Skip to main content

Post-Transcriptional Control of Photosynthesis Gene Expression

  • Chapter
Anoxygenic Photosynthetic Bacteria

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 2))

Summary

Oxygen tension and light intensity influence the formation of pigment protein complexes in facultatively photosynthetic bacteria. Multiple control mechanisms are required to regulate expression of photosynthesis genes in response to external factors and to guarantee the coordinated syntheses of components of the photosynthetic apparatus. Regulation ofexpression ofphotosynthesis genes is partly accomplished by variation of mRNA levels. Both the rate of synthesis and the rate of decay of mRNA are involved in determining these mRNA levels. Our current knowledge on the molecular mechanisms of stabilization and destabilization of mRNAs transcribed from photosynthesis genes will be summarized. Some experimental data suggest that photosynthesis genes are also regulated at later steps of gene expression. This chapter will address the 23S rRNA processing in Rhodobacter and its putative role in gene regulation. Other molecular mechanisms influencing the rate of translation or post-translational processes have not been investigated to date but evidence for their participation in regulation of photosynthesis genes is provided. Since regulation of bacterial photosynthesis genes has been studied most intensively in Rhodobacter capsulatus and Rhodobacter sphaeroides, this review will focus on the results obtained with these closely related bacterial species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams CW, Forrest ME, Cohen SN and Beatty JT (1989) Structural and functional analysis of transcriptional control of the Rhodobacter capsulatus puf operon. J Bacteriol 171: 473–482

    CAS  PubMed  Google Scholar 

  • Bauer CE and Marrs BL (1988) Rhodobacter capsulatus puf operon encodes a regulatory protein (PufQ) for bacterio-chlorophyll synthesis. Proc Natl Acad Sci USA 85: 7074–7078

    CAS  PubMed  Google Scholar 

  • Bauer CE, Young DA and Marrs BL (1988) Analysis of the Rhodobacter capsulatus puf operon. Location of the oxygen-regulated promoter region and the identification of an additional puf-encoded gene. J Biol Chem 263: 4820–4827.

    CAS  PubMed  Google Scholar 

  • Bauer CE, Buggy JJ, Yang Z and Marrs BL (1991) The superoperonal organization of genes for pigment biosynthesis and reaction center proteins is a conserved feature in Rhodobacter capsulatus: analysis of overlapping bchB and puhA transcripts. Mol Gen Genet 228: 433–444

    Article  CAS  PubMed  Google Scholar 

  • Belasco JG, Beatty JT, Adams CW, von Gabain A and Cohen SN (1985) Differential expression of photosynthetic genes in Rhodopseudomonas capsulata results from segmental differences in stability within a polycistronic transcript. Cell 40: 171–181

    Article  CAS  PubMed  Google Scholar 

  • Burgin AB, Parados K, Lane DJ, Pace NR (1990) The excision of intervening sequences from Salmonella 23S ribosomal RNA. Cell 60: 405–414

    Article  CAS  PubMed  Google Scholar 

  • Chen C-YA and Belasco JG (1990) Degradation of pufLMX mRNA in Rhodobacter capsulatus is initiated by nonrandom endonucleolytic cleavage. J Bacteriol 172: 4578–4586

    CAS  PubMed  Google Scholar 

  • Chen C-YA, Beatty JT, Cohen SN and Belasco JG (1988) An intercistronic stem-loop structure functions as an mRNA decay terminator necessary but insufficient for puf mRNA stability. Cell 52: 609–619

    Article  CAS  PubMed  Google Scholar 

  • Chow CT (1976) Functional and structural differences between photosynthetic and heterotrophic Rhodospirillum rubrum ribosomes and S-100 fractions. Can J Microbiol 22: 1522–1539

    CAS  PubMed  Google Scholar 

  • Clark WG, Davidson E and Marrs BL (1984) Variation of levels of mRNA coding for antenna and reaction center polypeptides in Rhodopseudomonas capsulata in response to changes in oxygen concentration. J Bacteriol 157: 945–948

    CAS  PubMed  Google Scholar 

  • Dierstein R (1983) Biosynthesis of pigment-protein complex polypeptides in bacteriochlorophyll-less mutant cells of Rhodopseudomonas capsulata YS. FEBS Lett 160: 281–286

    Article  CAS  Google Scholar 

  • Doolittle WF (1973) Postmaturational cleavage of 23S ribosomal ribonucleic acid and its metabolic control in the blue-green alga Anacystis nidulans. J Bacteriol 113: 1256–1263

    CAS  PubMed  Google Scholar 

  • Drews G (1992) Intracytoplasmic membranes in bacterial cells: Organization, function and biosynthesis. In: Mohan S, Dow C and Cole A (eds) Prokaryotic Structure and Function: A New Perspective, pp 249–274. Cambridge University Press

    Google Scholar 

  • Drews G and Imhoff JF (1991) Phototrophic purple bacteria. In: Shively JM and Barton LL (eds) Variations in Autotrophic Life, pp 51–97. Academic Press, New York

    Google Scholar 

  • Drews G, Klug G, Liebetanz, R and Dierstein R (1986) Regulation of gene expression and assembly of photosynthetic pigmentprotein complexes. In: Biggins J (ed) Progress in Photosynthetic Research, Vol IV, pp 691–697. Martin Nijhoff Publishers, Dordrecht

    Google Scholar 

  • Dryden SC and Kaplan S (1990) Localization and structural analysis of the ribosomal RNA operons of Rhodobacter sphaeroides. Nucleic Acid Res 18: 7267–7277

    CAS  PubMed  Google Scholar 

  • Ehretsmann CP, Agamemnon JC and Krisch HM (1992) Specificity of Escherichia coli endoribonuclease E: In vivo and in vitro analysis of mutants in a bacteriophage T4 mRNA processing site. Genes Develop 6: 149–159

    CAS  PubMed  Google Scholar 

  • Emory SA, Bouvet P and Belasco JG (1992) A 5′ terminal stemloop structure can stabilize mRNA in Escherichia coli. Genes Develop 6: 135–148

    CAS  PubMed  Google Scholar 

  • Farchaus JW, Barz WP, Grünberg H and Oesterhelt D (1992) Studies on the expression of the pufX polypeptide and its requirement for photoheterotrophic growth in Rhodobacter capsulatus. EMBO J 11: 2779–2788

    CAS  PubMed  Google Scholar 

  • Fonstein M and Haselkorn WR (1993) Chromosomal structure of R. capsulatus strain SB1003: Cosmid encyclopedia and high-resolution physical and genetic map. Proc Natl Acad Sci USA 90: 2522–2526

    CAS  PubMed  Google Scholar 

  • Fritsch J, Rothfuchs R, Rauhut R and Klug G (1995) Identification of an mRNA element promoting rate-limiting cleavage of the polycistonic puf mRNA in Rhodobacter capsulatus by an enzyme similar to RNase E. Mol Microbiol, in press

    Google Scholar 

  • Gutell RR, Schnare MN and Gray MW (1990) A compilation of large subunit (23S-like) ribosomal RNA sequences presented in a secondary structure format. Nucleic Acid Res 18: 2319–2329

    CAS  PubMed  Google Scholar 

  • Höpfl P, Ludwig W and Schleifer KH (1988) Complete nucleotide sequence of a 23S ribosomal RNA gene from Rhodobacter capsulatus. Nucleic Acid Res 16: 2343

    PubMed  Google Scholar 

  • Hunter CN, McGlynn P, Ashby MK, Burgess JG and Olson JD (1991) DNA sequencing and complementation/deletion analysis of the bchA-puf operon region of Rb. sphaeroides: in vivo mapping of the oxygen-regulated puf promoter. Mol Microbiol 5: 2649–2661

    CAS  PubMed  Google Scholar 

  • Kaufmann N, Reidl HH, Golecki J, Garcia AF, Drews G (1982) Differentiation of the membrane system in cells of Rhodobacter capsulatus after transition from chemotrophic to phototrophic growth conditions. Arch Microbiol 131: 313–322

    Article  CAS  Google Scholar 

  • Klug G (1991) Endonucleolytic degradation of puf mRNA in Rb. capsulatus is influenced by oxygen. Proc Natl Acad Sci USA 88: 1765–1769

    CAS  PubMed  Google Scholar 

  • Klug G (1993) The role of mRNA degradation in the regulated expression of bacterial photosynthesis genes. Mol Microbiol 9: 1–7

    CAS  PubMed  Google Scholar 

  • Klug G and Cohen SN (1988) Pleiotropic effects of localized Rhodobacter capsulatus puf operon deletions on the production of light-absorbing pigment-protein complexes. J Bacteriol 170: 5814–5821

    CAS  PubMed  Google Scholar 

  • Klug G and Cohen SN (1990) Combined action of multiple hairpin loop structures and sites of rate-limiting endonucleolytic cleavage determine differential degradation rates of individual segments within polycistronic puf operon mRNA. J Bacteriol 172: 5140–5146

    CAS  PubMed  Google Scholar 

  • Klug G and Drews G (1984) Construction of a gene bank of Rhodopseudomonas capsulata using a broad host range cloning system. Arch Microbiol 139: 319–325

    Article  CAS  PubMed  Google Scholar 

  • Klug G, Kaufmann N and Drews G (1984) The expression of genes encoding proteins of the B800-850 antenna pigment complex and ribosomal RNA of R. capsulata. FEBS Lett 177: 61–65

    Article  CAS  Google Scholar 

  • Klug G, Kaufmann N and Drews G (1985) Gene expression of pigment-binding proteins of the bacterial photosynthetic apparatus: Transcription and assembly in the membrane of Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 82: 6485–6489

    CAS  Google Scholar 

  • Klug G, Liebetanz R and Drews G (1986) The influence of bacteriochlorophyll biosynthesis on formation of pigmentbinding proteins and assembly pf pigment-protein complexes in Rhodopseudomonas capsulata. Arch Microbiol 146: 284–291

    Article  CAS  Google Scholar 

  • Klug G, Adams CW, Belasco JG, Dörge B and Cohen SN (1987) Biological consequences of segmental alterations in mRNA stability: Effects of the intercistronic hairpin loop region of the Rhodobacter capsulatus puf operon. EMBO J 6: 3515–3520

    CAS  PubMed  Google Scholar 

  • Klug G, Jock S and Rothfuchs R (1992) The rate of decay of Rhodobacter capsulatus-specific puf mRNA segments is differentially affected by RNase E activity in Escherichia coli. Gene 121: 95–102

    Article  CAS  PubMed  Google Scholar 

  • Klug G, Jock S and Kordes E (1994) 23S rRNA processing in Rb. capsulatus is not involved in the oxygen-regulated formation of the bacterial photosynthetic apparatus. Arch Microbiol 162: 91–97

    Article  CAS  Google Scholar 

  • Kordes E, Jock S, Fritsch J, Bosch F and Klug G (1994) Cloning of a gene that is involved in rRNA precursor processing and in 23S rRNA cleavage in Rb. capsulatus. J Bacteriol 176: 1121–1127

    CAS  PubMed  Google Scholar 

  • Lee KJ and Kaplan S (1992) cis-acting regulatory elements involved in oxygen and light control of puc operon transcription in Rhodobacter sphaeroides. J Bacteriol 174: 1146–1157

    CAS  PubMed  Google Scholar 

  • Lee KJ, Kiley PJ and Kaplan S (1989) Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides. J Bacteriol 171: 3391–3405

    CAS  PubMed  Google Scholar 

  • Lessie, TG (1965) The atypical ribosomal RNA complement of Rhodopseudomonas sphaeroides. J Gen Microbiol 39: 311–320

    CAS  PubMed  Google Scholar 

  • Lilburn TG, Copper EH, Prince RC, Beatty JT (1992) Pleiotropic effects of pufX gene deletion on the structure and function of the photosynthetic apparatus of Rhodobacter capsulatus. Biochim Biophys Acta 1100: 160–170

    CAS  PubMed  Google Scholar 

  • Lundberg U, von Gabain A and Meleförs Ö (1990) Cleavages in the 5′ region of the ompA and bla mRNA control stability: Studies with an E. coli mutant altering mRNA stability and a novel ribonuclease. EMBO 9: 2731–2741

    CAS  Google Scholar 

  • MacKay RM, Zablen LB, Woese CR and Doolittle WF (1979) Homologies in processing and sequence between the 23S ribosomal ribonucleic acids of Paracoccus denitrificans and Rhodopseudomonas sphaeroides. Arch Microbiol 123: 165–172

    Article  CAS  Google Scholar 

  • Mansour JD and Stachow LS (1975) Structural changes in the ribosomes and ribosomal proteins of Rhodopseudomonas palustris. Biophys Res Commun 62: 276–281

    CAS  Google Scholar 

  • Marrs BL and Kaplan S (1970) 23S precursor ribosomal RNA of Rhodopseudomonas sphaeroides. J Mol Biol 49: 297–317

    Article  CAS  PubMed  Google Scholar 

  • Meier JR and Brownstein BH (1976) Structure, synthesis and post-transcriptional modification ofribosomal ribonucleic acid in B Bdellovibrio bacteriovorus. Biochem Biophys Acta 454: 86–96

    CAS  PubMed  Google Scholar 

  • Neidle EL and Kaplan S (1993) 5-aminolevulinic acid availability and control of spectral complex formation in hemA and hemT mutants of Rhodobacter sphaeroides. J Bacteriol 175: 2304–2313

    CAS  PubMed  Google Scholar 

  • Oberlé B, Tichy H-V, Hornberger U and Drews G (1990) Regulation of formation of photosynthetic light-harvesting complexes in Rhodobacter capsulatus. In: Drews G and Dawes E (eds) Molecular Biology of Membrane-Bound Complexes in Phototrophic Bacteria, pp 77–84. Plenum Press, New York.

    Google Scholar 

  • Schuch, W and Loening, UE (1975) The ribosomal acid of Agrobacterium tumefaciens. Biochem J 149: 17–22

    CAS  PubMed  Google Scholar 

  • Tichy H-V, Oberle B, Stiehle H, Schiltz E and Drews G (1989) Genes downstream from pucA are essential for the formation of the B800-850 complex of Rhodobacter capsulatus. J Bacteriol 171: 4914–4922

    CAS  PubMed  Google Scholar 

  • Tichy H-V, Albien KU, Gaďon N and Drews G (1991) Analysis of the Rhodobacter capsulatus puc operon: the pucC gene plays a central role in the regulation of LHII (B800-850 complex) expression. EMBO J 10: 2949–2956

    CAS  PubMed  Google Scholar 

  • Youvan DC, Bylina EJ, Alberti M, Begusch H and Hearst JE (1984) Nucleotide and deduced polypeptide sequence of the photosynthetic reaction center, B870 antenna, and flanking polypeptides from Rhodopseudomonas capsulata. Cell 37: 949–957

    Article  CAS  PubMed  Google Scholar 

  • Zhu YS and Hearst JE (1986) Regulation of expression of genes for light-harvesting antenna proteins LH-I and LH-II; reaction center polypeptides RC-L, RC-M, and RC-H; and enzymes of bacteriochlorophyll and carotenoid biosynthesis in Rhodobacter capsulatus by light and oxygen. Proc Natl Acad Sci USA 83: 7613–7617

    CAS  PubMed  Google Scholar 

  • Zhu, YS and Kaplan S (1985) Effects of light, oxygen and substrates on steady-state levels of mRNA coding for ribulose-1,5-bisphosphate carboxylase and light-harvesting and reaction center polypeptides in Rhodopseudomonas sphaeroides. J Bacteriol 162: 925–932

    CAS  PubMed  Google Scholar 

  • Zucconi AP and Beatty JT (1988) Posttranscriptional regulation by light of the steady state levels of mature B800-850 light-harvesting complex in Rhodobacter capsulatus. J Bacteriol 170: 877–882

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Kluwer Academic Publishers

About this chapter

Cite this chapter

Klug, G. (1995). Post-Transcriptional Control of Photosynthesis Gene Expression. In: Blankenship, R.E., Madigan, M.T., Bauer, C.E. (eds) Anoxygenic Photosynthetic Bacteria. Advances in Photosynthesis and Respiration, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47954-0_59

Download citation

  • DOI: https://doi.org/10.1007/0-306-47954-0_59

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-3681-5

  • Online ISBN: 978-0-306-47954-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics