Skip to main content

Fluid Inclusions in Paleolimnological Studies of Chemical Sediments

  • Chapter
Tracking Environmental Change Using Lake Sediments

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Attia, O. E., T. K. Lowenstein & A. M. A. Wali, 1995. Middle Miocene gypsum. Gulf of Suez: marine or nonmarine? J. Sed. Res. A65: 614–626.

    Google Scholar 

  • Ayora, C. & R. Fontarnau, 1990. X-ray microanalysis of frozen fluid inclusions. Chem. Geol. 89: 135–148.

    Article  Google Scholar 

  • Ayora, C., J. Garcia-Veigas & J.-J. Pueyo, 1994a. X-Ray microanalysis of fluid inclusions and its application to the geochemical modeling of evaporite basins. Geoch. Cosmoch. Acta. 58: 43–55.

    Google Scholar 

  • Ayora, C., J. Garcia-Veigas & J.-J. Pueyo, 1994b. The chemical and hydrological evolution of an ancient potash-forming evaporite basin in Spain as constrained by mineral sequence, fluid inclusion composition, and numerical simulation. Geoch. Cosmoch. Acta. 58: 3379–3394.

    Google Scholar 

  • Benison, K. C. & R. H. Goldstein, 1999. Permian paleoclimate data from fluid inclusions in halite. Chem. Geol. 154: 113–132.

    Article  Google Scholar 

  • Benison, K. C., R. H. Goldstein, B. Wopenka, R. C. Burruss & J. D. Pasteris, 1998. Extremely acid Permian lakes and ground waters in North America. Nature 392: 911–914.

    Article  Google Scholar 

  • Bischoff, J. L., J. A. Fitzpatrick & R. J. Rosenbauer, 1993. The solubility and stabilization of ikaite (CaCO3 · 6H2O) from 0° to 25 °C: Environmental and paleoclimatic implications for thinolitic tufa. J. Geol. 101: 21–33.

    Google Scholar 

  • Casas, E., T. K. Lowenstein, R. J. Spencer & P. Zhang, 1992. Carnallite mineralization in the nonmarine Qaidam basin, China: Evidence for the early diagenetic origin of potash evaporites. J. Sed. Pet. 62: 881–898.

    Google Scholar 

  • Carpelan, L. H., 1958. The Salton Sea, physical and chemical characteristics. Limnol. Oceanogr. 3: 373–386.

    Article  Google Scholar 

  • Das, N., J. Horita & H. D. Holland, 1990. Chemistry of fluid inclusions in halite from the Salina Group of the Michigan Basin: Implications for Late Silurian seawater and the origin of sedimentary brines. Geoch. Cosmoch. Acta. 54: 319–327.

    Article  Google Scholar 

  • Davis, D. W., T. K. Lowenstein & R. J. Spencer, 1990. Melting behavior of fluid inclusions in laboratory-grown halite crystals in the systems NaCl-H2O, NaCl-KCl-H2O, NaCl-MgCl2-H2O, and NaCl-CaCl2-H2O. Geoch. Cosmoch. Acta. 54: 591–601.

    Article  Google Scholar 

  • Demicco, R. V. & L. A. Hardie, 1994. Sedimentary Structures and Early Diagenetic Features of Shallow Marine Carbonate Deposits. Society of Sedimentary Geology Atlas Series No. 1, Tulsa, Oklahoma, 265 pp.

    Google Scholar 

  • Dubessy, J., B. Poty & C. Ramboz, 1989. Advances in C-O-H-N-S fluid geochemistry based on micro-Raman spectrometric analysis of fluid inclusions. Eur. J. Mineral 1: 517–534.

    Google Scholar 

  • Eubank, M. E. & R. C. Brough, 1980. The Great Salt Lake and its influence on the weather. In Gwynn, J. W. (ed.) Great Salt Lake-A Scientific, Historical and Economic Overview. Utah Geological and Mineral Survey, Bull. 116: 279–283.

    Google Scholar 

  • Eugster, H. P., 1970. Chemistry and origin of the brines of Lake Magadi, Kenya. Mineral. Soc. Am., Spec. Paper 3: 215–235.

    Google Scholar 

  • Eugster, H. P., 1980. Lake Magadi, Kenya, and its precursors. In Nissenbaum, A. (ed.) Hypersaline Brines and Evaporitic Environments (Developments in Sedimentology 28). Elsevier, Amsterdam: 195–232.

    Google Scholar 

  • Fanlo, I. & C. Ayora, 1998. The evolution of the Lorraine evaporite basin: implications for the chemical and isotope composition of the Triassic ocean. Chem. Geol. 146: 135–154.

    Article  Google Scholar 

  • Faure, G., 1998. Principles and Applications of Geochemistry. Prentice Hall, Upper Saddle River (N.J.), 600 pp.

    Google Scholar 

  • Friedman, I., G. I. Smith, J. D. Gleason, A. Warden & J. M. Harris, 1992. Stable isotope composition of waters in southeastern California 1. Modern precipitation. J. Geophys. Res. 97: 5795–5812.

    Google Scholar 

  • Garcia-Veigas, J., F. Orti, L. Rosell, C. Ayora, J.-M. Rouchy & S. Lugli, 1995. The Messinian Salt of the Mediterranean: Geochemical Study of the Salt from the Central Sicily Basin and Comparison with the Lorca Basin (Spain). Bulletin Societe Geologie France 166, 699–710.

    Google Scholar 

  • Gavrieli, I., A. Starinsky & A. Bein, 1989. The solubility of halite as a function of temperature in the highly saline Dead Sea brine system. Limnol. Oceanogr. 34: 1224–1234.

    Article  Google Scholar 

  • Goldstein, R. H. & T. J. Reynolds, 1994. Systematics of Fluid Inclusions in Diagenetic Minerals. SEPM Short Course 31, 199.

    Google Scholar 

  • Hammer, U. T., 1986. Saline Lake Ecosystems of the World. Dr. W. Junk Publishers, Dordrecht, 616 pp.

    Google Scholar 

  • Hardie, L. A. & H. P. Eugster, 1971. The depositional environment of marine evaporites: a case for shallow, clastic accumulation. Sedimentology 16: 187–220.

    Google Scholar 

  • Hardie, L. A., T. K. Lowenstein & R. J. Spencer, 1985. The problem of distinguishing between primary and secondary features in evaporites. In Schreiber, B. C. & H. L. Harner (eds.) Sixth International Symposium on Salt. The Salt Institute, Alexandria, Virginia: 11–38.

    Google Scholar 

  • Harvie, C. E., N. Møller & J. H. Weare, 1984. The prediction of mineral solubilities in natural waters: the Na-K-Mg-Ca-H-Cl-SO4-OH-HCO3-CO3-H2O system to high ionic strengths at 25 °C. Geoch. Cosmoch. Acta. 48: 723–751.

    Article  Google Scholar 

  • Holser, W. T., 1963. Chemistry of brine inclusions in Permian salt from Hutchinson, Kansas. Symposium on Salt, v. 1. Northern Ohio Geological Society, Cleveland, Ohio: 86–95.

    Google Scholar 

  • Holser, W. T., 1979a. Trace elements and isotopes in evaporites. InBurns, R. G. (ed.) Marine Minerals. Mineralogical Society of America, Reviews in Mineralogy, v. 6, Washington (D.C.): 295–346.

    Google Scholar 

  • Holser, W. T., 1979b. Mineralogy of evaporites. In Burns, R. G. (ed.) Marine Minerals. Mineralogical Society of America, Reviews in Mineralogy, v. 6. Washington (D.C.): 211–294.

    Google Scholar 

  • Horita, J., T. J. Friedman, B. Lazar & H. D. Holland, 1991. The composition of Permian seawater. Geoch. Cosmoch. Acta. 55: 417–432.

    Article  Google Scholar 

  • Horita, J., A. Weinberg, N. Das & H. D. Holland, 1996. Brine inclusions in halite and the origin of the Middle Devonian Prairie evaporites of Western Canada. J. Sed. Res. 66: 956–964.

    Google Scholar 

  • James, N. P. & P. W. Choquette, 1990. Limestones-The Sea Floor Diagenetic Environment. Geoscience Canada Reprint Series 4. Geological Association of Canada, St. Johns, Newfoundland: 13–34.

    Google Scholar 

  • Johnson, W. J. & R. H. Goldstein, 1993. Cambrian sea water preserved as inclusions in marine low-magnesium calcite cement. Nature 362: 335–337.

    Google Scholar 

  • Kelts, K. & K. J. Hsu, 1978. Freshwater carbonate sedimentation. In Lerman, A. (ed.) Lakes-Chemistry, Geology, Physics. Springer-Verlag, New York: 295–323.

    Google Scholar 

  • Knauth, L. P. & M. B. Kumar, 1981. Trace water content of salt in Louisiana salt domes. Science 213: 1005–1007.

    Google Scholar 

  • Knauth, L. P. & M. A. Beeunas, 1986. Isotope geochemistry of fluid inclusions in Permian halite with implications for the isotopic history of ocean water and the origin of saline formation waters. Geoch. Cosmoch. Acta. 50: 419–433.

    Article  Google Scholar 

  • Kovalevich, V. M., T. M. Peryt & O. I. Petrichenko, 1998. Secular variation in seawater chemistry during the Phanerozoic as indicated by brine inclusions in halite. Jour. Geol. 106: 695–712.

    Article  Google Scholar 

  • Last, W. M., 1984. Sedimentology of playa lakes of the northern Great Plains. Can. J. Earth Sci. 21: 107–125.

    Google Scholar 

  • Lazar, B. & H. D. Holland, 1988. The analysis of fluid inclusions in halite. Geoch. Cosmoch. Acta. 52: 485–490.

    Article  Google Scholar 

  • Li, J., T. K. Lowenstein, C. B. Brown. T.-L. Ku & S. Luo, 1996. A 100 ka record of water tables and paleoclimates from salt cores, Death Valley, California. Palaeogeogr., Palaeoclim., Palaeoecol. 123: 179–203.

    Google Scholar 

  • Lowenstein, T. K. & L. A. Hardie, 1985. Criteria for the recognition of salt-pan evaporites. Sedimentology 32: 627–644.

    Google Scholar 

  • Lowenstein, T. K. & R. J. Spencer, 1990. Syndepositional origin of potash evaporites: petrographic and fluid inclusion evidence. Am. J. Sci. 290: 1–42.

    Article  Google Scholar 

  • Lowenstein, T. K., J. Li & C. B. Brown, 1998. Paleotemperatures from fluid inclusions in halite: Method verification and a 100,000 year paleotemperature record. Death Valley, California. Chem. Geol. 150: 223–245.

    Article  Google Scholar 

  • Lowenstein, T. K., R. J. Spencer, W. Yang, E. Casas, P. Zhang, B. Zhang, H. Fan & H. R. Krouse, 1994. Major-element and stable-isotope geochemistry of fluid inclusions in halite, Qaidam Basin, western China: Implications for late Pleistocene/Holocene brine evolution and paleoclimates. In Rosen, M. R. (ed.) Paleoclimate and Basin Evolution of Playa Systems. Geol. Soc. Am. Special Paper 289, Boulder, Colorado: 19–32.

    Google Scholar 

  • Moissette, A., T. J. Shepherd & S. R. Chenery, 1996. Calibration strategies for the elemental analysis of individual aqueous fluid inclusions by laser ablation-ICP-MS. Journal of Anal. Atom. Spec. 11: 177–186.

    Google Scholar 

  • Neev. D. & K. O. Emery, 1967. The Dead Sea: Depositional Processes and Environments of Evaporites. Israel Geol. Surv. Bull. 41, 147 pp.

    Google Scholar 

  • Pasteris, J.D., B. Wopenka & J. C. Seitz, 1988. Practical aspects of quantitative laser Raman microprobe spcctroscopy for the study of fluid inclusions. Geoch. Cosmoch. Acta. 52: 979–988.

    Article  Google Scholar 

  • Petrichenko, O. I., 1973. Methods of Study of Inclusions in Minerals of Saline Deposits. Naukova dumka, Kiev, p. 98 (in Ukrainian; transl. In Fluid Inclusion Research Proc. COFFI, 12 214–274, 1979).

    Google Scholar 

  • Petrichenko, O. I., T. M. Peryt & A. V. Poberegsky, 1997. Peculiarities of gypsum sedimentation in the Middle Miocene Badenian evaporite basin of Carpathian Foredeep. Slovak Geol. Mag. 3: 91–104.

    Google Scholar 

  • Roberts, S. M. & R. J. Spencer, 1995. Paleotemperatures preserved in fluid inclusions in halite. Geoch. Cosmoch. Acta. 59: 3929–3942.

    Article  Google Scholar 

  • Roberts, S. M., R. J. Spencer & T. K. Lowenstein, 1994. Late Pleistocene saline lacustrine sediments, Badwater Basin. Death Valley, California. In Lomando. A. J., B. C. Schreiber & P. M. Harris (eds.) Lacustrine Reservoirs and Depositional Systems. Society for Sedimentary Geology Core Workshop 19: 61–103.

    Google Scholar 

  • Roberts, S. M., R. J. Spencer, W. Yang & H. R. Krouse, 1997. Deciphering some unique paleotemperature indicators in halite-bearing saline lake deposits from Death Valley, California, USA. J. Paleolim. 17: 101–130.

    Article  Google Scholar 

  • Roedder, E., 1984. Fluid inclusions. In Ribbe, P. H. (ed.) Mineralogical Society of America, Reviews in Mineralogy, v. 12. Washington (D.C.): 644.

    Google Scholar 

  • Roedder, E. & H. E. Belkin, 1979. Application of Studies of fluid inclusions in Permian Salado salt. New Mexico, to problems of siting the Waste Isolation Pilot Plant. In McCarthy, G. J. (ed.) Scientific Basis for Nuclear Waste Management. Plenum Publishing Corp., New York: 313–321.

    Google Scholar 

  • Roedder, E. & R. J. Bodnar, 1980. Geologic pressure determination from fluid inclusion studies. Ann. Rev. Earth Planet. Sci. 8: 263–301.

    Google Scholar 

  • Rosasco, G. J. & E. Roedder. 1979. Application of a new Raman microprobe spectrometer to nondestructive analysis of sulfate and other ions in individual phases in fluid inclusions in minerals. Geoch. Cosmoch. Acta. 43: 1907–1915.

    Article  Google Scholar 

  • Sabouraud-Rosset, C., 1969. Characteres morphologiques des cavites primaires des monocristaux. sur l’ example du gypse de synthese. Academie des Sciences (Paris), Comptes Rendus 268 Serie D: 749–751.

    Google Scholar 

  • Sabouraud-Rosset, C., 1972. Microcryoscopie des inclusions liquides du gypse et salinite des milieux generateurs. Revue de Geographie Physique et de Geologie Dynamique 14: 133–144.

    Google Scholar 

  • Sabouraud-Rosset, C., 1974. Determination par activation neutronique des rapports Cl/Br des inclusions fluides de divers gypses. Correlation avec les donnees de la microcryoscopie et interpretations genetiques. Sedimentology 21: 415–431.

    Google Scholar 

  • Sabouraud-Rosset, C., 1976. Les conditions de genese de certaines formes de cavites intracristallines eclairces par la methode experimentale. Bull. Soc. France Mineral. Cristallogr. 99: 74–77.

    Google Scholar 

  • Schubel, K. A. & T. K. Lowenstein, 1997. Criteria for the recognition of shallow-perennial-salinelake halites based on Recent sediments from the Qaidam Basin, western China. J. Sed. Res. 67: 74–87.

    Google Scholar 

  • Shearman, D. J., A. McGugan, C. Stein & A. J. Smith, 1989. Ikaite, CaCO3 · 6H2O. precursor of the thinolites in the Quaternary tufas and tufa mounds of the Lahontan and Mono Lake Basins, western United States. Geological Society of America Bulletin. 101: 913–917.

    Article  Google Scholar 

  • Shepherd, T. J., A. H. Rankin & D. H. M. Alderton, 1985. A Practical Guide to Fluid Inclusion Studies. Blackie & Son Ltd., Glasgow, 239 pp.

    Google Scholar 

  • Shepherd, T. J. & S. R. Chenery, 1995. Laser ablation ICP-MS elemental analysis of individual fluid inclusions: An evaluation study. Geoch. Cosmoch. Acta. 59: 3997–4007.

    Article  Google Scholar 

  • Shepherd, T. J., S. R. Chenery & A. Moissette, 1995. Optimization of Laser Ablation-ICP-MS for the Chemical Analysis of Fluid Inclusions in Evaporite Minerals. Abstract EUG 8, Strasbourg 1995, Terra Nova 7, 344.

    Google Scholar 

  • Shepherd, T. J., C. Ayora, D. I. Cendon, S. R. Chenery & A. Moissette, 1998. Quantitative solute analysis of single fluid inclusions in halite by LA-ICP-MS and cryo-SEM-EDS: complementary microbeam techniques. European Journal of Mineralogy 10: 1097–1108.

    Google Scholar 

  • Smith, G. I., I. Friedman & R. J. McLaughlin, 1987. Studies of Quaternary saline lakes: III. mineral, chemical, and isotopic evidence of salt solution and crystallization processes in Owens Lake, CA., 1969–1971. Geoch. Cosmoch. Acta. 51: 811–827.

    Article  Google Scholar 

  • Smoot, J. P. & T. K. Lowenstein, 1991. Depositional environments of non-marine evaporites. In Melvin, J. L. (ed.) Evaporites, Petroleum and Mineral Resources. Developments in Sedimentology 50. Elsevier Science Publishers B.V., Amsterdam, Holland: 189–347.

    Google Scholar 

  • Sorby, H. C., 1858. On the microscopical structure of crystals indicating the origin of rocks and minerals. Geological Society of London Journal 14: 453–500.

    Google Scholar 

  • Spencer, R. J., N. Moller & J. H. Weare, 1990. The prediction of mineral solubilities in natural waters. A chemical equilibrium model for the Na-K-Ca-Mg-Cl-SO4-H2O system at temperatures below 25 °C. Geoch. Cosmoch. Acta 54: 575–590.

    Article  Google Scholar 

  • Timofeeff, M. N., T. K. Lowenstein & W. H. Blackburn, 2000. ESEM-EDS: An Improved technique for major chemical analysis of fluid inclusions. Chem. Geol. 164: 171–182.

    Article  Google Scholar 

  • Ward, W. B., A. Cox, M. H. Kwong, W. J. Meyers & J. L. Banner, 1993. Upper Devonian seawater samples encased in calcite cements: single-phase fluid-inclusion salinities and cement compositions, Devonian reef complexes, Canning Basin, Western Australia. AAPG 1993 Annual Meeting Program: 197–198.

    Google Scholar 

  • Warren, J. K., 1982. The hydrological setting, occurrence and significance of gypsum in Late Quaternary salt lakes in South Australia. Sedimentology 29: 609–637.

    Google Scholar 

  • Winograd, I., B. J. Szabo, T. B. Coplen, A. C. Riggs & P. T. Kolesar, 1985. Two-million-year record of deuterium depiction in Great Basin ground waters. Science 227: 519–522.

    Google Scholar 

  • Yang, W., 1993. Improved techniques for stable isotope analyses of microlitre quantities of water and applications to paleoclimate and diagenesis using fluid inclusions in halite and dolomite. Ph.D. thesis. University of Calgary, Alberta, 151 pp.

    Google Scholar 

  • Yang, W., R. J. Spencer, H. R. Krouse & T. K. Lowenstein, 1995a. Stable hydrogen and oxygen isotope techniques for studying arid basin hydrology. In Tracer Technologies for Hydrological Systems (Proceedings of a Boulder Symposium, July 1995) IAHS Publ. 229: 305–310.

    Google Scholar 

  • Yang, W, R. J. Spencer, H. R. Krouse, T. K. Lowenstein & E. Casas, 1995b. Stable isotopes of lake and fluid inclusion brines, Dabusun Lake, Qaidam Basin, western China: Hydrology and paleoclimatology in arid environments. Palaeogeogr. Palaeoclim. Palaeoecol. 117: 279–290.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lowenstein, T., Brennan, S.T. (2002). Fluid Inclusions in Paleolimnological Studies of Chemical Sediments. In: Last, W.M., Smol, J.P. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, vol 2. Springer, Dordrecht. https://doi.org/10.1007/0-306-47670-3_7

Download citation

  • DOI: https://doi.org/10.1007/0-306-47670-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0628-9

  • Online ISBN: 978-0-306-47670-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics