Skip to main content

HIV Vaccines Design and Development

  • Chapter
AIDS in Africa
  • 232 Accesses

Conclusion

Despite the fact that many technologies have been adopted for HIV vaccine design, and many candidate HIV vaccines have entered clinical trials, the prospect of having an efficacious HIV vaccine available in the near future remains uncertain. A lack of knowledge about protective immunity has hindered HIV vaccine development. This obstacle is to some extent offset by the knowledge researchers in the field have gained about HIV diversity, the structure of some key HIV proteins, the events surrounding HIV entry into its target cells, and host responses to HIV antigens. Even though many of these scientific gains have been, and will continue to be translated into HIV vaccine designs, it should be recognized that only through clinical trials will it be possible to evaluate the effectiveness an intended immune response that is elicited by a candidate vaccine. HIV vaccine development needs to be an empirical process, involving repeated rounds of clinical testing of a large array of candidate HIV vaccines. An efficacious HIV vaccine developed from such a process is our best hope of arresting the growing AIDS epidemic both in sub-Saharan Africa and in other regions of the world.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rosenberg ES, Billingsley JM, Caliedo AM, et al. Vigorous HIV-1-specific CD4+ T cell responses associated with control of viremia. Science, 1997; 278:1447–1450.

    Article  PubMed  CAS  Google Scholar 

  2. Walker BD. Immune reconstitution and immunotherapy in HIV infection. Available at http://www.medscape.com/Medscape/HIV/Clinical Mgmt/CM.v 15/CM.v 15/public/CM.v15-toc.html. Accessed: December 13, 2001.

  3. Ahlers JD, Belyakov IM, Thomas EK, et al. High-affinity T helper epitope induces complementary helper and APC polarization, increased CTL, and protection against viral infection. J Clin Invest, 2001;108:1677–1685.

    Article  PubMed  CAS  Google Scholar 

  4. Borrow P, Lewicki H, Hahn BH, et al. Virus-specific CD8+ cytotoxic T-lymphocyte activity associated with control of viremia in primary human immunodeficiency virus type 1 infection. J Virol, 1994;68:6103–6110.

    PubMed  CAS  Google Scholar 

  5. Koup RA, Safrit JT, Cao Y, et al. Temporal association of cellular immune responses with the initial control of viremia in primary human immunodeficiency virus type 1 syndrome. J Virol, 1994;68:4650–4655.

    PubMed  CAS  Google Scholar 

  6. Jin X, Bauer DE, Tuttleton SE, et al. Dramatic rise in plasma viremia after CD8(+) T cell depletion in simian immunodeficiency virus-infected macaques. JExpMed, 1999;189:991–998.

    CAS  Google Scholar 

  7. Schmitz JE, Kuroda MJ, Santra S, et al. Control of viremia in simian immunodeficiency virus infection by CD8+ lymphocytes. Science, 1999;283:857–860.

    Article  PubMed  CAS  Google Scholar 

  8. LaRosa GJ, Davide JP, Weinhold K, et al. Conserved sequence and structural elements in the HIV-1 principal neutralizing determinant. Science, 1990;249:932–935.

    PubMed  CAS  Google Scholar 

  9. Amara RR, Villinger F, Altman JD, et al. Control of a mucosal challenge and prevention of AIDS by a multiprotein DNA/MVA vaccine. Science, 2001;292:69–74.

    Article  PubMed  CAS  Google Scholar 

  10. Kahn P. Keystone Symposium: New Vaccine Candidates and a Major New Player. IAVI Report, 2001;5:1,13.

    Google Scholar 

  11. Graham BS. Clinical trials of HIV vaccines. In: Kuiken C, Foley B, Hahn B, Marx P, McCutchan F, Mellors JW,eds. HIV Sequence Compendium 2000. Los Alamos, NM, USA: Theoretical Biology and Biophysics, Los Alamos National Laboratory, 2000:82–105.

    Google Scholar 

  12. Kovacs JA, Vasudevachari MB, Easter M, et al. Induction of humoral and cell-mediated anti-human immunodeficiency virus (HIV) responses in HIV sero-negative volunteers by immunization with recombinant gp160. J Clin Invest, 1993;92:919–928.

    PubMed  CAS  Google Scholar 

  13. Belshe RB, Clements ML, Dolin R, et al. Safety and immunogenicity of a fully glycosylated recombinant gp160 human immunodeficiency virus type 1 vaccine in subjects at low risk of infection. NIAID AIDS Vaccine Evaluation Group Network. J Infect Dis, 1993;168:1387–1395.

    CAS  Google Scholar 

  14. Gorse GJ, McElrath MJ, Matthews TJ, et al. Modulation of immunologic responses to HIV-1MN recombinant gp160 vaccine by dose and schedule of administration. NIAID AIDS Vaccine Evaluation Group. Vaccine, 1998;16:493–506.

    CAS  Google Scholar 

  15. Keefer MC, Graham BS, McElrath MJ, et al. Safety and immunogenicity of Env 2–3, a human immunodeficiency virus type 1 candidate vaccine, in combination with a novel adjuvant, MTP-PE/MF59. NIAID AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses, 1996;12:683–693.

    CAS  Google Scholar 

  16. Martin SJ, Vyakarnam A, Cheingsong-Popov R, et al. Immunization of human HIV-seronegative volunteers with recombinant p17/p24:Ty virus-like particles elicits HIV-1 p24-specific cellular and humoral immune responses. AIDS, 1993;7:1315–1323.

    PubMed  CAS  Google Scholar 

  17. Schwartz DH, Gorse G, Clements ML, et al. Induction of HIV-1-neutralising and syncytium-inhibiting antibodies in uninfected recipients of HIV-1IIIB rgp120 subunit vaccine. Lancet, 1993;342:69–73.

    Article  PubMed  CAS  Google Scholar 

  18. Kahn JO, Sinangil F, Baenziger J, et al. Clinical and immunologic responses to human immunodeficiency virus (HIV) type 1SF2 gp120 subunit vaccine combined with MF59 adjuvant with or without muramyl tripeptide dipalmitoyl phosphatidylethanolamine in non-HIV-infected human volunteers. J Infect Dis, 1994;170:1288–1291.

    PubMed  CAS  Google Scholar 

  19. Gorse GJ, Keefer MC, Belshe RB, et al. A dose-ranging study of a prototype synthetic HIV-1MN V3 branched peptide vaccine. NIAID AIDS Vaccine Evaluation Group. J Infect Dis, 1996;173:330–339.

    CAS  Google Scholar 

  20. Rubinstein A, Goldstein H, Pettoello-Mantovani M, et al. Safety and immunogenicity of a V3 loop synthetic peptide conjugated to purified protein derivative in HIV-seronegative volunteers. AIDS, 1995;9:243–251.

    Article  PubMed  CAS  Google Scholar 

  21. Gahery-Segard H, Pialoux G, Charmeteau B, et al. Multiepitopic B-and T-cell responses induced in humans by a human immunodeficiency virus type 1 lipopeptide vaccine. J Virol, 2000;74:1694–1703.

    Article  PubMed  CAS  Google Scholar 

  22. Sarin PS, Mora CA, Naylor PH, et al. HIV-1 p17 synthetic peptide vaccine HGP-30: induction of immune response in human subjects and preliminary evidence of protection against HIV challenge inSCIDmice. Cell Mol Biol, 1995;41:401–407.

    PubMed  CAS  Google Scholar 

  23. Zagury D, Bernard J, Cheynier R, et al. A group specific anamnestic immune reaction against HIV-1 induced by a candidate vaccine against AIDS. Nature, 1988;332:728–731.

    Article  PubMed  CAS  Google Scholar 

  24. Corey L, McElrath MJ, Weinhold K, et al. Cytotoxic T cell and neutralizing antibody responses to human immunodeficiency virus type 1 envelope with a combination vaccine regimen. AIDS Vaccine Evaluation Group. J Infect Dis, 1998;177:301–309.

    CAS  Google Scholar 

  25. Pialoux G, Excler JL, Riviere Y, et al. A prime-boost approach to HIV preventive vaccine using a recombinant canarypox virus expressing glycoprotein 160 (MN) followed by a recombinant glycoprotein 160 (MN/LAI). The AGIS Group, and l’Agence Nationale de Recherche sur le SIDA. AIDS Res Hum Retroviruses, 1995;11:373–381.

    CAS  Google Scholar 

  26. Evans TG, Keefer MC, Weinhold KJ, et al. A canarypox vaccine expressing multiple human immunodeficiency virus type 1 genes given alone or with rgp120 elicits broad and durable CD8+ cytotoxic T lymphocyte responses in seronegative volunteers. J Infect Dis, 1999:180:290–298.

    Article  PubMed  CAS  Google Scholar 

  27. Boyer JD, Cohen AD, Vogt S, et al. Vaccination of seronegative volunteers with a human immunodeficiency virus type 1 env/rev DNA vaccine induces antigen-specific proliferation and lymphocyte production of beta-chemokines. J Infect Dis, 2000;181:476–483.

    Article  PubMed  CAS  Google Scholar 

  28. Tubulekas I, Berglund P, Fleeton M, et al. Alphavirus expression vectors and their use as recombinant vaccines: a mini review. Gene Ther, 1997:190:191–195.

    CAS  Google Scholar 

  29. Hariharan MJ, Driver DA, Townsend K, et al. DNA immunization against herpes simplex virus: enhanced efficacy using a Sindbis virus-based vector. J Virol, 1998;72:950–958.

    PubMed  CAS  Google Scholar 

  30. Herweijer H, Latendresse JS, Williams P, et al. A plasmid-based self-amplifying Sindbis virus vector. Hum Gene Ther, 1995;6:1161–1167.

    PubMed  CAS  Google Scholar 

  31. Berglund P, Smerdou C, Fleeton MN, et al. Enhancing immune responses using suicidal DNA vaccines. Nat Biotechnol, 1998;16:562–565.

    Article  PubMed  CAS  Google Scholar 

  32. Sizemore DR, Branstrom AA, Sadoff JC. Attenuated Shigella as a DNA delivery vehicle for DNA-mediated immunization. Science, 1995;270:299–302.

    PubMed  CAS  Google Scholar 

  33. Schnell MJ. Viral vectors as potential HIV-1 vaccines. FEMS Microbiology Letters, 2001;200:123–129.

    Article  PubMed  CAS  Google Scholar 

  34. Murphy CG, Lucas WT, Means RE, et al. Vaccine protection against simian immunodeficiency virus by recombinant strains of herpes simplex virus. J Virol, 2000;74:7745–7754.

    PubMed  CAS  Google Scholar 

  35. Da Costa XJ, Morrison LA, Knipe DM. Comparison of different forms of herpes simplex replication-defective mutant viruses as vaccines in a mouse model of HSV-2 genital infection. Virology, 2001;288:256–263.

    PubMed  Google Scholar 

  36. Jayan GC, Cordelier P, Patel C, et al. SV40-derived vectors provide effective transgene expression and inhibition of HIV-1 using constitutive, conditional, and pol III promoters. GeneTher, 2001;8:1033–1042.

    CAS  Google Scholar 

  37. Strayer DS. SV40-based gene therapy vectors: turning an adversary into a friend. Curr Opin Mol Ther, 2000;2:570–578.

    PubMed  CAS  Google Scholar 

  38. Strayer DS, Lamothe M, Wei D, et al. Generation of recombinant SV40 vectors for gene transfer. Methods Mol Biol, 2001;165:103–117.

    PubMed  CAS  Google Scholar 

  39. Prevec L, Christie BS, Laurie KE, et al. Immune response to HIV-1 gag antigens induced by recombinant adenovirus vectors in mice and rhesus macaque monkeys. J Acquir Immune Defic Syndr Hum Retrovirol, 1991;4:568–576.

    CAS  Google Scholar 

  40. Lubeck MD, Natuk RJ, Chengalvala M, et al. Immunogenicity of recombinant adenovirus-human immunodeficiency virus vaccines in chimpanzees following intranasal administration. AIDS Res Hum Retroviruses, 1994;10:1443–1449.

    PubMed  CAS  Google Scholar 

  41. Lubeck MD, Natuk R, Myagkikh M, et al. Long-term protection of chimpanzees against high-dose HIV-1 challenge induced by immunization. Nat Med, 1997;3:651–658.

    Article  PubMed  CAS  Google Scholar 

  42. Zolla-Pazner S, Lubeck M, Xu S, et al. Induction of neutralizing antibodies to T-cell line-adapted and primary human immunodeficiency virus type 1 isolates with a prime-boost vaccine regimen in chimpanzees. J Virol, 1998;72:1052–1059.

    PubMed  CAS  Google Scholar 

  43. Xin KQ, Urabe M, Yang J, et al. A novel recombinant adeno-associated virus vaccine induces a long-term humoral immune response to human immunodeficiency virus. Hum Gene Ther, 2001;12:1047–1061.

    Article  PubMed  CAS  Google Scholar 

  44. Guan YJ, Liu HY, Zhu YK, et al. Construction and expression of recombinant adeno-associated HIV-1 virus. Zhonghua Shi Yon He Lin Chuang Bing Du Xue Za Zhi, 2000; 14:322–324.

    CAS  Google Scholar 

  45. Buge SL, Murty L, Arora K, et al. Factors associated with slow disease progression in macaques immunized with an adenovirus-simian immunodeficiency virus (SIV) envelope priming-gp120 boosting regimen and challenged vaginally with SIVmac251. J Virol, 1999;73:7430–7440.

    PubMed  CAS  Google Scholar 

  46. Yoshida T, Okuda K, Xin KQ, et al. Activation of HIV-1-specific immune responses to an HIV-1 vaccine constructed from a replication-defective adenovirus vector using various combinations of immunization protocols. Clin Exp Immunol, 2001;124:445–452.

    Article  PubMed  CAS  Google Scholar 

  47. Fu TM, Trigona W, Davies ME, et al. Replication-incompetent recombinant adenovirus vector expressing SIV gag elicits robust and effective cellular immune responses in Rhesus Macaques. In: Program of the AIDS Vaccine 2001; Philadelphia, Pennsylvania, USA. September 5–8, 2001. Abstract 37.

    Google Scholar 

  48. Seth A, Ourmanov I, Kuroda MJ, et al. Recombinant modified vaccinia virus Ankara-simian immunodeficiency virus gag pol elicits cytotoxic T lymphocytes in rhesus monkeys detected by a major histocompatibility complex class I/peptide tetramer. Proc Natl Acad Sci USA, 1998;95:10112–10116.

    Article  PubMed  CAS  Google Scholar 

  49. Seth A, Ourmanov I, Schmitz JE, et al. Immunization with a modified vaccinia virus expressing simian immunodeficiency virus (SIV) Gag-Pol primes for an anamnestic Gag-specific cytotoxic T-lymphocyte response and is associated with reduction of viremia after SIV challenge. J Virol, 2000;74:2502–2509.

    Article  PubMed  CAS  Google Scholar 

  50. Barouch DH, Santra S, Kuroda MJ, et al. Reduction of simian-human immunodeficiency virus 89.6P viremia in rhesus monkeys by recombinant modified vaccinia virus Ankara vaccination. J Virol, 2001;75:5151–5158.

    CAS  Google Scholar 

  51. Allen TM, Vogel TU, Fuller DH, et al. Induction of AIDS virus-specific CTL activity in fresh, unstim-ulated peripheral blood lymphocytes from rhesus macaques vaccinated with a DNA prime/modified vaccinia virus Ankara boost regimen. J Immunol, 2000:164:4968–4978.

    PubMed  CAS  Google Scholar 

  52. Belyakov IM, Wyatt LS, Ahlers JD, et al. Induction of a mucosal cytotoxic T-lymphocyte response by intrarectal immunization with a replication-deficient recombinant vaccinia virus expressing human immunodeficiency virus 89.6 envelope protein. J Virol, 1998:72:8264–8272.

    CAS  Google Scholar 

  53. Hanke T, Blanchard TJ, Schneider J, et al. Immunogenicities of intravenous and intramuscular administrations of modified vaccinia virus Ankara-based multi-CTL epitope vaccine for human immunodeficiency virus type 1 in mice. J Gen Virol, 1998;79(Pt 1):83–90.

    PubMed  CAS  Google Scholar 

  54. Hanke T, Neumann VC, Blanchard TJ, et al. Effective induction of HIV-specific CTL by multi-epitope using gene gun in a combined vaccination regime. Vaccine, 1999;17:589–596.

    Article  PubMed  CAS  Google Scholar 

  55. Hanke T, McMichael AJ. Design and construction of an experimental HIV-1 vaccine for a year-2000 clinical trial in Kenya. Nat Med, 2000;6:951–955.

    Article  PubMed  CAS  Google Scholar 

  56. Dale CJ, Zhao A, Jones SL, et al. Induction of HIV-1-specific T-helper responses and type 1 cytokine secretion following therapeutic vaccination of macaques with a recombinant fowlpoxvirus co-expressing interferon-gamma. J Med Primatol, 2000;29:240–247.

    Article  PubMed  CAS  Google Scholar 

  57. Kent SJ, Zhao A, Dale CJ, et al. A recombinant avipoxvirus HIV-1 vaccine expressing interferon-gamma is safe and immunogenic in macaques. Vaccine, 2000; 18:2250–2256.

    Article  PubMed  CAS  Google Scholar 

  58. Radaelli A, Gimelli M, Cremonesi C, et al. Humoral and cell-mediated immunity in rabbits immunized with live non-replicating avipox recombinants expressing the HIV-1 SF2 env gene. Vaccine, 1994;12:1110–1117.

    PubMed  CAS  Google Scholar 

  59. Colmenero P, Berglund P, Kambayashi T, et al. Recombinant Semliki Forest virus vaccine vectors: the route of injection determines the localization of vector RNA and subsequent T cell response. Gene Ther, 2001:8:1307–1314.

    Article  PubMed  CAS  Google Scholar 

  60. Berglund P, Quesada-Rolander M, Putkonen P, et al. Outcome of immunization of cynomolgus monkeys with recombinant Semliki Forest virus encoding human immunodeficiency virus type 1 envelope protein and challenge with a high dose of SHIV-4 virus. AIDS Res Hum Retroviruses, 1997;13:1487–1495.

    PubMed  CAS  Google Scholar 

  61. Caley IJ, Betts MR, Davis NL, et al. Venezuelan equine encephalitis virus vectors expressing HIV-1 proteins: vector design strategies for improved vaccine efficacy. Vaccine, 1999; 17:3124–3135.

    Article  PubMed  CAS  Google Scholar 

  62. Caley IJ, Betts MR, Irlbeck DM, et al. Humoral, mucosal, and cellular immunity in response to a human immunodeficiency virus type 1 immunogen expressed by a Venezuelan equine encephalitis virus vaccine vector. J Virol, 1997;71:3031–3038.

    PubMed  CAS  Google Scholar 

  63. Davis NL, Caley IJ, Brown KW, et al. Vaccination of macaques against pathogenic simian immunodeficiency virus with Venezuelan equine encephalitis virus replicon particles. J Virol, 2000;74:371–378.

    PubMed  CAS  Google Scholar 

  64. Johnston R, Davis N, Collier M, et al. Intrarectal challenge of macaques immunized with VEE replicon vectors. In: Program of the AIDS Vaccine 2001; September 5–8, 2001; Philadelphia, Pennsylvania, USA, Abstract 41.

    Google Scholar 

  65. Crotty S, Miller CJ, Lohman BL, et al. Protection against simian immunodeficiency virus vaginal challenge by using Sabin Poliovirus vectors. J Virol, 2001;75:7435–7452.

    Article  PubMed  CAS  Google Scholar 

  66. Crotty S, Lohman BL, Lu FX, et al. Mucosal immunization of cynomolgus macaques with two serotypes of live poliovirus vectors expressing simian immunodeficiency virus antigens: stimulation of humoral, mucosal, and cellular immunity, J Virol, 1999;73:9485–9495.

    PubMed  CAS  Google Scholar 

  67. Anderson MJ, Porter DC, Moldoveanu Z, et al. Characterization of the expression and immuno-genicity of poliovirus replicons that encode simian immunodeficiency virus SIVmac239 Gag or envelope SU proteins. AIDS Res Hum Retroviruses, 1997;13:53–62.

    PubMed  CAS  Google Scholar 

  68. Moldoveanu Z, Porter DC, Lu A, et al. Immune responses induced by administration of encapsidated poliovirus replicons which express HIV-1 gag and envelope proteins. Vaccine, 1995;13:1013–1022.

    PubMed  CAS  Google Scholar 

  69. Van der Ryst E, Nakasone T, Habel A, et al. Study of the immunogenicity of different recombinant Mengo viruses expressing HIV1 and SIV epitopes. Res Virol, 1998; 149:5–20.

    PubMed  Google Scholar 

  70. Smith AD, Geisler SC, Chen AA, et al. Human rhinovirus type 14: human immunodeficiency virus type 1 (HIV-1) V3 loop chimeras from a combinatorial library induce potent neutralizing antibody responses against HIV-1. J Virol, 1998;72:651–659.

    PubMed  CAS  Google Scholar 

  71. Arnold GF, Resnick DA, Smith AD, et al. Chimeric rhinoviruses as tools for vaccine development and characterization of protein epitopes. Intervirology, 1996;39:72–78.

    PubMed  CAS  Google Scholar 

  72. Halim SS, Collins DM, Ramsingh Al. A therapeutic HIV vaccine using coxsackie-HIV recombinants: a possible new strategy. AIDS Res Hum Retroviruses, 2000;16:1551–1558.

    Article  PubMed  CAS  Google Scholar 

  73. McGettigan JP, Sarma S, Orenstein JM, et al. Expression and immunogenicity of human immunodeficiency virus type 1 Gag expressed by a replication-competent rhabdovirus-based vaccine vector. J Virol, 2001;75:8724–8732.

    PubMed  CAS  Google Scholar 

  74. McGettigan JP, Foley HD, Belyakov IM, et al. Rabies virus-based vectors expressing human immunodeficiency virus type 1 (HIV-1) envelope protein induce a strong, cross-reactive cytotoxic T-lymphocyte response against envelope proteins from different HIV-1 isolates. J Virol, 2001;75:4430–4434.

    PubMed  CAS  Google Scholar 

  75. Schnell MJ, Foley HD, Siler CA, et al. Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci USA, 2000;97:3544–3549.

    Article  PubMed  CAS  Google Scholar 

  76. Johnson JE, Schnell MJ, Buonocore L, et al. Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J Virol, 1997;71:5060–5068.

    PubMed  CAS  Google Scholar 

  77. Schnell MJ, Johnson JE, Buonocore L, et al. Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell, 1997:90:849–857.

    Article  PubMed  CAS  Google Scholar 

  78. Schnell MJ, Buonocore L, Whitt MA, et al. The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol, 1996;70:2318–2323.

    PubMed  CAS  Google Scholar 

  79. Rose N, Marx P, Luckay A, et al. An effective AIDS vaccine based on live-attenuated vesicular stomatitis virus recombinants. In: Program of the AIDS Vaccine 2001; September 5–8, 2001; Philadelphia, Pennsylvania, USA. Abstract 38.

    Google Scholar 

  80. McGettigan J, Foley HD, Sarma S, et al. Rhabdovirus-based vectors expressing HIV-1 Env or Gag induce vigorous cellular responses against HIV-1 and infect efficiently human dendritic cells. In: Program of the AIDS Vaccine 2001; September 5–8, 2001; Philadelphia, Pennsylvania, USA. Abstract 195.

    Google Scholar 

  81. Ferko B, Stasakova J, Sereinig S, et al. Hyperattenuated recombinant influenza A virus nonstructural-protein-encoding vectors induce human immunodeficiency virus type 1 Nef-specific systemic and mucosal immune responses in mice. J Virol, 2001;75:8899–8908.

    Article  PubMed  CAS  Google Scholar 

  82. Ferko B, Katinger D, Grassauer A, et al. Chimeric influenza virus replicating predominantly in the murine upper respiratory tract induces local immune responses against human immunodeficiency virus type 1 in the genital tract. JInfect Dis, 1998;178:1359–1368.

    CAS  Google Scholar 

  83. Muster T, Ferko B, Klima A, et al. Mucosal model of immunization against human immunodeficiency virus type 1 with a chimeric influenza virus. J Virol, 1995;69:6678–6686.

    PubMed  CAS  Google Scholar 

  84. Gonzalo RM, Rodriguez D, Garcia-Sastre A, et al. Enhanced CD8+ T cell response to HIV-1 env by combined immunization with influenza and vaccinia virus recombinants. Vaccine, 1999; 17:887–892.

    Article  PubMed  CAS  Google Scholar 

  85. Huang Z, Krishnamurthy S, Panda A, et al. High-level expression of a foreign gene from the most 3′-proximal locus of a recombinant Newcastle disease virus. J Gen Virol, 2001;82(Pt7):1729–1736.

    PubMed  CAS  Google Scholar 

  86. Shata MT, Reitz MSJ, DeVico AL, et al. Mucosal and systemic HIV-1 Env-specific CD8(+) T-cells develop after intragastric vaccination with a Salmonella Env DNA vaccine vector. Vaccine, 2001;20:623–629.

    Article  PubMed  CAS  Google Scholar 

  87. Hone DM, Wu S, Powell RJ, et al. Optimization of live oral Salmonella-HIV-1 vaccine vectors for the induction of HIV-specific mucosal and systemic immune responses. J Biotechnol, 1996;44:203–207.

    Article  PubMed  CAS  Google Scholar 

  88. Wu S, Pascual DW, Lewis GK, et al. Induction of mucosal and systemic responses against human immunodeficiency virus type 1 glycoprotein 120 in mice after oral immunization with a single dose of a Salmonella-HIV vector. AIDS Res Hum Retroviruses, 1997;13:1187–1194.

    PubMed  CAS  Google Scholar 

  89. Friedman RS, Frankel FR, Xu Z, et al. Induction of human immunodeficiency virus (HIV)-specific CD8 T-cell responses by Listeria monocytogenes and a hyperattenuated Listeria strain engineered to express HIV antigens. J Virol, 2000;74:9987–9993.

    Article  PubMed  CAS  Google Scholar 

  90. Rayevskaya MV, Frankel FR. Systemic immunity and mucosal immunity are induced against human immunodeficiency virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J Virol, 2001;75:2786–2791.

    Article  PubMed  CAS  Google Scholar 

  91. Mata M, Paterson Y. Th1 T cell responses to HIV-1 Gag protein delivered by a Listeria monocytogenes vaccine are similar to those induced by endogenous listerial antigens. J Immunol, 1999;163:1449–1456.

    PubMed  CAS  Google Scholar 

  92. Oggioni MR, Medaglini D, Romano L, et al. Antigenicity and immunogenicity of the V3 domain of HIV type 1 glycoprotein 120 expressed on the surface of Streptococcus gordonii. AIDS Res Hum Retroviruses, 1999;15:451–459.

    Article  PubMed  CAS  Google Scholar 

  93. Di Fabio S, Medaglini D, Rush CM, et al. Vaginal immunization of Cynomolgus monkeys with Streptococcus gordonii expressing HIV-1 and HPV 16 antigens. Vaccine, 1998; 16:485–192.

    PubMed  Google Scholar 

  94. Aldovini A, Young RA. Humoral and cell-mediated immune responses to live recombinant BCG-HIV vaccines. Nature, 1991;351:479–482.

    Article  PubMed  CAS  Google Scholar 

  95. Lim EM, Lagranderie M, Le Grand R, et al. Recombinant Mycobacterium bovis BCG producing the N-terminal half of SIVmac251 Env antigen induces neutralizing antibodies and cytotoxic T lymphocyte responses in mice and guinea pigs. AIDS Res Hum Retroviruses, 1997;13:1573–1581.

    PubMed  CAS  Google Scholar 

  96. Honda M, Matsuo K, Nakasone T, et al. Protective immune responses induced by secretion of a chimeric soluble protein from a recombinant Mycobacterium bovis Bacillus Calmette-Guerin vector candidate vaccine for human immunodeficiency virus type 1 in small animals. Proc Natl AcadSciUSA, 1995;92:10693–10697.

    CAS  Google Scholar 

  97. Lagranderie M, Winter N, Balazuc AM, et al. A cocktail of Mycobacterium bovis BCG recombinants expressing the SIV Nef, Env, and Gag antigens induces antibody and cytotoxic responses in mice vaccinated by different mucosal routes. AIDS Res Hum Retroviruses, 1998;14:1625–1633.

    PubMed  CAS  Google Scholar 

  98. Lagranderie M, Balazuc AM, Gicquel B, et al. Oral immunization with recombinant Mycobacterium bovis BCG simian immunodeficiency virus nef induces local and systemic cytotoxic T-lymphocyte responses in mice. J Virol, 1997;71:2303–2309.

    PubMed  CAS  Google Scholar 

  99. Shata MT, Hone DM. Vaccination with a shigella DNA vaccine vector induces antigen-specific CD8(+) T cells and antiviral protective immunity. J Virol, 2001;75:9665–9670.

    Article  PubMed  CAS  Google Scholar 

  100. Voss G, Villinger F. Adjuvanted vaccine strategies and live vector approaches for the prevention of AIDS. AIDS, 2000;14(suppl 3):S153–S165.

    PubMed  CAS  Google Scholar 

  101. O’Hagan DT, MacKichan ML, Singh M. Recent developments in adjuvants for vaccines against infectious diseases. Biomol Eng, 2001;18:69–85.

    Google Scholar 

  102. Gorse GJ, Rogers JH, Perry JE, et al. HIV-1 recombinant gp160 vaccine induced antibodies in serum and saliva. The NIAID AIDS Vaccine Clinical Trials Network. Vaccine, 1995;13: 209–214.

    PubMed  CAS  Google Scholar 

  103. Gorse GJ, Corey L, Patel GB, et al. HIV-1MN recombinant glycoprotein 160 vaccine-induced cellular and humoral immunity boosted by HIV-1MN recombinant glycoprotein 120 vaccine. NIAID AIDS Vaccine Evaluation Group. AIDS Res Hum Retroviruses, 1999;15:115–132.

    PubMed  CAS  Google Scholar 

  104. Berman PW, Groopman JE, Gregory T, et al. Human immunodeficiency virus type 1 challenge of chimpanzees immunized with recombinant envelope glycoprotein gp120. Proc NatlAcad Sci USA, 1988;85:5200–5204.

    CAS  Google Scholar 

  105. Berman PW, Huang W, Riddle L, et al. Development of bivalent (B/E) vaccines able to neutralize CCR5-dependent viruses from the United States and Thailand. Virology, 1999;265:1–9.

    Article  PubMed  CAS  Google Scholar 

  106. Goebel FD, Mannhalter JW, Belshe RB, et al. Recombinant gp160 as a therapeutic vaccine for HIV-infection: results of a large randomized, controlled trial. European Multinational IMMUNO AIDS Vaccine Study Group. AIDS, 1999; 13:1461–1468.

    Article  PubMed  CAS  Google Scholar 

  107. Sandstrom E, Wahren B. Therapeutic immunisation with recombinant gp160 in HIV-1 infection: a randomised double-blind placebo-controlled trial. Nordic VAC-04 Study Group. Lancet, 1999;353:1735–1742.

    Article  PubMed  CAS  Google Scholar 

  108. Leibl H, Tomasits R, Bruhl P, et al. Humoral and cellular immunity induced by antigens adjuvanted with colloidal iron hydroxide. Vaccine, 1999;17:1017–1023.

    Article  PubMed  CAS  Google Scholar 

  109. Verschoor EJ, Davis D, van Gils M, et al. Efforts to broaden HIV-1-specific immunity by boosting with heterologous peptides or envelope protein and the influence of prior exposure to virus. J Med Primatol, 1999;28:224–232.

    PubMed  CAS  Google Scholar 

  110. Verschoor EJ, Mooij P, Oostermeijer H, et al. Comparison of immunity generated by nucleic acid-, MF59-, and ISCOM-formulated human immunodeficiency virus type 1 vaccines in Rhesus macaques: evidence for viral clearance. J Virol, 1999;73:3292–3300.

    PubMed  CAS  Google Scholar 

  111. Cano CA. The multi-epitope polypeptide approach in HIV-1 vaccine development. Genet Anal, 1999;15:149–153.

    PubMed  CAS  Google Scholar 

  112. Raya NE, Quintana D, Carrazana Y, et al. A prime-boost regime that combines Montanide ISA720 and Alhydrogel to induce antibodies against the HIV-1 derived multiepitope polypeptide TAB9. Vaccine, 1999;17:2646–2650.

    PubMed  CAS  Google Scholar 

  113. Mooij P, van der Kolk M, Bogers WM, et al. A clinically relevant HIV-1 subunit vaccine protects rhesus macaques from in vivo passaged simian-human immunodeficiency virus infection. AIDS, 1998;12:F15–F22.

    Article  PubMed  CAS  Google Scholar 

  114. Moore A, McCarthy L, Mills KH. The adjuvant combination monophosphoryl lipid A and QS21 switches T cell responses induced with a soluble recombinant HIV protein fromTh2 to Th1. Vaccine, 1999;17:2517–2527.

    Article  PubMed  CAS  Google Scholar 

  115. Gokulan K, Khare S, Rao DN. Increase in the immunogenicity of HIV peptide antigens by chemical linkage to polytuftsin (TKPR40). DNA Cell Biol, 1999; 18:623–630.

    Article  PubMed  CAS  Google Scholar 

  116. Frey A, Mantis N, Kozlowski PA, et al. Immunization of mice with peptomers covalently coupled to aluminum oxide nanoparticles. Vaccine, 1999:17:3007–3019.

    Article  PubMed  CAS  Google Scholar 

  117. Chang JS, Choi MJ, Kim TY, et al. Immunogenicity of synthetic HIV-1 V3 loop peptides by MPL adjuvanted pH-sensitive liposomes. Vaccine, 1999;17:1540–1548.

    Article  PubMed  CAS  Google Scholar 

  118. Ross T, Green T, Xu Y, et al. Enhanced humoral immune responses elicited by DNA vaccination with HIV gp120-C3d fusion constructs. In: Program of the AIDS Vaccine 2001; September 5–8, 2001; Philadelphia, Pennsylvania, USA. Abstract 181.

    Google Scholar 

  119. O’Hagan D, Singh M, Ugozzoli M, et al. Induction of potent immune responses by cationic microparticles with adsorbed human immunodeficiency virus DNA vaccines. J Virol, 2001;75:9037–9043.

    Google Scholar 

  120. Denis-Mize KS, Dupuis M, MacKichan ML, et al. Plasmid DNA adsorbed onto cationic microparticles mediates target gene expression and antigen presentation by dendritic cells. Gene Ther, 2000;7:2105–2112.

    Article  PubMed  CAS  Google Scholar 

  121. Kazzaz J, Neidleman J, Singh M, et al. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Control Release, 2000:67:347–356.

    Article  PubMed  CAS  Google Scholar 

  122. O’Hagan DT, Ugozzoli M, Barackman J, et al. Microparticles in MF59, a potent adjuvant combination for a recombinant protein vaccine against HIV-1. Vaccine, 2000:18:1793–1801.

    Google Scholar 

  123. Kaneko H, Bednarek I, Wierzbicki A, et al. Oral DNA vaccination promotes mucosal and systemic immune responses to HIV envelope glycoprotein. Virology, 2000;267:8–16.

    Article  PubMed  CAS  Google Scholar 

  124. Briones M, O’Hagan D, Singh M, et al. Induction of potent immune responses by cationic microparticles with adsorbed HIV DNA vaccines. In: Program of the AIDS Vaccine 2001; September 5–8, 2001; Philadelphia, Pennsylvania, USA. Abstract 183.

    Google Scholar 

  125. Singh M, Briones M, Ott G, et al. Cationic microparticles: A potent delivery system for DNA vaccines. Proc Natl Acad Sci USA, 2000;97:811–816.

    PubMed  CAS  Google Scholar 

  126. Singh M, Vajdy M, Gardner J, et al. Mucosal immunization with HIV-1 gag DNA on cationic microparticles prolongs gene expression and enhances local and systemic immunity. Vaccine, 2001;20:594–602.

    Article  PubMed  CAS  Google Scholar 

  127. Cleland JL, Lira A, Daugherty A, et al. Development of a single-shot subunit vaccine for HIV-1. 5. programmable in vivo autoboost and long lasting neutralizing response. J Pharm Sci, 1998;87:1489–1495.

    Article  PubMed  CAS  Google Scholar 

  128. Lambert JS, Keefer M, Mulligan MJ, et al. A Phase I safety and immunogenicity trial of UBI microparticulate monovalent HIV-1 MN oral peptide immunogen with parenteral boost in HIV-1 seronegative human subjects. Vaccine, 2001;19:3033–3042.

    Article  PubMed  CAS  Google Scholar 

  129. Esparza J, Bhamarapravati N. Accelerating the development and future availability of HIV-1 vaccines: why, when, where, and how? Lancet, 2000;355:2061–2066.

    Article  PubMed  CAS  Google Scholar 

  130. UNAIDS. AIDS epidemic update — December 2000. Geneva, Switzerland: UNAIDS, 2000.

    Google Scholar 

  131. UNAIDS, WHO. Global HIV/AIDS & STD Surveillance. Epidemiological fact sheets by country. Available at: http://www.who.int/emc-hiv/fact_sheets/. Accessed: February 7, 2002.

  132. Salminen MO, Johansson B, Sonnerborg A, et al. Full-length sequence of an Ethiopian human immunodeficiency virus type 1 (HIV-1) isolate of genetic subtype C. AIDS Res Hum Retroviruses, 1996;12:1329–1339.

    PubMed  CAS  Google Scholar 

  133. Gao F, Robertson DL, Carruthers CD, et al. A comprehensive panel of near-full-length clones and reference sequences for non-subtype B isolates of human immunodeficiency virus type 1. J Virol, 1998;72:5680–5698.

    PubMed  CAS  Google Scholar 

  134. Lole KS, Bellinger RC, Paranjape RS, et al. Full-length human immunodeficiency virus type 1 genomes from subtype C-infected seroconverters in India, with evidence of intersubtype recombination. J Virol, 1999;73:152–160.

    PubMed  CAS  Google Scholar 

  135. Novitsky VA, Montano MA, McLane MF, et al. Molecular cloning and phylogenetic analysis of HIV-1 subtype C: a set of 23 full-length clones from Botswana. J Virol, 1999;73:4427–4432.

    PubMed  CAS  Google Scholar 

  136. Mochizuki N, Otsuka N, Matsuo K, et al. An infectious DNA clone of HIV type 1 subtype C. AIDS Res Hum Retroviruses, 1999;15:1321–1324.

    Article  PubMed  CAS  Google Scholar 

  137. Ndung’u T, Renjifo B, Novitsky VA, et al. Molecular cloning and biological characterization of full-length HIV-1 subtype C from Botswana. Virology, 2000;278:390–399.

    Google Scholar 

  138. Rodenburg CM, Li Y, Trask SA, et al. Near full-length clones and reference sequences for subtype C isolates of HIV type 1 from three different continents. AIDS Res Hum Retroviruses, 2001;17:161–168.

    Article  PubMed  CAS  Google Scholar 

  139. van Harmelen J, Williamson C, Kim B, et al. Characterization of full length HIV-1 subtype C sequences from South Africa. AIDS Res Hum Retroviruses, 2001;17:1527–1531.

    PubMed  Google Scholar 

  140. Novitsky V, Smith UR, Gilbert P, et al. HIV-1 subtype C molecular phylogeny: consensus sequence for an AIDS vaccine design. J Virol, 76(11):5435–5451.

    Google Scholar 

  141. Choudhury S, Montano MA, Womack C, et al. Increased promoter diversity reveals a complex phytogeny of human immunodeficiency virus type 1 subtype C in India. JHum Virol, 2000;3:35–43.

    CAS  Google Scholar 

  142. Ward FE, Tuan S, Haynes BF. Analysis of HLA frequencies in population cohorts for design of HLA-based HIV vaccines. In: Korber B, ed. HIV Molecular Immunology Database. Los Alamos, NM: 1995: IV-10-IV-16.

    Google Scholar 

  143. Haynes BF. HIV vaccines: where we are and where we are going. Lancet, 1996;348:933–937.

    PubMed  CAS  Google Scholar 

  144. Haynes BF, Yasutomi Y, Torres JV, et al. Use of synthetic peptides in primates to induce high-titered neutralizing antibodies and MHC class I-restricted cytotoxic T cells against acquired immunodeficiency syndrome retroviruses: an HLA-based vaccine strategy. Trans Assoc Am Physicians, 1993;106:33–41.

    PubMed  CAS  Google Scholar 

  145. Kaslow RA, Rivers C, Tang J, et al. Polymorphisms in HLA class I genes associated with both favorable prognosis of human immunodeficiency virus (HIV) type 1 infection and positive cytotoxic T-lymphocyte responses to ALVAC-HIV recombinant canarypox vaccines. J Virol, 2001;75:8681–8689.

    Article  PubMed  CAS  Google Scholar 

  146. Klein MR, van Baalen CA, Holwerda AM, et al. Kinetics of Gag-specific cytotoxic T lymphocyte responses during the clinical course of HIV-1 infection: a longitudinal analysis of rapid progressors and long-term asymptomatics. J Exp Med, 1995;181:1365–1372.

    Article  PubMed  CAS  Google Scholar 

  147. Goulder PJ, Addo MM, Altfeld MA, et al. Rapid definition of five novel HLA-A*3002-restricted human immunodeficiency virus-specific cytotoxic T-lymphocyte epitopes by Elispot and intracellular cytokine staining assays. J Virol, 2001;75:1339–1347.

    Article  PubMed  CAS  Google Scholar 

  148. Goulder PJ, Brander C, Annamalai K, et al. Differential narrow focusing of immunodominant human immunodeficiency virus gag-specific cytotoxic T-lymphocyte responses in infected African and caucasoid adults and children. J Virol, 2000;74:5679–5690.

    PubMed  CAS  Google Scholar 

  149. Barouch DH, Santra S, Schmitz JE, et al. Control of viremia and prevention of clinical AIDS in rhesus monkeys by cytokine-augmented DNA vaccination. Science, 2000;290:486–492.

    Article  PubMed  CAS  Google Scholar 

  150. Patterson LJ, Peng B, Abimiku AG, et al. Cross-protection in NYVAC-HIV-1-immunized/HIV-2-challenged but not in NYVAC-HIV-2-immunized/SHIV-challenged rhesus macaques. AIDS, 2000;14:2445–2455.

    PubMed  CAS  Google Scholar 

  151. Gallimore A, Hombach J, Dumrese T, et al. A protective cytotoxic T cell response to a subdominant epitope is influenced by the stability of the MHC class I/peptide complex and the overall spectrum of viral peptides generated within infected cells. EurJ Immunol, 1998;28:3301–3311.

    Article  CAS  Google Scholar 

  152. Gallimore A, Dumrese T, Hengartner H, et al. Protective immunity does not correlate with the hierarchy of virus-specific cytotoxic T cell responses to naturally processed peptides. J Exp Med, 1998;187:1647–1657.

    PubMed  CAS  Google Scholar 

  153. Korber B, Brander C, Haynes B, eds. HIV Molecular Immunology 2000. Los Alamos, New Mexico, USA: Los Alamos National Laboratory, Theoretical Biology and Biophysics, 2000.

    Google Scholar 

  154. Cao H, Kanki P, Sankale JL, et al. Cytotoxic T-lymphocyte cross-reactivity among different human immunodeficiency virus type 1 clades: implications for vaccine development. J Virol, 1997;71:8615–8623.

    PubMed  CAS  Google Scholar 

  155. Durali D, Morvan J, Letourneur F, et al. Cross-reactions between the cytotoxic T-lymphocyte responses of human immunodeficiency virus-infected African and European patients. J Virol, 1998;72:3547–3553.

    PubMed  CAS  Google Scholar 

  156. Betts MR, Krowka J, Santamaria C, et al. Cross-clade human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte responses in HIV-infected Zambians. J Virol, 1997;71:8908–8911.

    PubMed  CAS  Google Scholar 

  157. McAdam S, Kaleebu P, Krausa P, et al. Cross-clade recognition of p55 by cytotoxic T lymphocytes in HIV-1 infection. AIDS, 1998;12:571–579.

    PubMed  CAS  Google Scholar 

  158. Wilson SE, Pedersen SL, Kunich JC, et al. Cross-clade envelope glycoprotein 160-specific CD8+ cytotoxic T lymphocyte responses in early HIV type 1 clade B infection. AIDS Res Hum Retroviruses, 1998;14:925–937.

    Article  PubMed  CAS  Google Scholar 

  159. Rowland-Jones SL, Dong T, Fowke KR, et al. Cytotoxic T cell responses to multiple conserved HIV epitopes in HIV-resistant prostitutes in Nairobi. J Clin Invest, 1998;102:1758–1765.

    Article  PubMed  CAS  Google Scholar 

  160. Dorrell L, Dong T, Ogg GS, et al. Distinct recognition of non-clade B human immunodeficiency virus type 1 epitopes by cytotoxic T lymphocytes generated from donors infected in Africa. J Virol, 1999;73:1708–1714.

    PubMed  CAS  Google Scholar 

  161. Cao H, Mani I, Vincent R, et al. Cellular immunity to human immunodeficiency virus type 1 (HIV-1) clades: relevance to HIV-1 vaccine trials in Uganda. J Infect Dis, 2000;182:1350–1356.

    Article  PubMed  CAS  Google Scholar 

  162. Novitsky V, Rybak N, McLane MF, et al. Identification of human immunodeficiency virus type 1 subtype C Gag-, Tat-, Rev-, and Nef-specific Elispot-based cytotoxic T-lymphocyte responses for AIDS vaccine design. J Virol, 2001;75:9210–9228.

    Article  PubMed  CAS  Google Scholar 

  163. Addo MM, Altfeld M, Rosenberg ES, et al. Analysis of cytotoxic T-lymphocyte (CTL) responses against the regulatory HIV-1 proteins Rev and Tat in HIV-1-infected individuals and identification of novel CTL epitopes. Poster presented at the XIII International Conference on AIDS; July 9–14, 2000; Durban, South Africa.

    Google Scholar 

  164. Addo MM, Altfeld M, Rosenberg ES, et al. The HIV-1 regulatory proteins Tat and Rev are frequently targeted by cytotoxic T lymphocytes derived from HIV-1-infected individuals. Proc NatlAcadSci USA, 2001;98:1781–1786.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lee, TH., Novitsky, V. (2002). HIV Vaccines Design and Development. In: Essex, M., Mboup, S., Kanki, P.J., Marlink, R.G., Tlou, S.D., Holme, M. (eds) AIDS in Africa. Springer, Boston, MA. https://doi.org/10.1007/0-306-47817-X_39

Download citation

  • DOI: https://doi.org/10.1007/0-306-47817-X_39

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46699-1

  • Online ISBN: 978-0-306-47817-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics