Skip to main content

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 6))

Summary

Cyanobacteria, a large group of microorganisms in the prokaryotic kingdom, perform oxygenic photosynthesis using two photosystems that resemble those in the chloroplasts of eukaryotic plants. Cyanobacteria contain three glycolipids, monogalactosyldiacylglycerol, digalactosyldiacylglycerol and sulfoquinovosyldiacylglycerol, and a phospholipid, phosphatidylglycerol, as major glycerolipids. The lipid composition of most cyanobacteria is similar to that of the inner envelope membranes and thylakoid membranes of the chloroplasts of higher plants, and it is different from that of the membranes of most bacteria, which contain phospholipids as major glycerolipids. Cyanobacteria can be classified into four groups with respect to the composition of the fatty acids of their glycerolipids. Since some strains, such as Synechocystis sp. PCC 6803 and Synechococcus sp. PCC 7942, take up exogenous DNA autonomously, they are naturally transformable. Thus, molecular biological techniques, for example, transformation and gene targeting, can easily be applied to these strains and they provide useful systems for studying the molecular aspects of the biosynthesis of lipids and fatty acids, as well as of the functions of membrane lipids in oxygenic photosynthesis. Furthermore, since cyanobacteria respond to changes in a variety of environmental conditions by altering their membrane lipids, they are also useful systems for studying the acclimation of the photosynthetic machinery to environmental factors such as temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Al’Araji ZT and Walton TJ (1980) Fatty acid biosynthesis in cell free preparations of Anabaena cylindrica. In: Mazliak P, Benveniste P, Costes C and Douce R (eds) Biogenesis and Function of Plant Lipids, pp 259–262. Elsevier/North-Holland Biochemical Press, Amsterdam

    Google Scholar 

  • Al-Hasan RH, Ali AM and Radwan SS (1989) Effects of light and dark incubation on the lipid and fatty acid composition of marine cyanobacteria. J Gen Microbiol 135: 865–872

    CAS  Google Scholar 

  • Avelange-Macherel M-H, Macherel D, Wada H and Murata N (1995) Site-directed mutagenesis of histidine residues in the Δ12 acyl-lipid desaturase of Synechocystis. FEBS Lett 361: 111–114

    Article  CAS  PubMed  Google Scholar 

  • Benning C (1998) Membrane lipids in anoxygenic photosynthetic bacteria. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 83–101, Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Block MA, Dome A-J, Joyard J and Douce R (1983) Preparation and characterization of membrane fractions enriched in outer and inner envelope membranes from spinach chloroplasts. II. Biochemical characterization. J Biol Chem 258:13281–13286

    CAS  PubMed  Google Scholar 

  • Chapman D (1975) Phase transition and fluidity characteristics of lipids and cell membranes. Quart Rev Biophys 8: 185–235

    CAS  Google Scholar 

  • Chen HH, Wickrema A and Jaworski JG (1988) Acyl-acyl carrier protein: Lysomonogalactosyldiacylglycerol acyltransferase from the cyanobacterium Anabaena variabilis. Biochim Biophys Acta 963: 493–500

    CAS  PubMed  Google Scholar 

  • Cronan Jr JE and Rock CA (1987) Biosynthesis of membrane lipids. In: Ingraham JL, Low KB, Magasanik B and Schaechter M (eds) Escherichia coli and Salmonella typhimurium, Vol 1, pp 474–479. American Society for Microbiology, Washington, DC

    Google Scholar 

  • Feige GB, Heinz E, Wrage K, Cochems N and Ponzelar E (1980) Discovery of a new glyceroglycolipid in blue-green algae and its role in galactolipid synthesis. In: Mazliak P, Benveniste P, Costes C and Douce R (eds) Biogenesis and Function of Plant Lipids, pp 135–140. Elsevier/North-Holland Biochemical Press, Amsterdam

    Google Scholar 

  • Fork DC, Murata N and Sato N (1979) Effect of growth temperature on the lipid and fatty acid composition, and the dependence on temperature of light-induced redox reactions of cytochrome f and of energy redistribution in the thermophilic blue-green alga Synechococcus lividus. Plant Physiol 63:524–530

    CAS  Google Scholar 

  • Froehlich JE, Poorman R, Reardon E, Barnum SR and Jaworski JG (1990) Purification and characterization of acyl carrier protein from two cyanobacteria species. Eur J Biochem 193: 817–825

    Article  CAS  PubMed  Google Scholar 

  • Fujii DK and Fulco AJ (1977) Biosynthesis of unsaturated fatty acids by Bacilli. Hyperinduction and modulation of desaturase synthesis. J Biol Chem 252: 3660–3670

    CAS  PubMed  Google Scholar 

  • Gantt E and Conti SF (1969) Ultrastructure of blue-green algae. J Bacteriol 97: 1486–1493

    CAS  PubMed  Google Scholar 

  • Golden SS, Brusslan J and Haselkorn R (1987) Genetic engineering of the Cyanobacterial chromosome. Meth Enzymol 153:215–231

    CAS  PubMed  Google Scholar 

  • Gombos Z and Murata N (1998) Genetically engineered modulation of the unsaturation of glycerolipids and its consequences in tolerance of photosynthesis to temperature stresses. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 249–262. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gombos Z, Kis M, Pali T and Vigh L (1987) Nitrate starvation induces homeoviscous regulation of lipids in the cell envelope of the blue-green alga, Anacystis nidulans. Eur J Biochem 165: 461–465

    Article  CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H and Murata N (1992) Unsaturation of fatty acids in membrane lipids enhances tolerance of the cyanobacterium Synechocystis PCC6803 to low temperature photoinhibition. Proc Natl Acad Sci USA 89: 9959–9963

    CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H and Murata N (1994) The recovery of photosynthesis from low-temperature photoinhibition is accelerated by the unsaturation of membrane lipids: A mechanism of chilling tolerance. Proc Natl Acad Sci USA 91: 8787–8791

    CAS  PubMed  Google Scholar 

  • Gombos Z, Wada H, Varkonyi Z, Los D and Murata N (1996) Characterization of the Fad12 mutant of Synechocystis that is defective in Δ12 acyl-lipid desaturase activity. Biochim Biophys Acta 1299: 117–123

    PubMed  Google Scholar 

  • Green LS and Grossman AR (1988) Changes in sulfate transport characteristics and protein composition of Anacystis nidulans R2 during sulfur deprivation. J Bacteriol 170: 583–587

    CAS  PubMed  Google Scholar 

  • Harwood JL (1988) Fatty acid metabolism. Annu Rev Plant Physiol Plant Mol Biol 39: 101–138

    Article  CAS  Google Scholar 

  • Haselkorn R (1978) Heterocysts. Annu Rev Plant Physiol 29: 319–344

    Article  CAS  Google Scholar 

  • Higashi S and Murata N (1993) An in vivo study of substrate specificities of acyl-lipid desaturases and acyltransferases in lipid synthesis in Synechocystis PCC6803. Plant Physiol 102: 1275–1278

    CAS  PubMed  Google Scholar 

  • Hirayama O and Kishida T (1991) Temperature-induced changes in the lipid molecular species of a thermophilic cyanobacterium, Mastigocladus laminosus. Agric Biol Chem 55: 781–785

    CAS  Google Scholar 

  • Hitz WD, Carlson TJ, Booth Jr JR, Kinney AJ, Stecca KL and Yadav NS (1994) Cloning of a higher-plant plastid ω-3 fatty acid desaturase cDNA and its expression in a cyanobacterium. Plant Physiol 105:635–641

    Article  CAS  PubMed  Google Scholar 

  • Huflejt ME, Trémolières A, Pineau B, Lang JK, Hatheway J and Packer L (1990) Changes in membrane lipid composition during saline growth of the freshwater cyanobacterium Synechococcus 6311. Plant Physiol 94: 1512–1521

    CAS  PubMed  Google Scholar 

  • Jahnke LL, Lee B, Sweeney MJ and Klein HP (1989) Anaerobic biosynthesis of unsaturated fatty acids in the cyanobacterium, Oscillatoria limnetica. Arch Microbiol 152: 215–217

    Article  CAS  PubMed  Google Scholar 

  • Joyard J and Douce R (1998) Lipids in thylakoid and envelope membrane of higher plant chloroplasts. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 21–52. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Jürgens UJ and Weckesser J (1985) Carotenoid-containing outer membrane of Synechocystis sp. strain PCCvn6714. J Bacteriol 164:384–389

    PubMed  Google Scholar 

  • Kaestner KH, Ntambi JM, Kelly Jr TJ and Lane MD (1989) Differentiation-induced gene expression in 3T3-L1 preadipocytes. A second differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 264: 14755–14761

    CAS  PubMed  Google Scholar 

  • Kaneko T, Tanaka A, Sato S, Kotani H, Sazuka T, Miyajima N, Sugiura M and Tabata S (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803.I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res 2: 153–166

    CAS  PubMed  Google Scholar 

  • Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Mukai A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Yamada M, Yasuda M and Tabata S (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res 3: 109–136

    CAS  PubMed  Google Scholar 

  • Kaya K, Sano T, Watanabe MM, Shiraishi F and Ito H (1993) Thioic O-acid ester in sulfolipid isolated from freshwater picoplankton cyanobacterium, Synechococcus sp. Biochim Biophys Acta 1169: 39–45

    CAS  PubMed  Google Scholar 

  • Kenyon CN (1972) Fatty acid composition of unicellular strains of blue-green algae. J Bacteriol 109: 827–834

    CAS  PubMed  Google Scholar 

  • Kenyon CN, Rippka R and Stanier RY (1972) Fatty acid composition and physiological properties of some filamentous blue-green algae. Arch Mikrobiol 83: 216–236

    Article  CAS  PubMed  Google Scholar 

  • Khomutov G, Fry IV, Huflejt ME and Packer L (1990) Membrane lipid composition, fluidity, and surface charge changes in response to growth of the freshwater cyanobacterium Synechococcus 6311 under high salinity. Arch Biochem Biophys 277: 263–267

    Article  CAS  PubMed  Google Scholar 

  • Lechevalier H and Lechevalier MP (1988) Chemotaxonomic use of lipids — an overview. In: Ratledge C and Wilkinson SG (eds) Microbial Lipids, Vol 1, pp 869–902. Academic Press, San Diego

    Google Scholar 

  • Lem NW and Stumpf PK (1984) In vitro fatty acid synthesis and complex lipid metabolism in the cyanobacterium Anabaena variabilis. Plant Physiol 71: 134–138

    Google Scholar 

  • Los DA and Murata N (1994) Low-temperature induced accumulation of the desaturase gene transcript in Synechocystis PCC 6803 results from both acceleration of transcription and increase in mRNA stability. Russ J Plant Physiol 41:146–151

    Google Scholar 

  • Los DA, Horvath I, Vigh L and Murata N (1993)The temperature-dependent expression of the desaturase gene desA in Synechocystis PCC6803. FEBS Lett 318: 57–60

    Article  CAS  PubMed  Google Scholar 

  • Matsubara H and Wada K (1987) Soluble cytochromes and ferredoxin. Meth Enzymol 167: 387–410

    Google Scholar 

  • Molitor V, Trnka M, Erber W, Steffan I, Riviere M-E, Arrio B, Springer-Lederer H and Peschek GA (1990) Impact of salt adaptation on esterified fatty acids and cytochrome oxidase in plasma and thylakoid membranes from the cyanobacterium Anacystis nidulans. Arch Microbiol 154: 112–119

    Article  CAS  Google Scholar 

  • Murata N and Nishida I (1987) Lipids of blue-green algae (cyanobacteria). In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, pp 315–347. Academic Press, Orlando

    Google Scholar 

  • Murata N and Wada H (1995) Acyl-lipid desaturases and their importance in the tolerance and acclimatization to cold of cyanobacteria. Biochem J 308: 1–8

    CAS  PubMed  Google Scholar 

  • Murata N, Ono T and Sato N (1979) Lipid phase of membrane and chilling injury in the blue-green alga, Anacystis nidulans. In: Lyons JM, Graham D and Raison JK (eds) Low Temperature Stress in Crop Plants: The Role of the Membrane, pp 337–345. Academic Press, New York

    Google Scholar 

  • Murata N, Sato N, Omata T and Kuwabara T (1981) Separation and characterization of thylakoid and cell envelope of the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 22: 855–866

    CAS  Google Scholar 

  • Murata N, Wada H and Gombos Z (1992) Modes of fatty-acid desaturation in cyanobacteria. Plant Cell Physiol 33: 933–941

    CAS  Google Scholar 

  • Murata N, Deshnium P and Tasaka Y (1996) Biosynthesis of γ-linolenic acid in the cyanobacterium Spirulina platensis. In: Huang Y.-S. and Mills DE (eds) γ-Linolenic acid, pp 22–32. AOCS Press, Champaign, Illinois

    Google Scholar 

  • Mustardy L, Los DA, Gombos Z and Murata N (1996) Immunocytological localization of acyl-lipid desaturases in cyanobacterial cells: Evidence that both thylakoid membranes and cytoplasmic membranes are the sites of lipid desaturations. Proc Natl Acad Sci USA 93: 10524–10527

    Article  CAS  PubMed  Google Scholar 

  • Nichols BW (1973) Lipid composition and metabolism. In: Carr NG and Whitton BA (eds) The Biology of Blue-Green Algae, pp 144–161. University of California Press, Berkeley

    Google Scholar 

  • Nichols BW and Wood BJB (1968) New glycolipid specific to nitrogen-fixing blue-green algae. Nature 217: 767–768

    Google Scholar 

  • Ntambi JM, Buhrow SA, Kaestner KH, Christy RJ, Sivley E, Kelly Jr TJ and Lane MD (1988) Differentiation-induced gene expression in 3T3-L1 preadipocytes. Characterization of differentially expressed gene encoding stearoyl-CoA desaturase. J Biol Chem 263: 17291–17300

    CAS  PubMed  Google Scholar 

  • Ogawa T (1991) A gene homologous to the subunit-2 gene of NADH dehydrogenase is essential to inorganic carbon transport of Synechocystis PCC6803. Proc Natl Acad Sci USA 88: 4275–4279

    CAS  PubMed  Google Scholar 

  • Ohlrogge J (1987) Biochemistry of plant acyl carrier proteins. In: Stumpf PK. (ed) The Biochemistry of Plants, Vol 9, pp 137–157. Academic Press, New York

    Google Scholar 

  • Ohlrogge J and Browse J (1995) Lipid biosynthesis. Plant Cell 7: 957–970

    Article  CAS  PubMed  Google Scholar 

  • Okuley J, Lightner J, Feldmann K, Yadav N, Lark E and Browse J (1994) Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 6: 147–158

    Article  CAS  PubMed  Google Scholar 

  • Omata T and Murata N (1983) Isolation and characterization of the cytoplasmic membranes from the blue-green alga (cyanobacterium) Anacystis nidulans. Plant Cell Physiol 24: 1101–1112

    CAS  Google Scholar 

  • Omata T and Murata N (1984a) Isolation and characterization of three types of membrane from the cyanobacterium (blue-green alga) Synechocystis PCC 6714. Arch Microbiol 139: 113–116

    Article  CAS  Google Scholar 

  • Omata T and Murata N (1984b) Cytochromes and prenylquinones in preparations of cytoplasmic and thylakoid membranes from the cyanobacterium (blue-green alga) Anacystis nidulans. Biochim Biophys Acta 766: 395–402

    CAS  Google Scholar 

  • Omata T and Murata N (1985) Electron-transport reactions in cytoplasmic and thylakoid membranes prepared from the cyanobacteria (blue-green algae) Anacystis nidulans and Synechocystis PCC 6714. Biochim Biophys Acta 810: 354–361

    CAS  Google Scholar 

  • Omata T and Murata N (1986) Glucolipid synthesis activities in cytoplasmic and thylakoid membranes from the cyanobacterium Anacystis nidulans. Plant Cell Physiol 27: 485–490

    CAS  Google Scholar 

  • Omata T, Ohmori M, Arai N and Ogawa T (1989) Genetically engineered mutant of the cyanobacterium Synechococcus PCC 7942 defective in nitrate transport. Proc Natl Acad Sci USA 86:6612–6616

    CAS  Google Scholar 

  • Peschek GA, Hinterstoisser B, Wastyn M, Kuntner O, Pineau B, Missbichler A and Lang J (1989) Chlorophyll precursors in the plasma membrane of a cyanobacterium, Anacystis nidulans. J Biol Chem 264: 11827–11832

    CAS  PubMed  Google Scholar 

  • Piorreck M and Pohl P (1984) Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase. Phytochemistry 23: 217–223

    CAS  Google Scholar 

  • Quoc KP, Dubacq J-P, Justin A-M, Demandre C and Mazliak P (1993) Biosynthesis of eukaryotic lipid molecular species by the cyanobacterium Spirulina platensis. Biochim Biophys Acta 1168:94–99

    CAS  PubMed  Google Scholar 

  • Quoc KP, Dubacq J-P, Demandre C and Mazliak P (1994) Comparative effects of exogenous fatty acid supplementations on the lipids from the cyanobacterium Spirulina platensis. Plant Physiol Biochem 32: 501–509

    Google Scholar 

  • Quinn PJ and Williams WP (1983) The structural role of lipids in photosynthetic membranes. Biochim Biophys Acta 737:223–266

    CAS  Google Scholar 

  • Reddy AS, Nuccio ML, Gross LM and Thomas TL (1993) Isolation of a Δ6-desaturase gene from the cyanobacterium Synechocystis sp. strain PCC6803 by gain-of-function expression in Anabaena sp. strain PCC7120. Plant Mol Biol 27: 293–300

    Google Scholar 

  • Resch CM and Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J. Bacteriol 155:345–350

    CAS  PubMed  Google Scholar 

  • Ritter D and Yopp JH (1993) Plasma membrane lipid composition of the halophilic cyanobacterium Aphanothece halophytica. Arch Microbiol 159: 435–439

    Article  CAS  Google Scholar 

  • Russell NJ (1984) Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem Sci 9: 108–112

    Article  CAS  Google Scholar 

  • Sakamoto T, Wada H, Nishida I, Ohmori M and Murata N (1994a) Identification of conserved domains in the Δ12 desaturases of cyanobacteria. Plant Mol Biol 24: 643–650

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Wada H, Nishida I, Ohmori M, Murata N (1994b) Δ9 acyl-lipid desaturases of cyanobacteria. J Biol Chem 269: 25576–25580

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Los DA, Higashi S, Wada H, Nishida I, Ohmori M and Murata N (1994c) Cloning of ω3 desaturase from cyanobacteria and its use in altering the degree of membrane-lipid unsaturation. Plant Mol Biol 26: 249–263

    Article  CAS  PubMed  Google Scholar 

  • Sallal A-K., Ghannoum MA, Al-Hasan RH, Nimer NA and Radwan SS (1987) Lanosterol and diacylglycerophos-phocholines in lipids from whole cells and thylakoids of the cyanobacterium Chlorogloeopsis fritschii. Arch Microbiol 148: 1–7

    Article  CAS  Google Scholar 

  • Sato N (1994) Effect of exogenous glucose on the accumulation of monoglucosyl diacylglycerol in the cyanobacterium Synechocystis PCC 6803. Plant Physiol Biochem 32:121–126

    CAS  Google Scholar 

  • Sato N and Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis. The central role of diacylmonogalactosylglycerol in thermoadaptation. Biochim Biophys Acta 619: 353–366

    CAS  PubMed  Google Scholar 

  • Sato N and Murata N (1981) Studies on the temperature shift-induced desaturation of fatty acids in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium), Anabaena variabilis. Plant Cell Physiol 22: 1043–1050

    CAS  Google Scholar 

  • Sato N and Murata N (1982a) Lipid biosynthesis in the blue-green alga, Anabaena variabilis. I. Lipid classes. Biochim Biophys Acta 710: 271–278

    CAS  Google Scholar 

  • Sato N and Murata N (1982b) Lipid biosynthesis in the blue-green alga, Anabaena variabilis. II. Fatty acids and lipid molecular species. Biochim Biophys Acta 710:279–289

    CAS  Google Scholar 

  • Sato N and Murata N (1982c) Lipid biosynthesis in the blue-green alga (cyanobacterium), Anabaena variabilis. III. UDP-glucose: diacylglycerol glucosyltransferase activity in vitro. Plant Cell Physiol 23: 1115–1120

    CAS  Google Scholar 

  • Sato N, Murata N, Miura Y and Ueta N (1979) Effect of growth temperature on lipid and fatty acid compositions in the blue-green algae, Anabaena variabilis and Anacystis nidulans. Biochim Biophys Acta 572: 19–28

    CAS  PubMed  Google Scholar 

  • Sato N, Seyama Y and Murata N (1986) Lipid-linked desaturation of palmitic acid in monogalactosyl diacylglycerol in the blue-green alga (cyanobacterium) Anabaena variabilis studied in vivo. Plant Cell Physiol 27: 819–835

    CAS  Google Scholar 

  • Schmidt H, Dresselhaus T, Buck F and Heinz E (1994) Purification and PCR-based cDNA cloning of a plastidial n-6 desaturase. Plant Mol Biol 26: 631–642

    CAS  PubMed  Google Scholar 

  • Shanklin J and Somerville C (1991) Stearoyl-acyl-carrier-protein desaturase from higher plants is structurally unrelated to the animal and fungal homologs. Proc Natl Acad Sci USA 88: 2510–2514

    CAS  PubMed  Google Scholar 

  • Shanklin J, Whittle E, and Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33: 12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Sidler W A (1994) Phycobilisome and phycobiliprotein structures. In: Bryant DA (ed) The Molecular Biology of Cyanobacteria, pp 139–216. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Skriver L and Thompson GA Jr (1979) Temperature-induced changes in fatty acid unsaturation of Tetrahymena membranes do not require induced fatty acid desaturase synthesis. Biochim Biophys Acta 572: 376–381

    CAS  PubMed  Google Scholar 

  • Stanier (Cohen-Bazire) G (1988) Fine structure of cyanobacteria. Meth Enzymol 167: 157–172

    Google Scholar 

  • Stanier RY and Cohen-Bazire G (1977)Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31: 225–274

    Article  CAS  PubMed  Google Scholar 

  • Stapleton SR and Jaworski JG (1984a) Characterization and purification of malonyl-coenzyme A: [acyl-carrier-protein] transacylase from spinach and Anabaena variabilis. Biochim Biophys Acta 794: 240–248

    CAS  Google Scholar 

  • Stapleton SR and Jaworski JG (1984b) Characterization of fatty acid biosynthesis in the cyanobacterium Anabaena variabilis. Biochim Biophys Acta 794: 249–255

    CAS  Google Scholar 

  • Strittmatter P, Spatz L, Corcoran D, Rogers MJ, Setlow B and Redline R (1974) Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci USA 71: 4565–4569

    CAS  PubMed  Google Scholar 

  • Stukey JE, McDonough VM and Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the Δ9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265: 20144–20149

    CAS  PubMed  Google Scholar 

  • Stumpf PK (1987) The biosynthesis of saturated fatty acids. In: Stumpf PK (ed) The Biochemistry of Plants, Vol 9, pp 121–136. Academic Press, Orlando

    Google Scholar 

  • Tasaka Y, Gombos Z, Nishiyama Y, Mohanty P, Ohba T, Ohki K and Murata N (1996) Targeted mutagenesis of acyl-lipid desaturases in Synechocystis: Evidence for the important roles of polyunsaturated membrane lipids in growth, respiration and photosynthesis. EMBO J 15: 6416–6425

    CAS  PubMed  Google Scholar 

  • Teucher T and Heinz E (1991) Purification of UDP-galactose: diacylglycerol galactosyltransferase from chloroplast envelopes of spinach (Spinacia oleracea L.). Planta 184: 319–326

    Article  CAS  Google Scholar 

  • Thiede MA, Ozols J and Strittmatter P (1986) Construction and sequence of cDNA for rat liver stearyl coenzyme A desaturase. J Biol Chem 261: 13230–13235

    CAS  PubMed  Google Scholar 

  • Thompson GA, Scherer DE, Aken SF-V, Kenny JW, Young HL, Shintani DK, Kridl JC and Knauf VC (1991) Primary structure of the precursor and mature forms of stearoyl-acyl carrier protein desaturase from safflower embryos and requirement of ferredoxin for enzyme activity. Proc Natl Acad Sci USA 88: 2578–2582

    CAS  PubMed  Google Scholar 

  • Vigh L, Los DA, Horváth I and Murata N (1993) The primary signal in the biological perception of temperature: Pd-catalyzed hydrogenation of membrane lipids stimulated the expression of the desA gene in Synechocystis PCC6803. Proc Natl Acad Sci USA 90: 9090–9094

    CAS  PubMed  Google Scholar 

  • Wada H and Murata N (1989) Synechocystis PCC6803 mutants defective in desaturation of fatty acids. Plant Cell Physiol 30: 971–978

    CAS  Google Scholar 

  • Wada H and Murata N (1990) Temperature-induced changes in the fatty acid composition of the cyanobacterium, Synechocystis PCC6803. Plant Physiol 92: 1062–1069

    CAS  Google Scholar 

  • Wada H, Combos Z and Murata N (1990) Enhancement of chilling tolerance of a cyanobacterium by genetic manipulation of fatty acid desaturation. Nature 347: 200–203

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Gombos Z, Sakamoto T and Murata N (1992) Genetic manipulation of the extent of desaturation of fatty acids in membrane lipids in the cyanobacterium Synechocystis PCC6803. Plant Cell Physiol 33: 535–540

    CAS  Google Scholar 

  • Wada H, Avelange-Macherel M-H and Murata N (1993a) The desA gene of the cyanobacterium Synechocystis sp. strain PCC6803 is the structural gene for Δ12 desaturase. J Bacteriol 175: 6056–6058

    CAS  PubMed  Google Scholar 

  • Wada H, Schmidt H, Heinz E and Murata N (1993b) In vitro ferredoxin-dependent desaturation of fatty acids in cyanobacterial thylakoid membranes. J Bacteriol 175: 544–547

    CAS  PubMed  Google Scholar 

  • Wada H, Gombos Z and Murata N (1994) Contribution of membrane lipids to the ability of the photosynthetic machinery to tolerate temperature stress. Proc Natl Acad Sci USA 91: 4273–4277

    CAS  PubMed  Google Scholar 

  • Williams WP (1997) The physical properties of thylakoid membrane lipids and their relation to photosynthesis. In: Siegenthaler P-A and Murata N (eds) Lipids in Photosynthesis: Structure, Function and Genetics, pp 103–118. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wada, H., Murata, N. (1998). Membrane Lipids in Cyanobacteria. In: Paul-André, S., Norio, M. (eds) Lipids in Photosynthesis: Structure, Function and Genetics. Advances in Photosynthesis and Respiration, vol 6. Springer, Dordrecht. https://doi.org/10.1007/0-306-48087-5_4

Download citation

  • DOI: https://doi.org/10.1007/0-306-48087-5_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5173-3

  • Online ISBN: 978-0-306-48087-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics