Skip to main content

DFT Modeling of Stark-Tuning Effect: CO on Polarized Pd(100) as a Probe for Double-Layer Electrostatic Effects in Electrochemistry

  • Chapter
Quantum Systems in Chemistry and Physics Volume 2

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 2/3))

Abstract

The lifetime of chemisorbed radical anions produced in the electroreduction of vinylic molecules is thought to play a decisive part in the mechanism accounting for the production of grafted films in electropolymerization reactions. With the ultimate purpose of evaluating these lifetimes, we propose a one-dimensional model taking into account the interface bond, the anion/metallic surface image charge potential, and the anion/polarized-surface electrostatic repulsion. Orders of magnitude are known for the parameters entering in these terms, except for the latter. In the present work, this term is described using the Gouy-Chapmann model for the electrochemical double layer. Comparing our theoretical DFT predictions on Stark-Tuning effect of CO on Pd(l00) with experiment, we can discuss on the legitimacy of a phenomenological linear relationship between the (microscopic) surface electric field and the (macroscopic) electrode potential. The slope of this relationship, termed the electric field rate, in (V.cm−1),V−1, turns out to be numerically equivalent to the characteristic length of the double layer, whatever the underlying model. Our calculated rates, carried out within the Gouy-Chapmann approximation, are in acceptable agreement with previous experimental estimates. First insights into our electropolymerization reactions suggest that the presumed intermediate chemisorbed radical-anions may have a borderline stability, i.e. a largely non negligible lifetime on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) G. Lécayon, Y. Bouizem, C. LeGressus, C. Reynaud, C. Boiziau, and C. Juret, Chem. Phys. Lett. 91, 506 (1982). (b) C. Boiziau, G. Lécayon, Surf. Interf. Analysis, 12 (1988).

    Google Scholar 

  2. C. Bureau, G. Deniau, P. Viel, G. Lécayon, and J. Delhalle, J. Adhesion 58, 101 (1996).

    CAS  Google Scholar 

  3. P. Jonnard, F. Vergand, P.F. Staub, C. Bonnelle, G. Deniau, C. Bureau, and G. Lécayon, Surf. Interf. Anal. 24, 339 (1996).

    CAS  Google Scholar 

  4. S.N. Bhadani, Q. Ansari, and S.K., Sen Gupta, J. Appl. Polym. Sci. 44, 121 (1992).

    CAS  Google Scholar 

  5. C. Bureau, and G. Lécayon, J. Chem. Phys. 106, 8821 (1997).

    Article  CAS  Google Scholar 

  6. J. Tanguy, G. Deniau, G. Zalczer, and G. Lécayon, J. Electroanal. Chem. 417, 175 (1996).

    Article  CAS  Google Scholar 

  7. VM. Geskin, R. Lazzaroni, M. Mertens, and R. Jérôme, J. Chem. Phys. 105, 3278 (1996).

    Article  CAS  Google Scholar 

  8. S. De Cayeux, Ph.D Thesis, Universitéde Haute Alsace (1995).

    Google Scholar 

  9. M.O. Bernard, C. Bureau, J.M. Soudan, and G. Lécayon, J. Electroanal. Chem. 431, 153 (1997).

    Article  CAS  Google Scholar 

  10. C. Bureau, J.M. Soudan, and G. Lécayon. Electrochim. Acta. 44, 3303 (1999).

    Article  CAS  Google Scholar 

  11. A. Tadjeddine and A. Peremans, Adv. Spectrosc., 26, 159 (1998).

    CAS  Google Scholar 

  12. J. Wu, J.B. Day, K. Franaszczuk, B. Montez, E. Oldfield, A. Wieckowski, P.-A. Vuissoz and J.P. Ansermet, J. Chem. Soc. Faraday Trans., 93, 1017 (1997).

    CAS  Google Scholar 

  13. B. H. Loo and T. Kato, Surf. Sci. 284, 167 (1993).

    Article  CAS  Google Scholar 

  14. X. Crispin, C. Bureau, R. Lazzaroni, and J.L. Brédas, submitted to J. Chem. Phys.

    Google Scholar 

  15. C. Bureau, X. Crispin, and S. Kranias, in preparation.

    Google Scholar 

  16. S. Zou, and J.M. Weaver, J. Chem. Phys. 100, 4237 (1996).

    CAS  Google Scholar 

  17. P.M. Echenique, J.B. and Pendry, Prog. Surf. Sci. 32 111 (1990).

    Google Scholar 

  18. P. Gies, J. Phys. C: Solid State Phys. 19, L209 (1986).

    Article  CAS  Google Scholar 

  19. U. Höfer, I.L. Shumay, I.L.; Ch. Reuß, U. Thomann, W. Wallauer, W., and Th. Fauster, Science 277, 1480 (1997).

    Google Scholar 

  20. M. Wolf, Surf. Sci. 377, 343 (1997).

    Article  Google Scholar 

  21. W. Anderson, and R. Parsons, Proceedings of the International Conference on Surface Activity (Butterworths, London), vol. III, 45 (1958).

    Google Scholar 

  22. J.O’M. Bockris, and S.U.M. Khan, Surface Electrochemistry: a Molecular Level Approach (Plenum Press, New York) 90 (1993).

    Google Scholar 

  23. T. Anderson, and J.O’M. Bockris, Electrochim. Acta, 9, 347 (1964).

    Google Scholar 

  24. P.J. Rous, Phys. Rev. Lett. 74, 1835 (1995).

    Article  CAS  Google Scholar 

  25. G.L. Richmond, in Electroanalytical Chemistry, Bard, A.J., Ed. () 17, 119.

    Google Scholar 

  26. A.J. Bard, and L.R. Faulkner, Electrochemical Methods (John Wiley & Sons, New-York, 1980).

    Google Scholar 

  27. J. Javanainen, J.H. Eberly, and Q. Su, Phys. Rev. A 38, 3430 (1988).

    CAS  Google Scholar 

  28. C. Bureau, S. Kranias and X. Crispin, in preparation.

    Google Scholar 

  29. D.K. Lambert, Phys. Rev. Lett. 50, 2106 (1983); 51, 2233 (E) (1983).

    Article  CAS  Google Scholar 

  30. D.K. Lambert, Solid State Commun. 51, 297 (1984).

    Article  CAS  Google Scholar 

  31. P.S. Bagus and G. Pacchioni, Electrochim. Acta 36, 1669 (1991). For a review, see also ref. [33].

    Article  CAS  Google Scholar 

  32. A.B. Anderson, J. Electroanal. Chem. 280, 49 (1990).

    Article  Google Scholar 

  33. M. Head-Gordon, and J.C. Tully, Chem. Phys. 175, 37 (1993).

    Article  CAS  Google Scholar 

  34. M.J. Weaver, Appl. Surf. Sci. 67, 147 (1993).

    Article  CAS  Google Scholar 

  35. M.R. Anderson, D. Blackwood, T.G. Richmond, and S. Pons, J. Electroanal. Chem. 256, 397 (1988).

    CAS  Google Scholar 

  36. A.E. Russel, S. Pons and M.R. Anderson, Chem. Phys. 141, 41 (1990).

    Google Scholar 

  37. D.K. Lambert, J. Chem. Phys. 89, 3847 (1988).

    CAS  Google Scholar 

  38. A.D. Becke, Phys. Rev. A, 38, 3098 (1988).

    Article  CAS  Google Scholar 

  39. J.P. Perdew, Phys. Rev. B, 33, 8822 (1986).

    Google Scholar 

  40. P.S. Bagus, C.J. Nelin, W. Müller, M.R. Philpott, and H. Seiki, Phys. Rev. Lett. 58, 559 (1987).

    Article  CAS  Google Scholar 

  41. R.J. Behm, K. Christamann, and G. Erti, J. Chem. Phys. 73(6), 2984 (1980).

    Article  CAS  Google Scholar 

  42. (a) A. St Amant, D.R. Salahub, Chem. Phys. Lett. 169, 387 (1990). (b) A. St Amant, Ph.D Thesis, Universitéde Montréal, 1991. (c) http://www.cerca.umontreal.ca/deMon.

    CAS  Google Scholar 

  43. (a) P. Duffy, D.P. Chong, M.J. Dupuis, Chem. Phys. 102, 3312 (1995). (b) D.P. Chong, Chin. J. Phys. 30, 115(1992).

    CAS  Google Scholar 

  44. (a) Jr. T.H. Dunning, J. Chem. Phys. 90, 1007 (1989). (b) R.A. Kendall, Jr. T.H. Dunning, and R.J. Harrison, Chem. Phys. 96, 6796 (1992). (c) D.E. Feller, and the ECCE Team, the EMSL project, Pacific Northwest Laboratory (http://www.emsl.pnl.gov:2080) (1994).

    Article  CAS  Google Scholar 

  45. P.S. Bagus, and G. Pacchioni, Surf. Sci. 236, 233 (1990).

    Article  CAS  Google Scholar 

  46. D. Nordfors, H. Ågren, and K.V Mikkelsen, Chem. Phys. 164, 173 (1992).

    Article  CAS  Google Scholar 

  47. N.D. Land, and W. Kohn, Phys. Rev. B, 1, 4555 (1970).

    Google Scholar 

  48. A.M. Bradshaw, and F.M. Hoffmann, Surf. Sci. 72, 513 (1978).

    Article  CAS  Google Scholar 

  49. K. Kunimatsu, J. Phys. Chem. 88, 2195 (1984).

    Article  CAS  Google Scholar 

  50. Jr. O’M. Bockris, M.A.V Devanathan and K. Muller, Proc. Roy. Soc. London Ser. A 274, 55 (1962).

    Google Scholar 

  51. K. Yoshioka, F. Kitamura, M. Takeda, M. Takahashi, and M. Ito, Surf. Sci. 227, 90 (1990).

    CAS  Google Scholar 

  52. B. Beden, A. Bewick, and C. Lamy, J. Electroanal. Chem. 148, 147 (1983).

    Article  CAS  Google Scholar 

  53. J.W. Russel, M. Severson, K. Scalon, J. Overend, and A. Bewick, J. Phys. Chem. 87, 293, (1983).

    Google Scholar 

  54. K. Kunimatsu, W.G. Golden, H. Seki, and M.R. Philpott, Langmuir 1, 245 (1985).

    Article  CAS  Google Scholar 

  55. K. Kunimatsu, H. Seki, W.G. Golden, J.G. Gordon II, and M.R. Philpott, Surf. Sci. 158, 596 (1985).

    Article  CAS  Google Scholar 

  56. J.D. Roth, S.C. Chang, and Michael J. Weaver, J. Electroanal. Chem. 288, 285 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Kluwer Academic Publishers

About this chapter

Cite this chapter

Bureau, C., Kranias, S., Crispin, X., Bredas, J.L. (2000). DFT Modeling of Stark-Tuning Effect: CO on Polarized Pd(100) as a Probe for Double-Layer Electrostatic Effects in Electrochemistry. In: Hernández-Laguna, A., Maruani, J., McWeeny, R., Wilson, S. (eds) Quantum Systems in Chemistry and Physics Volume 2. Progress in Theoretical Chemistry and Physics, vol 2/3. Springer, Dordrecht. https://doi.org/10.1007/0-306-48145-6_10

Download citation

  • DOI: https://doi.org/10.1007/0-306-48145-6_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5970-8

  • Online ISBN: 978-0-306-48145-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics