Skip to main content

Natural Organic Matter Removal During Riverbank Filtration: Current Knowledge and Research Needs

  • Chapter
Riverbank Filtration

Part of the book series: Water Science and Technology Library ((WSTL,volume 43))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Amy, G., G.L. Wilson, A. Conroy, J. Chahbandour, W. Zhai, and M. Siddiqui (1993).“Fate of chlorination byproducts and nitrogen species during effluent recharge and soil aquifer treatment (SAT).” Water Environment Research, 65(6): 726–734.

    CAS  Google Scholar 

  • BMI-Fachausschuss (1985). Kuenstliche Grundwasseranreicherung. Stand des Wissens und der Technik in der Bundesrepubik Deutschland. Bundesminister des Innern. Erich Schmidt Verlag, Berlin, Germany.

    Google Scholar 

  • Drewes, J.E., and P. Fox (1999). “Fate of natural organic matter (NOM) during groundwater recharge using reclaimed water.” Water Science and Technology, 40(9): 241–248.

    Article  CAS  Google Scholar 

  • Drewes, J.E., D.M. Quanrud, G.L. Amy, and P.K. Westerhoff (2002). “Character of organic matter in soil-aquifer treatment systems.” Journal of Environmental Engineering, in press.

    Google Scholar 

  • Gerlach, M. (1998). “Zur Bedeutung von Huminstoffen bei der Trinkwassergewinnung aus Uferfiltrat.” Ph.D. thesis, Institute of Chemical Engineering/Water Engineering, University of Duisburg, Duisburg, Germany.

    Google Scholar 

  • Gerlach, M., and R. Gimbel (1999). “Influence of humic substance alteration during soil passage on their treatment behaviour.” Water Science and Technology, 40(9): 231–239.

    Article  CAS  Google Scholar 

  • Haberer, K., M. Drews, H. Kussmaul, and D. Mühlhausen (1985). “Verhalten von organischen Schadstoffen bei der kuenstlichen Grundwasseranreicherung und Entwicklung von speziellen Methoden zu deren Ueberwachung.” Research Report 102 02 302/04UBA-FB 83-053, German Environmental Protection Agency, Berlin, Germany

    Google Scholar 

  • Haberer, K., and T.A. Ternes (1996). “Bedeutung von wasserwerksgaengigen Metaboliten fuer die Trinkwassergewinnung.” Gass-und Wasserfach Wasser/Abwasser, 137(10): 573–578.

    CAS  Google Scholar 

  • Heberer, T., K. Schmidt-Bäumler, and H.J. Stan (1998). “Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part I: Drug residues and other polar contaminants in Berlin surface and groundwater.” Acta Hydrochima et Hydrobiolica, 26: 272–278.

    CAS  Google Scholar 

  • Kivimaeki, A.L., K. Lahti, T. Hatva, S.M. Tuominen, and I.T. Miettinen (1998). “Removal of organic matter during bank filtration.” Artificial Recharge of Groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Kühn, W., and U. Müller (2000). “Riverbank filtration — An overview.” Journal of American Water Works Association, 92(12): 60–69.

    Google Scholar 

  • Ludwig, U., T. Grischek, W. Nestler, and V. Neumann (1997). “Behaviour of different molecular-weight fractions of DOC of Elbe River during riverbank filtration.” Acta Hydrochima et Hydrobiolica, 25(3): 145–150.

    CAS  Google Scholar 

  • MacCarthy, P. (2001). “The principles of humic substances: An introduction to the first principle.” Humic substances — Structures, models and functions, E.A. Ghabbour and G. Davies, eds., Royal Society of Chemistry, Cambridge, England, 19–30.

    Google Scholar 

  • Malcolm, R.L. (1985). “Geochemistry of stream fulvic and humic substances.” Humic substances in soil, sediment, and water: Geochemistry, isolation, and characterization, G.R. Aiken, D.M. McKnight, R.L. Wershaw, and P. MacCarthy, eds., John Wiley and Sons, New York, New York.

    Google Scholar 

  • Matthess, G. (1990). Die Beschaffenheit des Grundwassers. Lehrbuch der Hydrogeologie Band 2, Second Edition. Gebrueder Borntraeger, Berlin, Germany.

    Google Scholar 

  • Mühlhausen, D., K. Zipfel, and U. Obst (1991). “Beurteilung der Langzeitdynamik in sandigen Grundwasserleitern bei Uferfiltration und kuenstlicher Grundwasseranreicherung.” Final Report 102 02 316 UBA-FB 91-056, German Environmental Protection Agency, Berlin, Germany.

    Google Scholar 

  • Neitzel, P.L., A. Abel, T. Grischek, W. Nestler, and W. Walther (1998). “Behaviour of aromatic sulfonic acids during bank infiltration and under laboratory conditions.” Vom Wasser, 90: 245–271.

    CAS  Google Scholar 

  • Owen, M.O., G. Amy, and Z.K. Chowdhury (1993). Characterization of natural organic matter and its relationship to treatability. American Water Works Association Research Foundation and American Water Works Association, Denver, Colorado.

    Google Scholar 

  • Putschew, A., S. Wischnack, and M. Jekel (2000). “Occurrence of triiodinated X-ray contrast agents in the aquatic environment.” The Science of the Total Environment, 255(1–3): 131–136.

    Google Scholar 

  • Roberts, P.V., P.L. McCarty, M. Reinhard, and J. Schreiner (1980). “Organic contaminant behavior during groundwater recharge.” Journal of Water Pollution Control Federation, 52(1): 161–172.

    CAS  Google Scholar 

  • Schwarzenbach, R.P., W. Giger, E. Hoehm, and J.K. Schneider (1983). “Behavior of organic compounds during infiltration of river water to groundwater. Field studies.” Environmental Science and Technology, 17(8): 472–479.

    Article  CAS  Google Scholar 

  • Sonnenberg, L.B., J.D. Johnson, and R.F. Christman (1989). “Chemical degradation of humic substances for structural characterization.” Aquatic humic substances: Influence on fate and treatment of pollutants, I. H. Suffet and P. MacCarthy, eds., American Chemical Society, Washington, D.C.

    Google Scholar 

  • Sontheimer, H., and W. Nissing (1977). “Aenderung der Wasserbeschaffenheit bei der Bodenpassage unter besonderer Beruecksichtigung der Uferfiltration am Niederrhein.” Gas-und Wasserfach Wasser/Abwasser, 57(9): 639–645.

    CAS  Google Scholar 

  • Sontheimer, H. (1980). “Experience with riverbank filtration along the Rhine River.” Journal American Water Works Association, 72(7): 386.

    CAS  Google Scholar 

  • Sontheimer, H. (1991). Trinkwasser aus dem Rhein? Academia Verlag, Sankt Augustin, Germany.

    Google Scholar 

  • Stuyfzand, P.J. (1998). “Fate of pollutants during artificial recharge and bank filtration in the Netherlands.” Artificial Recharge of Groundwater, J.H. Peters et al., eds., A.A. Balkema, Rotterdam, The Netherlands.

    Google Scholar 

  • Thurman, E.M., R.L. Wershaw, R.L. Malcolm, and D.J, Pinckney (1982). “Molecular size of aquatic humic substances.” Organic Geochemistry, 4: 27–35.

    Article  CAS  Google Scholar 

  • Thurman, E. (1985). Organic geochemistry of natural waters. Nijhoff/Junk Publishers, Durdrecht, The Netherlands.

    Google Scholar 

  • Wang, J. (2002). “Riverbank filtration case study at Louisville, Kentucky.” Riverbank filtration: Improving source-water quality, C. Ray, G. Melin, and R.B. Linsky, eds., Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Weiss, W.J., E.J. Bouwer, W.P. Ball, C.R. O’Melia, H. Arora, and T.F. Speth (2002). “Reduction in disinfection byproduct precursors and pathogens during riverbank filtration at three Midwestern United States drinking-water utilities.” Riverbank filtration: Improving source-water quality, C. Ray, ed., Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Wilson, A.L. (1959). “Determination of fulvic acids in water.” Journal of Applied Chemistry, 9(10): 501–510.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Drewes, J.E., Summers, R.S. (2002). Natural Organic Matter Removal During Riverbank Filtration: Current Knowledge and Research Needs. In: Ray, C., Melin, G., Linsky, R.B. (eds) Riverbank Filtration. Water Science and Technology Library, vol 43. Springer, Dordrecht. https://doi.org/10.1007/0-306-48154-5_16

Download citation

  • DOI: https://doi.org/10.1007/0-306-48154-5_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1133-7

  • Online ISBN: 978-0-306-48154-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics