response to salinity and vapour pressure deficit, Oecologia 79, 38–44.

    Article  Google Scholar 

  • Connor, W.H., McLeod, K.W. and McCarron, J.K. (1998) Survival and growth of seedlings of four bottomland oak species in response to increases in flooding and salinity, Forest Science 44, 618–624.

    Google Scholar 

  • Critchley, C. (1982) Stimulation of photosynthetic electron transport in a salt-tolerant plant by high clhoride concentrations, Nature 298, 483–485.

    Article  CAS  Google Scholar 

  • Dai, T. and Wiegert, R.G. (1997) A field study of photosynthetic capacity and its response to nitrogen fertilization in Spartina alterniflora, Estuarine, Coastal and Shelf Science 45, 273–283.

    Article  Google Scholar 

  • De Jong, T.M. (1978) Comparative gas exchange and growth responses of C3 and C4 (carbon photosynthetic pathway) beach species grown at different salinities (Atriplex leucophylla, Atriplex californica, Abronia maritima), Oecologia 36, 59–68.

    Article  Google Scholar 

  • Delfine, S., Alvino, A., Zacchini, M. and Loreto, F. (1998) Consequences of salt stress on conductance to CO2 duffusion, Rubisco characteristics and anatomy of spinach leaves, Australian Journal of Plant Physiology 25, 395–402.

    CAS  Google Scholar 

  • Demmig-Adams, B. and Adams, W.W. (1992) Carotenoid composition in sun and shade leaves of plants with different life forms, Plant, Cell and Environment 15, 411–419.

    CAS  Google Scholar 

  • Drake, B.G. (1992) A field study of the effects of elevated CO2 on ecosystem processes in a Chesapeake Bay wetland, Australian Journal of Botany 40, 579–595.

    Article  CAS  Google Scholar 

  • Drake, B.G., González-Meler, M.A. and Long, S.P. (1997) More efficient plants, A consequence of rising atmospheric CO2? Annual Review of Plant Physiology and Molecular Biology 48, 607–637.

    Google Scholar 

  • Ellison, A.M. and Farnsworth, E.J. (1996) Spatial and temporal variability in growth of Rhizophora mangle saplings on coral cays: links with variation in insolation, herbivory, and local sedimentation rate, Journal of Ecology 84, 717–731.

    Google Scholar 

  • Ellison, A.M. and Farnsworth, E.J. (1999) Simulated sea-level change alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.), Oecologia (in press)

    Google Scholar 

  • Epron, D., Godard, D., Comic, G. and Genty, B. (1995) Limitation of net CO2 as similation rate by internal resistances to CO2 transfer in the leaves of two tree species (Fagus sylvatica L. and Castanea sativa Mill.), Plant, Cell and Environment 18, 43–51.

    Google Scholar 

  • Evans, J. (1989) Photosynthesis and nitrogen relationships in leaves of C3 plants, Oecologia 78, 9–19.

    Google Scholar 

  • Evans, J.R. and von Caemmerer, S. (1996) Carbon dioxide diffusion inside leaves, Plant Physiology 110, 339–346.

    PubMed  CAS  Google Scholar 

  • Evans, J.R. and Loreto, F. (1998) Acquisition and diffusion of CO2 in higher plant leaves, in R.C. Leegood, T.D. Sharkey and S. von Caemmerer (eds.), Photosynthesis, Physiology and Metabolism, Advances in Photosynthesis, Kluwer Academic Publishers, Dordrecht, in press.

    Google Scholar 

  • Everard, J.D., Gucci, R., Kann, S.C., Flore, J.A. and Loescher, W.H. (1994) Gas exchange and carbon partitioning in the leaves of celery (Apium graveolens L.) at various levels of root zone salinity, Plant Physiology 106, 281–292.

    PubMed  CAS  Google Scholar 

  • Farnsworth, E.J., Ellison, A.M. and Gong, W.K. (1996) Elevated CO2 alters anatomy, physiology, growth, and reproduction of red mangrove (Rhizophora mangle L.), Oecologia 108, 599–609.

    Article  Google Scholar 

  • Farnsworth, E.J. and Farrant, J.M. (1998) Reductions in abscisic acid are linked with viviparous reproduction in mangroves, American Journal of Botany 85, 760–769.

    CAS  Google Scholar 

  • Farquhar, G.D. and Sharkey, T.D. (1982) Stomatal conductance and photosynthesis, Annual Review of Plant Physiology 33, 317–345.

    Article  CAS  Google Scholar 

  • Feller, I.C. (1995) Effects of nutient enrichment on growth and herbivory of dwarf red mangrove (Rhizophora mangle), Ecological Monographs 65, 477–505.

    Google Scholar 

  • Feller, I.C. (1996) Effects of nutrient enrichment on leaf anatomy of dwarf Rhizophora mangle L. (red mangrove), Biotropica 28, 13–22.

    Google Scholar 

  • Field, C., Merino, J. and Mooney, H.A. (1983) Compromises between water-use efficiency and nitrogen-use efficiency in five species of Californian evergreens, Oecologia 60, 384–389.

    Article  Google Scholar 

  • Flowers, T.J.and Yeo, A.R. (1986) Ion relations of plants under drought and salinity, Australian Journal of Plant Physiology 13, 75–91.

    CAS  Google Scholar 

  • Flowers, T.J.and Yeo, A.R. (1995) Breeding for salinity resistance in crop plants: Where next?, Australian Journal of Plant Physiology 22, 875–884.

    Google Scholar 

  • Foyer, C.H. (1993) Interactions between electron transport and carbon assimilation in leaves: coordination of activities and control, in Yash Pal Abrol, Prasanna Mohanty, Govindjee (eds.) Photosynthesis: photoreactions to plant productivity, Kluwer Academic Publishers, Dordrecht, pp 199–224.

    Google Scholar 

  • Garcia, A., Rizzo, C.A., Ud-din, J., Bartos, S.L., Senadhira, D., Flowers, T.J., and Yeo, A.R. (1997) Sodium and potassium trasnport to the xylem are inherited independently in rice, and the mechanisn of sodium:potassium selectivity differs between rice and wheat, Plant, Cell and Environment 20, 1167–1174.

    Article  CAS  Google Scholar 

  • Gilbert, G.A., Wilson, C., Madore, M.A., (1997) Root-zonesalinity alters raffinose oligosaccharide metabolism and transport in Coleus, Plant Physiology 115, 1267–1276.

    PubMed  CAS  Google Scholar 

  • Glenn, E.P. and Brown, J.J. (1998) Effects of soil salt levels on the growth and water use efficiency of Atriplex canscens (Chenopodiaceae) varieties in drying soil, American Journal of Botany 85, 10–16.

    CAS  Google Scholar 

  • Glenn, E.P. and O’Leary, J.W. (1984) Relationship between salt accumulation and water content of dicotyledonous halophytes, Plant, Cell and Environment 7, 253–261.

    CAS  Google Scholar 

  • Greenway, H., and Munns, R. (1980) Mechanisms of salt tolerance in nonhalophytes, Annual Review of Plant Physiology 31, 149–190.

    Article  CAS  Google Scholar 

  • Hausler, R.E., Lea P.J. and Leegood, R.C. (1994) Control of photosynthesis in barley leaves with reduced activities of glutamine synthetase or glutamatesynthase II. Control of electron transport and CO2 assimilation, Planta 194, 418–435.

    CAS  Google Scholar 

  • Hester, M.W., Mendelssohn, I.A., McKee, K.L. (1996) Intraspecific variation in salt tolerance and morphology in the coastal grass Spartina patens (Poaceae), American Journal of Botany 83, 1521–1527.

    Google Scholar 

  • Hester, M.W.; Mendelssohn, I.A.; McKee, K.L. (1998) Intraspecific variation in salt tolerance and morphology in Panicum hemitomon and Spartina alterniflora (Poaceae), International Journal of Plant Sciences 159, 127–138.

    Article  Google Scholar 

  • Hu, Y., Oertli, J.J. and Schmidhalter U. (1997) Interactive effects of salinity and macronutrient level on wheat. 1. Growth, Journal of Plant Nutrition 20, 1155–1167.

    CAS  Google Scholar 

  • Huang, L., Murray, F. and Yang, X. (1994) Interaction between mild NaCl salinity and sublethal SO2 pollution on wheat Triticum aestivum cultivar “Wilgoyne” (Ciano/Gallo).I. Responses of stomatal conductance, photosynthesis, growth and assimilate partitioning, Agriculture, Ecosystems and Environment 48, 163–178.

    Article  CAS  Google Scholar 

  • Jansen, C.M., Pot, S. and Lambers, H. (1986) The influence of CO2 enrichment of the atmosphere and NaCl on growth and metabolism of Urtica dioca L., in R. Marcelle, H. Clijsters and M. van Poucke (eds.) Biological Control of Photosynthesis, Matinus Nijhoff Publishers, Dordrecht, pp 143–146.

    Google Scholar 

  • Jarvis, A.J. and Davies, W.J. (1998) The coupled response of stomatal conductance to photosynthesis and transpiration, Journal of Experimental Botany 49, 399–406.

    Article  Google Scholar 

  • Jones, H.G. (1973) Limiting factors in photosynthesis, New Phytologist 72, 1089–1094.

    Google Scholar 

  • Kao, W.Y. and Chang, K.W. (1998) Stable carbon isotope ratio and nutrient contents of the Kandelia candel mangrove populations of differnt growth forms, Botanical Bulletin of the Academia Sinica 39, 39–45.

    Google Scholar 

  • Kingsbury, R.W., Epstein, E. and Pearcy, R.W. (1984) Physiological responses to salinity in selected lines of wheat, Plant Physiology 74, 417–423.

    CAS  Google Scholar 

  • Koch, M.S. and Snedaker S.C. (1998) Factors influencing Rhizophora mangle L. seedling development in Everglades carbonate soils, Aquatic Botany 59, 87–98.

    Google Scholar 

  • Koniger, M., Harris, G.C., Virgo A. and Winter, K. (1995) Xanthophyll cycle pigments and photosynthetic capacity in tropical forest species: a comparative field study on canopy, gap and understory plants, Oecologia 104, 280–290.

    Google Scholar 

  • Krall, J.P. and Edwards, G.E. (1992) Relationship between photosystem II activity and CO2 fixation in leaves, Physiologia Plantarum 86, 180–187.

    Article  CAS  Google Scholar 

  • Lauteri, M., Scatazza, A., Guido, M.C. and Brugnoli, E. (1997) Genetic variation in photosynthetic capacity, carbon isotope discrimination and mesophyll conductance in provenances of Castaea sativa adapted to different environments, Functional Ecology 11, 675–683.

    Article  Google Scholar 

  • Li, X.P. and Ong, B.L. (1997) Ultrastructural changes in gametophytes of Acrostichum aureum L. cultured at different sodium chloride concentrations, Biologia Plantarum 39, 607–614.

    Article  CAS  Google Scholar 

  • Lin, G. and Steinberg, L.S.L. (1992) Effect of growth form, salinity, nutrient and sulfide on photosynthesis, carbon isotope discrimination and growth of red mangrove (Rhizophora mangle L.), Australian Journal of Plant Physiology 19, 509–517.

    CAS  Google Scholar 

  • Long, S.P. (1983) C4 photosythesis at low temperatures. Plant, Cell and Environment 6, 345–363.

    CAS  Google Scholar 

  • Long, S.P and Baker, N.R. (1986) Saline terrestrial environments, in N.R. Baker and S.P. Baker (eds.), Photosynthesis in contrasting environments, Topics in Photosynthesis, Vol. 7, Elsevier-Science Publishers, Amsterdam, pp 63–102.

    Google Scholar 

  • Longstreth, D.J., Bolanos, J.A. and Smith, J.E. (1984) Salinity effects on photosynthesis and growth in alternanthera philoxeroides (Mart.) Griseb., Plant Physiology 75, 1044–1047.

    CAS  Google Scholar 

  • Loreto, F., Harley, P.C., Di Marco, G. and Sharkey, T.D. (1994) Measurements of mesophyll conductance, photosynthetic electron transport and alternative electron sinks of field grown wheat leaves, Photosynthesis Research 41, 397–403.

    Article  CAS  Google Scholar 

  • Lovelock, C.E. and Clough, B.F. (1992) Influence of solar radiation and leaf angle on xanthophyll concentraions in mangroves, Oecologia 91, 518–525.

    Article  Google Scholar 

  • Lovelock, C.E., Clough, B.F. and Woodrow, I.A. (1992) Distribution and accumulation of ultraviolet radiation absorbing compounds in leaves of tropical mangroves, Planta 188, 143–154.

    Article  CAS  Google Scholar 

  • Lovelock, C.E. and Winter, K. (1996) Oxygen-dependent electron transport and protection from photoinhibition in leaves of tropical tree species, Planta 198, 580–587.

    Article  CAS  Google Scholar 

  • Luttge, U., Popp, M., Medina, E., Cram, W.J., Diaz, M., Griffiths, H., Lee, H.S.J., Schafer, C., Smith, J.A.C. and Stimmel, K.-H. (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in nothern Venezuela. V. The Batis maritima-Sesuvium portulacastrum vegetation unit, New Phytohgist 111, 283–291.

    Google Scholar 

  • McKee, K.L. (1996) Growth and physiological responses of neotropical mangrove seedlings to root zone hypoxia, Tree physiology 16, 883–889.

    PubMed  Google Scholar 

  • Miszalski, Z., Slaeak, I., Niewiadomska, E., Baczek-Kwinta, R., Luttge, U. and Ratajczak, R. (1998) Subcellular localization and stress response of superoxide dismutase isoforms from the leaves of the C3-CAM intermediate halophyte Mesembryanthemum crystallinum L., Plant, Cell and Environment 21, 169–179.

    Article  CAS  Google Scholar 

  • Meinzer, F.C., Andrade, J.L., Goldstein, G., Holbrook, N.M., Cavelier, J. and Jackson, P. (1997) Control of transpiration from the upper canopy of a tropical forest: the role of stomatal, boundary layer and hydraulic architecture components, Plant, Cell and Environment 20, 1242–1252.

    Google Scholar 

  • Moon, G.J., Clough, B.F., Peterson, C.A. and Allaway, W.G. (1986) Apoplastic and symplastic pathways in Avicennia marina (Forsk.) Vierh. roots revealed by fluorescent tracer dyes, Australian Journal of Plant physiology 13, 637–648.

    CAS  Google Scholar 

  • Munns, R., (1993) Physiological processes limiting plant growth in saline soils, some dogmas and hypotheses, Plant, Cell and Environment 16, 15–24.

    CAS  Google Scholar 

  • Munns, R., Greenway, H. and Kirst, G.O. (1983) Halotolerant eukaryotes, in O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler (eds.), Physiological Plant Ecology III. Responses to the chemical and biological environment, Encyclopedia of Plant Physiology, new series, Vol. 12C, Springer-Verlag, Berlin, Heidelberg, New York, pp 59–135.

    Google Scholar 

  • Naidoo, G. (1987) Effects of salinity and nitrogen on growth and water realtions in the mangrove, Avicennia marina (Forsk.) Vierh., New Phytologist 107, 317–325.

    Google Scholar 

  • Osmond, C.B. (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants, in N.R. Baker and J.R. Bowyer (eds.), Photoinhibition of Photosynthesis, Bios Scientific Publisher, Oxford, UK, pp 1–24.

    Google Scholar 

  • Osmond, C.B. and Grace, S.C. (1995) Perspectives on photoinhibition and photorespiration in the field, quintessential in efficiencies of the light and dark reactions of photosynthesis? Journal of Experimental Botany 46, 1351–1362.

    CAS  Google Scholar 

  • Passioura, J.B., Ball, M.C. and Knight, J.H. (1992) Mangroves may salinize the soils and in doing so limit their transpiration rate, Functional Ecology 6, 476–481.

    Google Scholar 

  • Pearcy, R.W. and Ustin, S.L. (1984) Effects of salinity on growth and photosynthesis of three California tidal march species, Oecologia 62, 68–73.

    Article  Google Scholar 

  • Perry, L. and Williams, K. (1996) Effects of salinity and flooding on seedlings of cabbage palm (Sabal palmetto), Oecologia 105, 428–434.

    Article  Google Scholar 

  • Pezeshki, S.R. and Chambers, J.L. (1986) Effects of soil salinity on stomatal conductance and photosynthesis of green ash (Fraxinus pennsylvanica), Canadian Journal of Forest Research 16, 569–573.

    Google Scholar 

  • Pezeshki, S.R., DeLaune, R.D. and Patrick, W.H. (1987) Effects of flooding and salinity on photosynthesis of Sagittaria lancifolia, Marine Ecology Progress Series 41, 87–91.

    Google Scholar 

  • Pezeshki, S.R., DeLaune, R.D. and Patrick, W.H. (1989) Differential response of selected mangroves to soil flooding and salinity, gas exchange and biomass partitioning, Canadian Journal of Forest Research 20, 869–874.

    Google Scholar 

  • Popp, M. (1984) Chemical composition of Australian mangroves II Low molecular weight carbohydrates, Zeitschrift fur Pflanzenphysiologie 113, 411–421.

    CAS  Google Scholar 

  • Popp, M., Larher, F. and Weigel, P. (1984) Chemical composition of Australian mangroves. III. Free amino acids, total methylated amonium compounds and total nitrogen, Zietschrift Pflanzenphysiology 114, 15–25.

    CAS  Google Scholar 

  • Popp, M. and Polania, J. (1989) Compatible solutes in different organs of mangrove trees, Annals of Scientific Forestry 46 suppl., 842s–844s.

    Google Scholar 

  • Popp, M., Polania, J. and Weiper, M. (1988) Physiological adaptations to different salintiy levels in mangroves, in H. Lieth and A. Al Masoom (eds.), Towards the rational use of high salinity tolerant plants, Vol 1, Kluwer Academic Publishers, pp 217–224.

    Google Scholar 

  • Powles, S.R., Osmond, C.B. and Thorne, S.W. (1979) Photoinhibition of intact attached leaves of C3 plants illuminated in the absence of CO2 and when photorepiration is prevented, Plant Physiology 64, 982–988.

    CAS  Google Scholar 

  • Rawson, H.M. (1986) Gas exchange and growth in wheat and barley grown in salt, Australian Journal of Plant Physiology 13, 475–489.

    Google Scholar 

  • Reich, P.B., Walters, M.B. and Tabone, T.J. (1989) Responses of Ulmus americana seedlings to varying nitrogen and water status. 2 Water and nitrogen use efficiency in photosynthesis, Tree Physiology 5, 173–184.

    PubMed  CAS  Google Scholar 

  • Richter, A., Thonke, B. and Popp, M. (1990) 1D-1-O methyl-muco-inositol in Viscum album and members of the Rhizophoraceae, Phytochemistry 29, 1785–1786.

    Article  CAS  Google Scholar 

  • Robinson, S.P. and Downton, W.J.S. (1985) Potassium, sodium and chloride concentrations in leaves and isolated chloroplasts of the halophyte Suaeda australis R. Br., Australian Journal of Plant Physiology 12, 471–479.

    CAS  Google Scholar 

  • Scartazza, A., Lauteri, M., Guido, M.C. and Brugnoli, E. (1998) Carbon isotope discrimination in leaf and stem sugars, water-use efficiency and mesophyll conductance during different developmental stages in rice subjected to drought, Australian Journal of Plant Physiology 25, 489–498.

    CAS  Google Scholar 

  • Scholander, P.F., Bradstreet, E.D., Hammel, H.T. and Hemmingsen, E. (1966) Sap concentrations in halophytes and some other plants, Plant Physiology 41, 529–532.

    PubMed  CAS  Google Scholar 

  • Scholander, P.F., Hammel, H.T., Hemmingsen, E. and Garey, W. (1962) Salt balance in mangroves, Plant Physiology 37, 722–729.

    CAS  Google Scholar 

  • Schreiber, U. and Neubauer, C. (1990) O2-dependent electron flow, membrane energization and the mechanism of nonphotochemical quenching of chlorophyll fluorescence, Photosynthesis Research 25, 279–293.

    Article  CAS  Google Scholar 

  • Seeman, J.R. and Critchley, C. (1985) Effects of salt stress on the growth, ion content, stomatal behaviour and photosynthetic capacity of a salt-sensitive species, Phaseolus vulgaris (L.), Planta 164, 151–162.

    Google Scholar 

  • Seeman, J.R. and Sharkey, T.D. (1986) Salinity and nitrogen effects on photosynthesis, ribulose-1,5-bisphosphate carboxylase and metabolite pool sizes in Phaseolus vulgaris L., Plant Physiology, 82, 555–560.

    Google Scholar 

  • Shen, B., Jensen, R.G. and Bohnert, H.J. (1997) Increased resistance to oxidative stress intransgenic plants by targeting mannitol biosynthesis to chloroplasts, Plant Physiology 113, 1177–1183.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, R.E., Fahey, T.J. and Howarth, R.W. (1998) Soil-plant interactions in a neotropical mangrove forest: iron, phosphorus and sulfur dynamics, Oecologia 115, 553–563.

    Article  Google Scholar 

  • Smart, R.M. and Barko, J.W. (1980) Nitrogen nutrition and salinity tolerance of Distichlis spicata and Spartina alterniflora, Ecology 61, 630–638.

    CAS  Google Scholar 

  • Smith, J.A.C., Popp, M., Luttge, U., Cram, W.J., Diaz, M., Griffiths, H., Lee, H.S.J., Medina, E., Schafer, C., Stimmel, K.-H. and Thonke, B. (1989) Ecophysiology of xerophytic and halophytic vegetation of a coastal alluvial plain in nothern Venezuela. VI. Water realtions and gas exchange of mangroves, New Phytologist 111, 293–307.

    Google Scholar 

  • Sobrado, M.A. (1999) Drought effects on photosynthesis of the mangrove, Avicennia germinans, under contrasting salinities, Trees 13, 125–130.

    Article  Google Scholar 

  • Sobrado, M.A. and Ball, M.C. (1999) Light use in relation to carbon gain in the mangrove, Avicennia marina, under hypersaline conditions, Australian Journal of Plant Physiology (in press)

    Google Scholar 

  • Sperry, J.S., Donnelly, J.R. and Tyree, M.T. (1988) A method for measuring hydraulic conductivity and embolism in xylem, Plant, Cell and Environment 11, 35–40.

    Google Scholar 

  • Talbott, L.D. and Zeiger, E. (1998) The role of sucrose in guard cell osmoregulation, Journal of Experimental Botany 49, 329–337.

    Article  Google Scholar 

  • Tarczynski, M.C., Jensen, R.G. and Bohnert, H.J. (1993) Stress protection in transgenic tobacco producing a putative osmoprotectant, manitol, Science 259, 508–510.

    CAS  Google Scholar 

  • Tattini, M., Lombardini, L. and Gucci, R. (1997) The effect of NaCl stress and relief on gas exchange properties of two olive cultivars differing in tolerance to salinity, Plant and Soil 197, 87–93.

    Article  CAS  Google Scholar 

  • Ungar, I. A.(1991) Ecophysiology of vascular halophytes, CRC Press Baton Rouge.

    Google Scholar 

  • Valiela, I. and Teal, J.M. (1974) Nutrient limitations in salt marsh vegetation, in R.J. Reimold, W.H. Green (eds.), Ecology of halophytes, Academic Press, New York, pp 547–563.

    Google Scholar 

  • Verhoeven, A.S., Demmig-Adams, B., Adams, W.W. III. (1996) Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress, Plant Physiology 113, 817–824.

    Google Scholar 

  • Vernon, D.M. and Bohnert, H.J. (1992) A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum, EMBO Journal 11, 2077–2085.

    PubMed  CAS  Google Scholar 

  • Wang, L.W., Showalter, A.M., Ungar, I.A. (1997) Effect of salinity on growth, ion content, and cell wall chemistry in Atriplex prostata (Chenopodiaceae), American Journal of Botany 84, 1247–1255.

    CAS  Google Scholar 

  • Wang, J.R., Hawkins, C.D.B. and Letchford T. (1998) Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes, Forest Ecology and Management 112, 233–244.

    Article  Google Scholar 

  • Werner, A. and Stelzer, R. (1990) Physiological responses of the mangrove Rhizophora mangle grown in the absence and presence of NaCl, Plant, Cell and Environment 13, 243–255.

    CAS  Google Scholar 

  • Winter, K. (1973) CO2 fixation metabolism in the halophytic species Mesembryanthemum crystallinum grown under different environmental conditions, Planta 114, 75–85.

    Article  CAS  Google Scholar 

  • Winter, K. and Smith, J.A.C. (1997) Crassulacean acid metabolism: Current status and perspectives, in K. Winter and J.A.C. Smith (eds.), Crassulacean acid metabolism, Biochemistry, ecophysiology and evolution, Ecological Studies 114, Springer-Verlag, Berlin, Heidelberg, New York, pp 389–426.

    Google Scholar 

  • Wu, J., Neimanis, S. and Heber, U. (1991) Photorespiration is more efficient than the Mehler reaction to reptect the photosyntehtic apparatus against photoinhibition, Botanica Acta 104, 283–291.

    CAS  Google Scholar 

  • Yeo, A.R., Caporn, S.J.M. and Flowers, T.J. (1985) The effect of salinity upon photosynthesis in rice (Oryza sativa L.): Gas exchange by individual leaves in realtion to their salt content, Journal of Experimental Botany 36, 1240–1248.

    CAS  Google Scholar 

  • Zimmerman, J.-L. and Rutherford, A.W. (1985) The oxygen evolving enzyme of photosystem II, Recent Advances in the Physiology of Vegetation 23, 425–434.

    Google Scholar 

  • Ziska, L.H., Seeman, J.R. and DeJong, T.M. (1990) Salinity induced limitations on photosynthesis in Prunus salicina, a deciduous tree species, Plant Physiology 93, 864–870.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lovelock, C.E., Ball, M.C. (2002). Influence of Salinity on Photosynthesis of Halophytes. In: Läuchli, A., Lüttge, U. (eds) Salinity: Environment - Plants - Molecules. Springer, Dordrecht. https://doi.org/10.1007/0-306-48155-3_15

Download citation

  • DOI: https://doi.org/10.1007/0-306-48155-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0492-6

  • Online ISBN: 978-0-306-48155-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics