Skip to main content

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 52))

Abstract

An overview of the interactive methods for solving nonlinear multiple criteria decision making problems is given. In interactive methods, the decision maker progressively provides preference information so that the most satisfactory compromise can be found. The basic features of several methods are introduced and some theoretical results are provided. In addition, references to modifications and applications as well as to other methods are indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Agrell, B. J. Lence, and A. Stam. An interactive multicriteria decision model for multipurpose reservoir management: the Shellmouth reservoir. Journal of Multi-Criteria Decision Analysis, 7:61–86, 1998.

    Article  Google Scholar 

  2. Y. Aksoy, T. W. Butler, and E. D. Minor III. Comparative studies in interactive multiple objective mathematical programming. European Journal of Operational Research, 89:408–422, 1996.

    Article  Google Scholar 

  3. J. E. Al-alvani, B. F. Hobbs, and B. Malakooti. An interactive integrated multiobjective optimization approach for quasicon-cave/quasiconvex utility functions. In A. Goicoechea, L. Duckstein, and S. Zionts, editors, Multiple Criteria Decision Making: Proceedings of the Ninth International Conference: Theory and Applications in Business, Industry, and Government, pages 45–60. Springer-Verlag, New York, 1992.

    Google Scholar 

  4. C. H. Antunes, M. J. Alves, A. L. Silva, and J. N. Clímaco. An integrated MOLP method base package — A guided tour of TOMMIX. Computers & Operations Research, 19:609–625, 1992.

    Article  Google Scholar 

  5. C. H. Antunes, M. P. Melo, and J. N. Clímaco. On the integration of an interactive MOLP procedure base and expert system technique. European Journal of Operational Research, 61:135–144, 1992.

    Google Scholar 

  6. J.-P. Aubin and B. Näslund. An exterior branching algorithm. Working Paper 72-42, European Institute for Advanced Studies in Management, Brussels, 1972.

    Google Scholar 

  7. N. Baba, H. Takeda, and T. Miyake. Interactive multi-objective programming technique using random optimization method. International Journal of Systems Science, 19:151–159, 1988.

    MathSciNet  Google Scholar 

  8. J. F. Bard. A multiobjective methodology for selecting subsystem automation options. Management Science, 32:1628–1641, 1986.

    Google Scholar 

  9. R. Benayoun, J. de Montgolfier, J. Tergny, and O. Laritchev. Linear programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1:366–375, 1971.

    Article  Google Scholar 

  10. H. P. Benson and Y. Aksoy. Using efficient feasible directions in interactive multiple objective linear programming. Operations Research Letters, 10:203–209, 1991.

    MathSciNet  ADS  Google Scholar 

  11. E. Bischoff. Two empirical tests with approaches to multiple-criteria decision making. In M. Grauer, M. Thompson, and A. P. Wierzbicki, editors, Plural Rationality and Interactive Decision Processes, pages 344–347. Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

  12. E. Bischoff. Multi-objective decision analysis — The right objectives? In G. Fandel, M. Grauer, A. Kurzhanski, and A. P. Wierzbicki, editors, Large-Scale Modelling and Interactive Decision Analysis, pages 155–160. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  13. P. Bogetoft, Å. Hallefjord, and M. Kok. On the convergence of reference point methods in multiobjective programming. European Journal of Operational Research, 34:56–68, 1988.

    Article  MathSciNet  Google Scholar 

  14. K. Brockhoff. Experimental test of MCDM algorithms in a modular approach. European Journal of Operational Research, 22:159–166, 1985.

    Article  MATH  Google Scholar 

  15. J. T. Buchanan. Multiple objective mathematical programming: A review. New Zealand Operational Research, 14:1–27, 1986.

    MathSciNet  Google Scholar 

  16. J. T. Buchanan. An experimental evaluation of interactive MCDM methods and the decision making process. Journal of the Operational Research Society, 45:1050–1059, 1994.

    MATH  Google Scholar 

  17. J. T. Buchanan. A naïve approach for solving MCDM problems: The GUESS method. Journal of the Operational Research Society, 48:202–206, 1997.

    Article  MATH  Google Scholar 

  18. J. T. Buchanan and J. L. Corner. The effects of anchoring in interactive MCDM solution methods. Computers & Operations Research, 24:907–918, 1997.

    Article  Google Scholar 

  19. J. T. Buchanan and H. G. Daellenbach. A comparative evaluation of interactive solution methods for multiple objective decision models. European Journal of Operational Research, 29:353–359, 1987.

    Article  Google Scholar 

  20. Y. Censor. Pareto optimality in multiobjective problems. Applied Mathematics and Optimization, 4:41–59, 1977.

    MathSciNet  Google Scholar 

  21. V. Chankong and Y. Y. Haimes. The interactive surrogate worth trade-off (ISWT) method for multiobjective decision-making. In S. Zionts, editor, Multiple Criteria Problem Solving, pages 42–67. Springer-Verlag, Berlin, New York, 1978.

    Google Scholar 

  22. V. Chankong and Y. Y. Haimes. Multiobjective Decision Making Theory and Methodology. Elsevier Science Publishing Co., New York, 1983.

    Google Scholar 

  23. A. Charnes and W. W. Cooper. Management Models and Industrial Applications of Linear Programming, volume 1. John Wiley & Sons, New York, 1961.

    Google Scholar 

  24. A. Charnes and W. W. Cooper. Goal programming and multiple objective optimization; Part 1. European Journal of Operational Research, 1:39–54, 1977.

    Article  MathSciNet  Google Scholar 

  25. T. Chen and B.-I. Wang. An interactive method for multiobjective decision making. In A. Straszak, editor, Large Scale Systems: Theory and Applications 1983, pages 277–282. Pergamon Press, Oxford, 1984.

    Google Scholar 

  26. J. N. Clímaco and C. H. Antunes. Flexible method bases and man-machine interfaces as key features in interactive MOLP approaches. In P. Korhonen, A. Lewandowski, and J. Wallenius, editors, Multiple Criteria Decision Support, pages 207–216. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  27. J. N. Clímaco and C. H. Antunes. Man-machine interfacing in MCDA. In G. H. Tzeng, H. F. Wand, U. P. Wen, and P. L. Yu, editors, Multiple Criteria Decision Making — Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, pages 239–253. Springer-Verlag, New York, 1994.

    Google Scholar 

  28. J. N. Clímaco, C. H. Antunes, and M. J. Alves. From TRIMAP to SOMMIX — building effective interactive MOLP computational tools. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 285–296. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  29. H. W. Corley. A new scalar equivalence for Pareto optimization. IEEE Transactions on Automatic Control, 25:829–830, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. L. Corner and J. T. Buchanan. Experimental consideration of preference in decision making under certainty. Journal of Multi-Criteria Decision Analysis, 4:107–121, 1995.

    Google Scholar 

  31. J. L. Corner and J. T. Buchanan. Capturing decision maker preference: Experimental comparison of decision analysis and MCDM techniques. European Journal of Operational Research, 98:85–97, 1997.

    Article  Google Scholar 

  32. J. P. Costa and J. N. Clímaco. A multiple reference point parallel approach in MCDM. In G. H. Tzeng, H. F. Wand, U. P. Wen, and P. L. Yu, editors, Multiple Criteria Decision Making —Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, pages 255–263, Springer-Verlag, New York, 1994.

    Google Scholar 

  33. Y. Crama. Analysis of STEM-like solutions to multi-objective programming problems. In S. French, R. Hartley, L. C. Thomas, and D. J. White, editors, Multi-Objective Decision Making, pages 208–213. Academic Press, London, 1983.

    Google Scholar 

  34. K. Deb. Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons, Chichester, 2001.

    Google Scholar 

  35. A. Diaz. Interactive solution to multiobjective optimization problems. International Journal for Numerical Methods in Engineering, 24:1865–1877, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. S. Dyer. Interactive goal programming. Management Science, 19:62–70, 1972.

    MathSciNet  MATH  ADS  Google Scholar 

  37. J. S. Dyer. An empirical investigation of a man-machine interactive approach to the solution of the multiple criteria problem. In J. L. Cochrane and M. Zeleny, editors, Multiple Criteria Decision Making, pages 202–216. University of South Carolina Press. Columbia, South Carolina, 1973.

    Google Scholar 

  38. J. S. Dyer. A time-sharing computer program for the solution of the multiple criteria problem. Management Science, 19:1379–1383, 1973.

    MathSciNet  MATH  Google Scholar 

  39. J. S. Dyer and R. K. Sarin. Multicriteria decision making. In A. G. Holzman, editor, Mathematical Programming for Operations Researchers and Computer Scientists, pages 123–148. Marcel Dekker, New York, 1981.

    Google Scholar 

  40. M. Ehrgott. Multicriteria Optimization. Springer-Verlag, Berlin, Heidelberg, 2000.

    Google Scholar 

  41. H. A. Eschenauer, A. Osyczka, and E. Schäfer. Interactive multicriteria optimization in design process. In H. Eschenauer, J. Koski, and A. Osyczka, editors, Multicriteria Design Optimization Procedures and Applications, pages 71–114. Springer-Verlag, Berlin, Heidelberg, 1990.

    Google Scholar 

  42. H. A. Eschenauer, E. Schäfer, and H. Bernau. Application of interactive vector optimization methods with regard to problems in structural mechanics. In H. A. Eschenauer and G. Thierauf, editors, Discretization Methods and Structural Optimization — Procedures and Applications, pages 95–101. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  43. P. A. V. Ferreira and J. C. Geromel. An interactive projection method for multicriteria optimization problems. IEEE Transactions on Systems, Man, and Cybernetics, 20:596–605, 1990.

    Article  MathSciNet  Google Scholar 

  44. P. A. V. Ferreira and M. E. S. Machado. Solving multiple-objective problems in the objective space. Journal of Optimization Theory and Applications, 89:659–680, 1996.

    Article  MathSciNet  Google Scholar 

  45. P. C. Fishburn. Lexicographic orders, utilities and decision rules: A survey. Management Science, 20:1442–1471, 1974.

    MathSciNet  MATH  Google Scholar 

  46. T. L. Friesz. Multiobjective optimization in transportation: The case of equilibrium network design. In N. N. Morse, editor, Organizations: Multiple Agents with Multiple Criteria, pages 116–127. Springer-Verlag, Berlin, Heidelberg, 1981.

    Google Scholar 

  47. L. R. Gardiner and R. E. Steuer. Unified interactive multiple objective programming. European Journal of Operational Research, 74:391–406, 1994.

    Article  Google Scholar 

  48. L. R. Gardiner and R. E. Steuer. Unified interactive multiple objective programming: An open architecture for accommodating new procedures. Journal of the Operational Research Society, 45:1456–1466, 1994.

    Google Scholar 

  49. S. Gass and T, Saaty. The computational algorithm for the parametric objective function. Naval Research Logistics Quarterly, 2:39–45, 1955.

    MathSciNet  Google Scholar 

  50. A. M. Geoffrion, J. S. Dyer, and A. Feinberg. An interactive approach for multi-criterion optimization, with an application to the operation of an academic department. Management Science, 19:357–368, 1972.

    Google Scholar 

  51. M. Gershon and L. Duckstein. An algorithm for choosing of a multiobjective technique. In P. Hansen, editor, Essays and Surveys on Multiple Criteria Decision Making, pages 53–62. Springer-Verlag, Berlin, Heidelberg, 1983.

    Google Scholar 

  52. M. Gibson, J. J. Bernardo, C. Chung, and R. Badinelli. A comparison of interactive multiple-objective decision making procedures. Computers & Operations Research, 14:97–105, 1987.

    Article  Google Scholar 

  53. V. G. Gouljashki, L. M. Kirilov, S. C. Narula, and V. S. Vassilev. A reference direction interactive algorithm of the multiple objective nonlinear integer programming. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 308–317. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  54. J. Granat and M. Makowski. Interactive specification and analysis of aspiration-based preferences. European Journal of Operational Research, 122:469–485, 2000.

    Article  Google Scholar 

  55. M. Grauer, A. Lewandowski, and A. Wierzbicki. DIDASS — theory, implementation and experiences. In M. Grauer and A. P. Wierzbicki, editors, Interactive Decision Analysis, pages 22–30. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  56. Y. Y. Haimes. The surrogate worth trade-off (SWT) method and its extensions. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Application, pages 85–108. Springer-Verlag, Berlin, Heidelberg, 1980.

    Google Scholar 

  57. Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, 1:296–297, 1971.

    MathSciNet  Google Scholar 

  58. Y. Y. Haimes, K. Tarvainen, T. Shima, and J. Thadathil. Hierarchical Multiobjective Analysis of Large-Scale Systems. Hemisphere Publishing Corporation, New York, 1990.

    Google Scholar 

  59. W. A. Hall and Y. Y. Haimes. The surrogate worth trade-off method with multiple decision-makers. In M. Zeleny, editor, Multiple Criteria Decision Making Kyoto 1975, pages 207–233. Springer-Verlag, Berlin, Heidelberg, 1976.

    Google Scholar 

  60. Å. Hallefjord and K. Jörnsten. An entropy target-point approach to multiobjective programming. International Journal of Systems Science, 17:639–653, 1986.

    Google Scholar 

  61. T. Hemming. Some modifications of a large step gradient method for interactive multicriterion optimization. In N. N. Morse, editor, Organizations: Multiple Agents with Multiple Criteria, pages 128–139. Springer-Verlag, Berlin, Heidelberg, 1981.

    Google Scholar 

  62. B. F. Hobbs. What can we learn from experiments in multiobjective decision analysis? IEEE Transactions on Systems, Man, and Cybernetics, 16:384–394, 1986.

    Article  MathSciNet  Google Scholar 

  63. M. L. Hussein and F. S. A. El-Ghaffar. An interactive approach for vector optimization problems. European Journal of Operational Research, 89:185–192, 1996.

    Google Scholar 

  64. C.-L. Hwang and A. S. M. Masud. Multiple Objective Decision Making — Methods and Applications: A State-of-the-Art Survey. Springer-Verlag, Berlin, Heidelberg, 1979.

    Google Scholar 

  65. C.-L. Hwang and K. Yoon. Multiple Attribute Decision Making Methods and Applications: A State-of-the-Art Survey. Springer-Verlag, Berlin, Heidelberg, 1981.

    Google Scholar 

  66. J. P. Ignizio. Goal Programming and Extensions. Lexington Books B.C. Heath and Company, Lexington, 1976.

    Google Scholar 

  67. A. Jaszkiewicz and R. Slowiński. The light beam search — outranking based interactive procedure for multiple-objective mathematical programming. In P. M. Pardalos, Y. Siskos, and C. Zopounidis, editors, Advances in Multicriteria Analysis, pages 129–146. Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  68. A. Jaszkiewicz and R. Slowiński. The ‘light beam search’ approach — an overview of methodology and applications. European Journal of Operational Research, 113:300–314, 1999.

    Google Scholar 

  69. P. Jedrzejowicz and L. Rosicka. Multicriterial reliability optimization problem. Foundations of Control Engineering, 8:165–173, 1983.

    MathSciNet  Google Scholar 

  70. I. Kaliszewski. A modified weighted Tchebycheff metric for multiple objective programming. Computers & Operations Research, 14:315–323, 1987.

    Article  MathSciNet  MATH  Google Scholar 

  71. I. Kaliszewski and W. Michalowski. Searching for psychologically stable solutions of multiple criteria decision problems. European Journal of Operational Research, 118:549–562, 1999.

    Article  Google Scholar 

  72. I. Kaliszewski, W. Michalowski, and G. Kersten. A hybrid interactive technique for the MCDM problems. In M. H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision Making: A Volume in Honour of Stanley Zionts, pages 48–59. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  73. T. C. U. Kalu. An algorithm for systems welfare interactive goal programming modelling. European Journal of Operational Research, 116:508–529, 1999.

    Article  MATH  Google Scholar 

  74. R. L. Keeney and H. Raiffa. Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley & Sons, Inc., New York, London, Sydney, 1976.

    Google Scholar 

  75. S. H. Kim and T. Gal. A new interactive algorithm for multi-objective linear programming using maximally changeable dominance cone. European Journal of Operational Research, 64:126–137, 1993.

    Article  Google Scholar 

  76. L. M. Kirilov and V. S. Vassilev. A method for solving multiple objective linear programming problems. In J. Clímaco, editor, Multicriteria Analysis, pages 302–309. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  77. M. Kok. Scalarization and the interface with decision makers in interactive multi objective linear programming. In P. Serafini, editor, Mathematics of Multi Objective Optimization, pages 433–438. Springer-Verlag, Wien, New York, 1985.

    Google Scholar 

  78. M. Kok. The interface with decision makers and some experimental results in interactive multiple objective programming method. European Journal of Operational Research, 26:96–107, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  79. M. Kok and F. A. Lootsma. Pairwise-comparison methods in multiple objective programming, with applications in a long-term energy-planning model. European Journal of Operational Research, 22:44–55, 1985.

    Article  Google Scholar 

  80. M. M. Köksalan and H. Moskowitz. Solving the multiobjective decision making problem using a distance function. In G. H. Tzeng, H. F. Wand, U. P. Wen, and P. L. Yu, editors, Multiple Criteria Decision Making — Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, pages 101–107. Springer-Verlag, New York, 1994.

    Google Scholar 

  81. P. Korhonen. Reference direction approach to multiple objective linear programming: Historical overview. In M. H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision Making: A Volume in Honour of Stanley Zionts, pages 74–92. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  82. P. Korhonen and M. Halme. Using lexicographic parametric programming for searching a nondominated set in multiple objective linear programming. Journal of Multi-Criteria Decision Analysis, 5:291–300, 1996.

    Google Scholar 

  83. P. Korhonen and J. Laakso. A visual interactive method for solving the multiple-criteria problem. In M. Grauer and A. P. Wierzbicki, editors, Interactive Decision Analysis, pages 146–153. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  84. P. Korhonen and J. Laakso. On developing a visual interactive multiple criteria method — an outline. In Y. Y. Haimes and V. Chankong, editors, Decision Making with Multiple Objectives, pages 272–281. Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

  85. P. Korhonen and J. Laakso. Solving generalized goal programming problems using a visual interactive approach. European Journal of Operational Research, 26:355–363, 1986.

    Article  MathSciNet  Google Scholar 

  86. P. Korhonen and J. Laakso. A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24:277–287, 1986.

    MathSciNet  Google Scholar 

  87. P. Korhonen and S. C. Narula. An evolutionary approach to support decision making with linear decision models. Journal of Multi-Criteria Decision Analysis, 2:111–119, 1993.

    Google Scholar 

  88. P. Korhonen and J. Wallenius. A Pareto race. Naval Research Logistics, 35:615–623, 1988.

    Google Scholar 

  89. P. Korhonen and J. Wallenius. Observations regarding choice behaviour in interactive multiple criteria decision-making environments: An experimental investigation. In A. Lewandowski and I. Stanchev, editors, Methodology and Software for Interactive Decision Support, pages 163–170. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  90. P. Korhonen and J. Wallenius. VIG — a visual and dynamic decision support system for multiple objective linear programming. In B. Karpak and S. Zionts, editors, Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, pages 251–281. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  91. P. Korhonen and J. Wallenius. A multiple objective linear programming decision support system. Decision Support Systems, 6:243–251, 1990.

    Article  Google Scholar 

  92. O. I. Larichev, O. A. Polyakov, and A. O. Nikiforov. Multicriterion linear programming problems. Journal of Economic Psychology, 8:389–407, 1987.

    Article  Google Scholar 

  93. R. Lazimy. Interactive relaxation method for a broad class of integer and continuous nonlinear multiple criteria problems. Journal of Mathematical Analysis and Applications, 116:553–573, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  94. R. Lazimy. Solving multiple criteria problems by interactive decomposition. Mathematical Programming, 35:334–361, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  95. E. R. Lieberman. Soviet multi-objective mathematical programming methods: An overview. Management Science, 37:1147–1165, 1991.

    MATH  Google Scholar 

  96. G. V. Loganathan and H. D. Sherali. A convergent interactive cutting-plane algorithm for multiobjective optimization. Operations Research, 35:365–377, 1987.

    Article  MathSciNet  Google Scholar 

  97. A. V. Lotov. Computer-based support for planning and negotiation on environmental rehabilitation of water resource systems. In D. P. Loucks, editor, Restoration of Degraded Rivers: Challenges, Issues and Experiences, pages 417–445. Kluwer Academic Publishers, Dordrecht, 1998.

    Google Scholar 

  98. A. V. Lotov, V. A. Bushenkov, and O. L. Chernykh. Multicriteria DSS for river water-quality planning. Microcomputers in Civil Engineering, 12:57–67, 1997.

    Google Scholar 

  99. M. M. Mäkelä and P. Neittaanmäki. Nonsmooth Optimization: Analysis and Algorithms with Applications to Optimal Control. World Scientific Publishing Co., Singapore, 1992.

    Google Scholar 

  100. A. S. M. Masud and C. L. Hwang. Interactive sequential goal programming. Journal of the Operational Research Society, 32:391–400, 1981.

    MathSciNet  Google Scholar 

  101. A. S. M. Masud and X. Zheng. An algorithm for multiple-objective non-linear programming. Journal of the Operational Research Society, 40:895–906, 1989.

    Google Scholar 

  102. W. Michalowski. Evaluation of a multiple criteria interactive programming approach: An experiment. INFOR: Information Systems & Operational Research, 25:165–173, 1987.

    MATH  Google Scholar 

  103. W. Michalowski and T. Szapiro. A bi-reference procedure for interactive multiple criteria programming. Operations Research, 40:247–258, 1992.

    Google Scholar 

  104. K. Miettinen. On the Methodology of Multiobjective Optimization with Applications. PhD thesis, University of Jyväskylä, Department of Mathematics, 1994. Report 60.

    Google Scholar 

  105. K. Miettinen. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston, 1999.

    Google Scholar 

  106. K. Miettinen and M. M. Mäkelä. An interactive method for nons-mooth multiobjective optimization with an application to optimal control. Optimization Methods and Software, 2:31–44, 1993.

    Google Scholar 

  107. K. Miettinen and M. M. Mäkelä. A nondifferentiable multiple criteria optimization method applied to continuous casting process. In A. Fasano and M. Primicerio, editors, Proceedings of the Seventh European Conference on Mathematics in Industry, pages 255–262. B.G. Teubner, Stuttgart, 1994.

    Google Scholar 

  108. K. Miettinen and M. M. Mäkelä. Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization, 34:231–246, 1995.

    MathSciNet  Google Scholar 

  109. K. Miettinen and M. M. Mäkelä. Interactive method NIMBUS for nondifferentiable multiobjective optimization problems. In J. Clímaco, editor, Multicriteria Analysis, pages 310–319. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  110. K. Miettinen and M. M. Mäkelä. Interactive MCDM support system in the Internet. In T. Stewart and R. van den Honert, editors, Trends in Multicriteria Decision Making: Proceedings of the 13th International Conference on Multiple Criteria Decision Making, pages 419–428. Springer-Verlag, Berlin, 1998.

    Google Scholar 

  111. K. Miettinen and M. M. Mäkelä. Comparative evaluation of some interactive reference point-based methods for multi-objective optimisation. Journal of the Operational Research Society, 50:949–959, 1999.

    Google Scholar 

  112. K. Miettinen and M. M. Mäkelä. Interactive multiobjective optimization system WWW-NIMBUS on the Internet. Computers & Operations Research, 27:709–723, 2000.

    Article  Google Scholar 

  113. K. Miettinen, M. M. Mäkelä, and R. A. E. Mäkinen. Interactive multiobjective optimization system NIMBUS applied to non-smooth structural design problems. In J. Doležal and J. Fidler, editors, System Modelling and Optimization, Proceedings of the 17th IFIP Conference on System Modelling and Optimization, Prague, Czech Republic, pages 379–385. Chapman & Hall, London, 1996.

    Google Scholar 

  114. K. Miettinen, M. M. Mäkelä, and T. Männikkä. Optimal control of continuous casting by nondifferentiable multiobjective optimization. Computational Optimization and Applications, 11:177–194, 1998.

    Article  MathSciNet  Google Scholar 

  115. K. Mitani and H. Nakayama. A multiobjective diet planning support system using the satisficing trade-off method. Journal of Multi-Criteria Decision Analysis, 6:131–139, 1997.

    Article  Google Scholar 

  116. U. Mocci and L. Primicerio. Ring network design: An MCDM approach. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 491–500. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  117. C. Mohan and H. T. Nguyen. Reference direction interactive method for solving multiobjective fuzzy programming problems. European Journal of Operational Research, 107:599–613, 1998.

    Article  Google Scholar 

  118. M. A. Moldavskiy. Singling out a set of undominated solutions in continuous vector optimization problems. Soviet Automatic Control, 14:47–53, 1981.

    Google Scholar 

  119. D. E. Monarchi, C. C. Kisiel, and L. Duckstein. Interactive multiobjective programming in water resources: A case study. Water Resources Research, 9:837–850, 1973.

    Google Scholar 

  120. D. E. Monarchi, J. E. Weber, and L. Duckstein. An interactive multiple objective decision-making aid using nonlinear goal programming. In M. Zeleny, editor, Multiple Criteria Decision Making Kyoto 1975, pages 235–253. Springer-Verlag, Berlin, Heidelberg, 1976.

    Google Scholar 

  121. J. Mote, D. L. Olson, and M. A. Venkataramanan. A comparative multiobjective programming study. Mathematical and Computer Modelling, 10:719–729, 1988.

    Article  MathSciNet  Google Scholar 

  122. A. M’silti and P. Tolla. An interactive multiobjective nonlinear programming procedure. European Journal of Operational Research, 64:115–125, 1993.

    Google Scholar 

  123. H. Mukai. Algorithms for multicriterion optimization. IEEE Transactions on Automatic Control, 25:177–186, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  124. K. Musselman and J. Talavage. A tradeoff cut approach to multiple objective optimization. Operations Research, 28:1424–1435, 1980.

    MathSciNet  Google Scholar 

  125. H. Nakayama. On the components in interactive multiobjective programming methods. In M. Grauer, M. Thompson, and A. P. Wierzbicki, editors, Plural Rationality and Interactive Decision Processes, pages 234–247. Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

  126. H. Nakayama. Sensitivity and trade-off analysis in multiobjective programming. In A. Lewandowski and I. Stanchev, editors, Methodology and Software for Interactive Decision Support, pages 86–93. Springer-Verlag, Berlin, 1989.

    Google Scholar 

  127. H. Nakayama. Satisficing trade-off method for problems with multiple linear fractional objectives and its applications. In A. Lewandowski and V. Volkovich, editors, Multiobjective Problems of Mathematical Programming, pages 42–50. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  128. H. Nakayama. Trade-off analysis based upon parametric optimization. In P. Korhonen, A. Lewandowski, and J. Wallenius, editors, Multiple Criteria Decision Support, pages 42–52. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  129. H. Nakayama. Trade-off analysis using parametric optimization techniques. European Journal of Operational Research, 60:87–98, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  130. H. Nakayama. Engineering applications of multi-objective programming: Recent results. In G. H. Tzeng, H. F. Wand, U. P. Wen, and P. L. Yu, editors, Multiple Criteria Decision Making — Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, pages 369–378. Springer-Verlag, New York, 1994.

    Google Scholar 

  131. H. Nakayama. Aspiration level approach to interactive multiobjective programming and its applications. In P. M. Pardalos, Y. Siskos, and C. Zopounidis, editors, Advances in Multicriteria Analysis, pages 147–174. Kluwer Academic Publishers, Dordrecht, 1995.

    Google Scholar 

  132. H. Nakayama and K. Furukawa. Satisficing trade-off method with an application to multiobjective structural design. Large Scale Systems, 8:47–57, 1985.

    Google Scholar 

  133. H. Nakayama, K. Kaneshige, S. Takemoto, and Y. Watada. An application of a multi-objective programming technique to construction accuracy control of cable-stayed bridges. European Journal of Operational Research, 87:731–738, 1995.

    Article  Google Scholar 

  134. H. Nakayama, K. Kaneshige, S. Takemoto, and Y. Watada. A construction accuracy control system of cable stayed bridge using a multi-objective programming technique. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 501–509. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  135. H. Nakayama, J. Nomura, K. Sawada, and R. Nakajima. An application of satisficing trade-off method to a blending problem of industrial materials. In G. Fandel, M. Grauer, A. Kurzhanski, and A. P. Wierzbicki, editors, Large-Scale Modelling and Interactive Decision Analysis, pages 303–313. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  136. H. Nakayama and Y. Sawaragi. Satisficing trade-off method for multiobjective programming. In M. Grauer and A. P. Wierzbicki, editors, Interactive Decision Analysis, pages 113–122. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  137. H. Nakayama, T. Tanino, and Y. Sawaragi. An interactive optimization method in multicriteria decisionmaking. IEEE Transactions on Systems, Man, and Cybernetics, 10:163–169, 1980.

    MathSciNet  Google Scholar 

  138. S. C. Narula, L. Kirilov, and V. Vassilev. An interactive algorithm for solving multiple objective nonlinear programming problems. In G. H. Tzeng, H. F. Wand, U. P. Wen, and P. L. Yu, editors, Multiple Criteria Decision Making — Proceedings of the Tenth International Conference: Expand and Enrich the Domains of Thinking and Application, pages 119–127. Springer-Verlag, New York, 1994.

    Google Scholar 

  139. S. C. Narula, L. Kirilov, and V. Vassilev. Reference direction approach for solving multiple objective nonlinear programming problems. IEEE Transactions on Systems, Man, and Cybernetics, 24:804–806, 1994.

    Article  MathSciNet  Google Scholar 

  140. S. C. Narula and H. R. Weistroffer. Algorithms for multi-objective nonlinear programming problems: An overview. In A. G. Lockett and G. Islei, editors, Improving Decision Making in Organisations, pages 434–443. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  141. S. C. Narula and H. R. Weistroffer. A flexible method for nonlinear multicriteria decisionmaking problems. IEEE Transactions on Systems, Man, and Cybernetics, 19:883–887, 1989.

    Article  MathSciNet  Google Scholar 

  142. P. Nijkamp and J. Spronk. Interactive multiple goal programming: An evaluation and some results. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Applications, pages 278–293. Springer-Verlag, Berlin, Heidelberg, 1980.

    Google Scholar 

  143. W. Ogryczak. Preemptive reference point method. In J. Clímaco, editor, Multicriteria Analysis, pages 156–167. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  144. M. Olbrisch. The interactive reference point approach as a solution concept for econometric decision models. In M. J. Beckmann, K.-W. Gaede, K. Ritter, and H. Schneeweiss, editors, X. Symposium on Operations Research, Part 1, Sections 1–5, pages 611–619. Verlag Anton Hain Meisenheim GmbH, Königstein/Ts., 1986.

    Google Scholar 

  145. D. L. Olson. Review of empirical studies in multiobjective mathematical programming: Subject reflection of nonlinear utility and learning. Decision Sciences, 23:1–20, 1992.

    Google Scholar 

  146. D. L. Olson. Tchebycheff norms in multi-objective linear programming. Mathematical and Computer Modelling, 17:113–124, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  147. K. R. Oppenheimer. A proxy approach to multi-attribute decision making. Management Science, 24:675–689, 1978.

    MATH  Google Scholar 

  148. A. Osyczka and S. Kundu. A new method to solve generalized multicriteria optimization problems using the simple genetic algorithm. Structural Optimization, 10:94–99, 1995.

    Article  Google Scholar 

  149. R. Ramesh, M. H. Karwan, and S. Zionts. Theory of convex cones in multicriteria decision making. Annals of Operations Research, 16:131–147, 1988.

    MathSciNet  Google Scholar 

  150. R. Ramesh, M. H. Karwan, and S. Zionts. Interactive multicriteria linear programming: An extension of the method of Zionts and Wallenius. Naval Research Logistics, 36:321–335, 1989.

    MathSciNet  Google Scholar 

  151. R. Ramesh, M. H. Karwan, and S. Zionts. Preference structure representation using convex cones in multicriteria integer programming. Management Science, 35:1092–1105, 1989.

    MathSciNet  Google Scholar 

  152. G. R. Reeves and J. J. Gonzalez. A comparison of two interactive MCDM procedures. European Journal of Operational Research, 41:203–209, 1989.

    Article  Google Scholar 

  153. G. R. Reeves and K. R. MacLeod. Robustness of the interactive weighted Tchebycheff procedure to inaccurate preference information. Journal of Multi-Criteria Decision Analysis, 8:128–132, 1999.

    Article  Google Scholar 

  154. P. Rietveld. Multiple Objective Decision Methods and Regional Planning. North-Holland Publishing Company, Amsterdam, 1980.

    Google Scholar 

  155. C. Romero. Handbook of Critical Issues in Goal Programming. Pergamon Press, Oxford, 1991.

    Google Scholar 

  156. C. Romero. Extended lexicographic goal programming: a unifying approach. Omega, 29:63–71, 2001.

    Article  Google Scholar 

  157. R. E. Rosenthal. Principles of multiobjective optimization. Decision Sciences, 16:133–152, 1985.

    Google Scholar 

  158. E. E. Rosinger. Interactive algorithm for multiobjective optimization. Journal of Optimization Theory and Applications, 35:339–365, 1981. Errata Corrige in Journal of Optimization Theory and Applications, 38:147–148, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  159. A. Roy and P. Mackin. Multicriteria optimization (linear and nonlinear) using proxy value functions. In P. Korhonen, A. Lewandowski, and J. Wallenius, editors, Multiple Criteria Decision Support, pages 128–134. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  160. A. Roy and J. Wallenius. Nonlinear multiobjective optimization: An algorithm and some theory. Mathematical Programming, 55:235–249, 1992.

    Article  MathSciNet  Google Scholar 

  161. B. Roy. The outranking approach and the foundations of ELEC-TRE methods. In C. A. Bana e Costa, editor, Readings in Multiple Criteria Decision Aid, pages 155–183. Springer-Verlag, Berlin, Heidelberg, 1990.

    Google Scholar 

  162. S. Sadagopan and A. Ravindran. Interactive algorithms for multiple criteria nonlinear programming problems. European Journal of Operational Research, 25:247–257, 1986.

    Article  MathSciNet  Google Scholar 

  163. M. Sakawa. Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9:386–396, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  164. M. Sakawa and K. Yauchi. An interactive fuzzy satisficing method for multiobjective nonconvex programming problems through floating point genetic algorithms. European Journal of Operational Research, 117:113–124, 1999.

    Article  Google Scholar 

  165. Y. Sawaragi, H. Nakayama, and T. Tanino. Theory of Multiobjective Optimization. Academic Press, Inc., Orlando, Florida, 1985.

    Google Scholar 

  166. W. S. Shin and A. Ravindran. Interactive multiple objective optimization: Survey I — continuous case. Computers & Operations Research, 18:97–114, 1991.

    Article  MathSciNet  Google Scholar 

  167. J. Silverman, R. E. Steuer, and A. W. Whisman. A multi-period, multiple criteria optimization system for manpower planning. European Journal of Operational Research, 34:160–170, 1988.

    Article  MathSciNet  Google Scholar 

  168. A. M. J. Skulimowski. Decision Support Systems Based on Reference Sets. Wydawnictwa AGH, Kraków, 1996.

    Google Scholar 

  169. R. Slowinski. Interactive multiobjective optimization based on ordinal regression. In A. Lewandowski and V. Volkovich, editors, Multiobjective Problems of Mathematical Programming, pages 93–100. Springer-Verlag, Berlin, 1991.

    Google Scholar 

  170. A. Song and W.-M. Cheng. A method for multihuman and multi-criteria decision making. In A. Sydow, S. G. Tzafestas, and R. Vichnevetsky, editors, Systems Analysis and Simulation 1988 I: Theory and Foundations, pages 213–216. Akademie-Verlag, Berlin, 1988.

    Google Scholar 

  171. J. Spronk. Interactive multifactorial planning: State of the art. In C. A. Bana e Costa, editor, Readings in Multiple Criteria Decision Aid, pages 512–534. Springer-Verlag, Berlin, Heidelberg, 1990.

    Google Scholar 

  172. A. Stam, M. Kuula, and H. Cesar. Transboundary air pollution in Europe: An interactive multicriteria tradeoff analysis. European Journal of Operational Research, 56:263–277, 1992.

    Article  Google Scholar 

  173. R. B. Statnikov. Multicriteria Design: Optimization and Identification. Kluwer Academic Publishers, Dordrecht, 1999.

    Google Scholar 

  174. R. B. Statnikov and J. Matusov. Use of pT-nets for the approximation of the Edgeworth-Pareto set in multicriteria optimization. Journal of Optimization Theory and Applications, 91:543–560, 1996.

    Article  MathSciNet  Google Scholar 

  175. R. E. Steuer. Multiple Criteria Optimization: Theory, Computation, and Applications. John Wiley & Sons, New York, 1986.

    Google Scholar 

  176. R. E. Steuer. The Tchebycheff procedure of interactive multiple objective programming. In B. Karpak and S. Zionts, editors, Multiple Criteria Decision Making and Risk Analysis Using Microcomputers, pages 235–249. Springer-Verlag, Berlin, Heidelberg, 1989.

    Google Scholar 

  177. R. E. Steuer. Implementing the Tchebycheff method in a spreadsheet. In M. H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision Making: A Volume in Honour of Stanley Zionts, pages 93–103. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  178. R. E. Steuer and E.-U. Choo. An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26:326–344, 1983.

    MathSciNet  Google Scholar 

  179. R. E. Steuer and L. R. Gardiner. Interactive multiple objective programming: Concepts, current status, and future directions. In C. A. Bana e Costa, editor, Readings in Multiple Criteria Decision Aid, pages 413–444. Springer-Verlag, Berlin, Heidelberg, 1990.

    Google Scholar 

  180. R. E. Steuer and L. R. Gardiner. On the computational testing of procedures for interactive multiple objective linear programming. In G. Fandel and H. Gehring, editors, Operations Research, pages 121–131. Springer-Verlag, Berlin, Heidelberg, 1991.

    Google Scholar 

  181. R. E. Steuer, J. Silverman, and A. W. Whisman. A combined Tchebycheff/aspiration criterion vector interactive multiobjective programming procedure. Management Science, 39:1255–1260, 1993.

    Google Scholar 

  182. R. E. Steuer and M. Sun. The parameter space investigation method of multiple objective nonlinear programming: A computational investigation. Operations Research, 43:641–648, 1995.

    MathSciNet  Google Scholar 

  183. R. E. Steuer and A. W. Whisman. Toward the consolidation of interactive multiple objective programming procedures. In G. Fandel, M. Grauer, A. Kurzhanski, and A. P. Wierzbicki, editors, Large-Scale Modelling and Interactive Decision Analysis, pages 232–241. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  184. T. J. Stewart. A critical survey on the status of multiple criteria decision making theory and practice. Omega, 20:569–586, 1992.

    Article  Google Scholar 

  185. M. Sun, A. Stam, and R. E. Steuer. Solving multiple objective programming problems using feed-forward artificial neural networks: The interactive FFANN procedure. Management Science, 42:835–849, 1996.

    Google Scholar 

  186. M. Sun, A. Stam, and R. E. Steuer. Interactive multiple objective programming using Tchebycheff programs and artificial neural networks. Computers & Operations Research, 27:601–620, 2000.

    Article  Google Scholar 

  187. T. Sunaga, M. A. Mazeed, and E. Kondo. A penalty function formulation for interactive multiobjective programming problems. In M. Iri and K. Yajima, editors, System Modelling and Optimization, pages 221–230. Springer-Verlag, Berlin, 1988.

    Google Scholar 

  188. M. T. Tabucanon. Multiple Criteria Decision Making in Industry. Elsevier Science Publishers B. V., Amsterdam, 1988.

    Google Scholar 

  189. M. Tamiz and D. F. Jones. A general interactive goal programming algorithm. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 433–444. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  190. C. G. Tapia and B. A. Murtagh. The use of preference criteria in interactive multiobjective mathematical programming. Asia-Pacific Journal of Operational Research, 6:131–147, 1989.

    MathSciNet  Google Scholar 

  191. C. G. Tapia and B. A. Murtagh. A Markovian process in interactive multiobjective decision-making. European Journal of Operational Research, 57:421–428, 1992.

    Article  Google Scholar 

  192. K. Tarvainen. On the implementation of the interactive surrogate worth trade-off (ISWT) method. In M. Grauer and A. P. Wierzbicki, editors, Interactive Decision Analysis, pages 154–161, Berlin, Heidelberg, 1984. Springer-Verlag.

    Google Scholar 

  193. A. Tecle and L. Duckstein. A procedure for selecting MCDM techniques for forest resources management. In A. Goicoechea, L. Duckstein, and S. Zionts, editors, Multiple Criteria Decision Making: Proceedings of the Ninth International Conference: Theory and Applications in Business, Industry, and Government, pages 19–32. Springer-Verlag, New York, 1992.

    Google Scholar 

  194. J. Teghem Jr., C. Delhaye, and P. L. Kunsch. An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12:1311–1320, 1989.

    Google Scholar 

  195. A. Udink ten Cate. On the determination of the optimal temperature for the growth of an early cucumber crop in a greenhouse. In M. Grauer, M. Thompson, and A. P. Wierzbicki, editors, Plural Rationality and Interactive Decision Processes, pages 311–318. Springer-Verlag, Berlin, Heidelberg, 1985.

    Google Scholar 

  196. D. Vanderpooten. Multiobjective programming: Basic concepts and approaches. In R. Slowinski and J. Teghem, editors, Stochastic versus Fuzzy Approaches to Multiobjective Mathematical Programming under Uncertainty, pages 7–22. Kluwer Academic Publishers, Dordrecht, 1990.

    Google Scholar 

  197. D. Vanderpooten and P. Vincke. Description and analysis of some representative interactive multicriteria procedures. Mathematical and Computer Modelling, 12:1221–1238, 1989.

    Google Scholar 

  198. R. Vetschera. Feedback-oriented group decision support in a reference point framework. In A. Lewandowski and V. Volkovich, editors, Multiobjective Problems of Mathematical Programming, pages 309–314. Springer-Verlag, 1991.

    Google Scholar 

  199. R. Vetschera. A note on scalarizing functions under changing sets of criteria. European Journal of Operational Research, 52:113–118, 1991.

    Article  MATH  Google Scholar 

  200. P. Vincke. Multicriteria Decision-Aid. John Wiley & Sons, Inc., Chichester, 1992.

    Google Scholar 

  201. J. Wallenius. Comparative evaluation of some interactive approaches to multicriterion optimization. Management Science, 21:1387–1396, 1975.

    MATH  Google Scholar 

  202. J. Wallenius and S. Zionts. A research project on multicriteria decision making. In D. E. Bell, R. Keeney, and H. Raiffa, editors, Conflicting Objectives in Decision, pages 76–96. John Wiley & Sons, Inc., New York, NY, 1977.

    Google Scholar 

  203. S. Wang. Algorithms for multiobjective and nonsmooth optimization. In P. Kleinschmidt, F. J. Radermacher, W. Schweitzer, and H. Wildermann, editors, Methods of Operations Research 58, pages 131–142. Athenäum Verlag, Frankfurt am Main, 1989.

    Google Scholar 

  204. S. Wang. An interactive method for multicriteria decision making. In K. H. Phua, C. M. Wang, W. Y. Yeong, T. Y. Leong, H. T. Loh, K. C. Tan, and F. S. Chou, editors, Optimization: Techniques and Applications, Proceedings of the International Conference (ICOTA), volume 1, pages 307–316. World Scientific Publishing Co., River Edge, 1992.

    Google Scholar 

  205. H. R. Weistroffer. Multiple criteria decision making with interactive over-achievement programming. Operations Research Letters, 1:241–245, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  206. H. R. Weistroffer. An interactive goal-programming method for non-linear multiple-criteria decision-making problems. Computers & Operations Research, 10:311–320, 1983.

    Article  MathSciNet  Google Scholar 

  207. H. R. Weistroffer. A combined over-and under-achievement programming approach to multiple objective decision-making. Large Scale Systems, 7:47–58, 1984.

    MathSciNet  MATH  Google Scholar 

  208. H. R. Weistroffer. A flexible model for multi-objective optimization. In J. Jahn and W. Krabs, editors, Recent Advances and Historical Developments of Vector Optimization, pages 311–316. Springer-Verlag, Berlin, Heidelberg, 1987.

    Google Scholar 

  209. R. E. Wendell and D. N. Lee. Efficiency in multiple objective optimization problems. Mathematical Programming, 12:406–414, 1977.

    Article  MathSciNet  Google Scholar 

  210. D. J. White. A selection of multi-objective interactive programming methods. In S. French, R. Hartley, L. C. Thomas, and D. J. White, editors, Multi-Objective Decision Making, pages 99–126. Academic Press, London, 1983.

    Google Scholar 

  211. A. P. Wierzbicki. The use of reference objectives in multiobjective optimization. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making Theory and Applications, pages 468–486. Springer-Verlag, Berlin, Heidelberg, 1980.

    Google Scholar 

  212. A. P. Wierzbicki. A mathematical basis for satisficing decision making. Mathematical Modelling, 3:391–405, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  213. A. P. Wierzbicki. A methodological approach to comparing parametric characterizations of efficient solutions. In G. Fandel, M. Grauer, A. Kurzhanski, and A. P. Wierzbicki, editors, Large-Scale Modelling and Interactive Decision Analysis, pages 27–45. Springer-Verlag, Berlin, 1986.

    Google Scholar 

  214. A. P. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems. OR Spektrum, 8:73–87, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  215. A. P. Wierzbicki. Convergence of interactive procedures of multiobjective optimization and decision support. In M. H. Karwan, J. Spronk, and J. Wallenius, editors, Essays in Decision Making: A Volume in Honour of Stanley Zionts, pages 19–47. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  216. A. P. Wierzbicki. Reference point approaches. In T. Gal, T. J. Stewart, and T. Hanne, editors, Multicriteria Decision Making: Advances in MCDM Models, Algorithms, Theory, and Applications, Chapter 9. Kluwer Academic Publishers, Boston, 1999.

    Google Scholar 

  217. A. P. Wierzbicki and J. Granat. Multi-objective modeling for engineering application in decision support. In G. Fandel and T. Gal, editors, Multiple Criteria Decision Making: Proceedings of the Twelfth International Conference, Hagen (Germany), pages 529–540. Springer-Verlag, Berlin, Heidelberg, 1997.

    Google Scholar 

  218. A. P. Wierzbicki and J. Granat. Multi-objective modeling for engineering applications: DIDASN++ system. European Journal of Operational Research, 113:372–389, 1999.

    Article  Google Scholar 

  219. H.-M. Winkels and M. Meika. An integration of efficiency projections into the Geoffrion approach for multiobjective linear programming. European Journal of Operational Research, 16:113–127, 1984.

    Article  MathSciNet  Google Scholar 

  220. E. Wood, N. P. Greis, and R. E. Steuer. Linear and nonlinear applications of the Tchebycheff metric to the multi criteria water allocation problem. In S. Rinaldi, editor, Environmental Systems Analysis and Management, pages 363–376. North-Holland Publishing Company, Amsterdam, New York, 1982.

    Google Scholar 

  221. J.-B. Yang. Gradient projection and local region search for multi-objective optimization. European Journal of Operational Research, 112:432–459, 1999.

    Article  MATH  Google Scholar 

  222. J.-B. Yang, C. Chen, and Z.-J. Zhang. The interactive step trade-off method (ISTM) for multiobjective optimization. IEEE Transactions on Systems, Man, and Cybernetics, 20:688–695, 1990.

    Article  MathSciNet  Google Scholar 

  223. J.-B. Yang and P. Sen. Preference modelling by estimating local utility functions for multiobjective optimization. European Journal of Operational Research, 95:115–138, 1996.

    Article  Google Scholar 

  224. P. L. Yu. A class of solutions for group decision problems. Management Science, 19:936–946, 1973.

    MATH  Google Scholar 

  225. P. L. Yu. Multiple-Criteria Decision Making Concepts, Techniques, and Extensions. Plenum Press, New York, 1985.

    Google Scholar 

  226. L. Zadeh. Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8:59–60, 1963.

    Article  Google Scholar 

  227. M. Zeleny. Compromise programming. In J. L. Cochrane and M. Zeleny, editors, Multiple Criteria Decision Making, pages 262–301. University of South Carolina Press, Columbia, South Carolina, 1973.

    Google Scholar 

  228. M. Zeleny. Linear Multiobjective Programming. Springer-Verlag, Berlin, Heidelberg, 1974.

    Google Scholar 

  229. M. Zeleny. The theory of displaced ideal. In M. Zeleny, editor, Multiple Criteria Decision Making Kyoto 1975, pages 153–206. Springer-Verlag, Berlin, Heidelberg, 1976.

    Google Scholar 

  230. S. Zionts and J. Wallenius. An interactive programming method for solving the multiple criteria problem. Management Science, 22:652–663, 1976.

    Google Scholar 

  231. S. Zionts and J. Wallenius. An interactive multiple objective linear programming method for a class of underlying nonlinear utility functions. Management Science, 29:519–529, 1983.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Miettinen, K. (2003). Interactive Nonlinear Multiobjective Procedures. In: Ehrgott, M., Gandibleux, X. (eds) Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research & Management Science, vol 52. Springer, Boston, MA. https://doi.org/10.1007/0-306-48107-3_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-48107-3_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4020-7128-7

  • Online ISBN: 978-0-306-48107-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics