Skip to main content

Positron Physics in a New Perspective

Low energy antihydrogen scattering by simple atoms and molecules

  • Chapter
New Directions in Antimatter Chemistry and Physics

Abstract

A large group of experimentalists is currently working on the preparation of the ATHENA (ApparaTus for High precision Experiments on Neutral Antimatter), which is to be used at CERN to carry out experiments on antihydrogen (¯H) to test the CPT invariance of Quantum Field Theory and also Einstein’s Principle of Equivalence. It is intended to carry out these experiments by trapping ¯H at very low temperatures (< 1 K) in an inhomogeneous magnetic field. The size and extent of the collaboration on this project can be seen from ref. [14], which is entitled ‘Antihydrogen production and precision experiments’ and has 54 authors from 7 different countries.

In this chapter, we consider some of the interesting theoretical problems that arise when ¯H in which a positron is bound to an antiproton, interacts with H, He and H 2. The theoretical work that has been carried out for H¯H is described. This includes a very recent preliminary calculation that we have carried out using the Kohn variational method. Methods of extending this work to ¯H scattering by He and H 2 are discussed. These processes are the main cause of loss of trapped ¯H Thus there is considerable interest in obtaining cross sections for them, in order to determine annihilation rates under various experimental conditions. The aim is to make it possible for experimentalists to choose the conditions which maximise the lifetime of the ¯H.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P. A. M. Dirac, Proc. Roy. Soc. (London) A133, 60 (1931).

    ADS  Google Scholar 

  2. P. A. M. Dirac, ‘The Development of Quantum Theory’, Gordon and Breach, New York, p.55 (1971).

    Google Scholar 

  3. J. R. Oppenheimer, Phys. Rev. 35, 939 (1930).

    Article  MATH  ADS  Google Scholar 

  4. C. D. Anderson, Phys. Rev. 41, 491 (1932); Ibid. 43, 491 (1933).

    Article  Google Scholar 

  5. P. M. S. Blackett and G. P. S. Occhialini, Proc. Roy. Soc. (London) A139, 699 (1933).

    ADS  Google Scholar 

  6. M. Charlton and J. W. Humberston, ‘Positron Physics’, Cambridge University Press, Cambridge and New York, (2001).

    Google Scholar 

  7. A. Watson, Science 271, 147 (1996).

    Article  ADS  Google Scholar 

  8. G. Baur et al., Phys. Lett. B 368, 251 (1996).

    ADS  Google Scholar 

  9. G. Blandford, D. C. Christian, K. Gollwitzer, K. Mandelkern, C. T. Munger, J. Schultz and G. Zioulas, Phys. Rev. Lett. 80, 3037 (1998).

    Article  ADS  Google Scholar 

  10. R. J. Hughes, Hyperfine Interactions 76, 3 (1993).

    Article  ADS  Google Scholar 

  11. S. S. Schweber, ‘An introduction to Relativistic Field Theory’, Harrap and Row, New York and London, (1964).

    Google Scholar 

  12. M. Charlton, J. Eades, D. HorvÁth, R. J. Hughes and C. Zimmermann, Phys. Rep. 241, 65 (1994).

    Article  ADS  Google Scholar 

  13. M. H. Holzscheiter et al., Nucl. Phys. B (Proc. Suppl.) 56A, 338 (1997).

    ADS  Google Scholar 

  14. M. H. Holzscheiter and M. Charlton, Rep. Prog. Phys. 62, 1 (1999).

    Article  ADS  Google Scholar 

  15. A. Einstein, ‘The Meaning of Relativity’, Chapman and Hall, London, (1967), p. 54 et seq..

    Google Scholar 

  16. R. J. Hughes, Contemp. Phys. 34, 177 (1993).

    Article  ADS  Google Scholar 

  17. J. W. Humberston, Adv. At. Mol. Phys. 22, 1 (1986).

    Article  Google Scholar 

  18. J. W. Humberston, M. Charlton, F. M. Jacobsen and B. I. Deutch, J. Phys. B 20, L25 (1987).

    ADS  Google Scholar 

  19. G. Gabrielse, Adv. At. Mol. Phys. 45, 1 (2001).

    Google Scholar 

  20. J. T. M. Walvern, Hyperfine Interactions 76, 205 (1993).

    ADS  Google Scholar 

  21. M. Charlton, Private communication (2000).

    Google Scholar 

  22. B. R. Junker and J. N. Bardsley, Phys. Rev. Lett. 28,1227 (1972).

    Article  ADS  Google Scholar 

  23. D. L. Morgan and V. W. Hughes, Phys. Rev. A 7, 1811 (1973); Phys. Rev. D 2, 1389 (1970).

    ADS  Google Scholar 

  24. W. Kołos, D. L. Morgan, D. M. Schrader and L. Wolniewicz, Phys. Rev. A 11, 1792 (1975).

    ADS  Google Scholar 

  25. R. I. Campeanu and T. Beu, Phys. Letts. 93A, 223 (1983).

    Article  ADS  Google Scholar 

  26. W. Kołos and C. C. J. Roothan, Rev. Mod. Phys. 32, 205 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  27. W. Kołos and L. Wolniewicz, J. Chem. Phys. 41, 3663 (1964).

    Article  ADS  Google Scholar 

  28. E. A. G. Armour and W. Byers Brown, Accounts of Chem. Res. 26, 168 (1993).

    Article  Google Scholar 

  29. C. F. Lebeda and D. M. Schrader, Phys. Rev. 178, 24 (1969).

    Article  ADS  Google Scholar 

  30. R. T. Pack and W. Byers Brown, J. Chem. Phys. 45, 556 (1966).

    Article  ADS  Google Scholar 

  31. ‘Modern Electronic Structure Theory’, Volume 2, ed. D. R. Yarkony, (World Scientific, Singapore,1995).

    Google Scholar 

  32. E. A. G. Armour and J. M. Carr, Nucl. Instrum. Methods B 143, 218 (1998).

    ADS  Google Scholar 

  33. E. A. G. Armour, J. M. Carr and V. Zeman, J. Phys. B 31, L679 (1998).

    ADS  Google Scholar 

  34. M. Rotenberg and J. Stein, Phys. Rev. 182, 1 (1969).

    Article  ADS  Google Scholar 

  35. J. W. Humberston, P. Van Reeth, M. S. T. Watts and W.E. Meyerof, J. Phys. B 30, 2477 (1997).

    ADS  Google Scholar 

  36. P. Van Reeth and J.W. Humberston, J. Phys. B 31, L231 (1998).

    Google Scholar 

  37. K. Rüdenberg, J. Chem. Phys. 19, 1459 (1951).

    Article  MathSciNet  ADS  Google Scholar 

  38. E. A. G. Armour, Molec. Phys. 26, 1093 (1973).

    Article  ADS  Google Scholar 

  39. S. F. Boys and P. Rajagopal, Adv. Quant. Chem. 2, 1 (1965).

    Article  Google Scholar 

  40. N. C. Handy and S. F. Boys, Theor. Chim. Acta. 31, 195 (1973).

    Article  Google Scholar 

  41. S. Jonsell, A. Saenz and P. Froelich, Nuclear Physics A 663, 995c (2000).

    Google Scholar 

  42. S. Jonsell, PhD Thesis, University of Uppsala (2000).

    Google Scholar 

  43. J-M. Richard, Phys. Rev. A 49, 3573 (1994).

    ADS  Google Scholar 

  44. E. A. G. Armour and V. Zeman, Int. J. Quant. Chem.74, 645 (1999).

    Article  Google Scholar 

  45. W. Kołos and L. Wolniewicz, Rev. Mod. Phys. 35(3), 473 (1963).

    Article  ADS  Google Scholar 

  46. G. Hunter, B. F. Gray and H. O. Pritchard, J. Chem. Phys. 45, 3806 (1966).

    Article  ADS  Google Scholar 

  47. G. V. Shlyapnikov, J. T. M. Walvern and E. L. Surkov, Hyperfine Interactions 76, 31 (1993).

    Article  ADS  Google Scholar 

  48. L. D. Landau and E. M. Lifshitz, ‘Quantum Mechanics’ 3rd Edition, Pergamon Press, Oxford, (1977).

    Google Scholar 

  49. P. K. Sinha and A. S. Ghosh, Europhys. Lett. 49, 558 (2000).

    Article  ADS  Google Scholar 

  50. A. S. Ghosh, Private communication (2001).

    Google Scholar 

  51. J. W. Humberston and M. S. T. Watts, Hyp. Int. 89, 47 (1994).

    Article  ADS  Google Scholar 

  52. H. Ray and A. S. Ghosh, J. Phys. B 31, 4427 (1998).

    ADS  Google Scholar 

  53. P. Froelich, S. Jonsell, A. Saenz, B. Zygelman and A. Dalgarno, Phys. Rev. Lett. 84, 4577 (2000).

    Article  ADS  Google Scholar 

  54. E. A. G. Armour and J. W. Humberston, Phys. Rep. 204, 165 (1991).

    Article  ADS  Google Scholar 

  55. N. F. Mott and H. S. W. Massey, ‘The Theory of Atomic Collisions’, 2nd edition, Oxford, (1965).

    Google Scholar 

  56. H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

    Article  ADS  Google Scholar 

  57. P. G. Van Reeth and J. W. Humberston, J. Phys. B, 28 L511 (1995).

    Article  Google Scholar 

  58. P. G. Van Reeth, PhD Thesis, University of London, (1996).

    Google Scholar 

  59. R. J. Drachman, Nucl. Instrum. Method B 143, 1 (1998).

    ADS  Google Scholar 

  60. Y. K. Ho, Phys. Rev. A 34, 609 (1986).

    ADS  Google Scholar 

  61. L. P. Eisenhart, Phys. Rev. 74, 87 (1948).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  62. I. Shimamura, Phys. Rev. A 46, 3776 (1992).

    ADS  Google Scholar 

  63. I. Shimamura, Proceedings of the 1997 ICPEAC in Vienna, eds. F. Aumayr and H. Winter, World Scientific, Singapore, (1998), p 631.

    Google Scholar 

  64. C. L. Pekeris, Phys. Rev. 126, 1470 (1962).

    Article  ADS  Google Scholar 

  65. W. Kołos and C. C. J. Roothaan, Rev. Mod. Phys. 32, 205 (1960).

    Article  MathSciNet  ADS  Google Scholar 

  66. E. A. G. Armour, Phys. Rep. 169, 1 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  67. B. H. Bransden and C. J. Joachain, ‘Physics of Atoms and Molecules’, Longman, London and New York, (1983), p 274.

    Google Scholar 

  68. D. C. Clary, Molec. Phys. 34, 793 (1977).

    Article  ADS  Google Scholar 

  69. J. W. Humberston, Private communication, (2000).

    Google Scholar 

  70. J. T. Dunn, P. Van Reeth, J. W. Humberston and G. Peach, J. Phys. B 33, 2589 (2000).

    ADS  Google Scholar 

  71. I. Shavitt, R. M. Stevens, F. L. Minn and M. Karplus, J. Chem. Phys. 48, 2700 (1968).

    Article  ADS  Google Scholar 

  72. P. M. W. Gill, Private communication (2000).

    Google Scholar 

  73. R. J. Bartlett, in ‘Modern Electronic Structure Theory’, Volume 2, ed. D. R. Yarkony, World Scientific, Singapore, (1995), p 1047.

    Chapter  Google Scholar 

  74. D. M. Schrader, Private communication (2000).

    Google Scholar 

  75. S. L. Saito and F. Sasaki, J. Chem. Phys. 102, 840 (1995).

    Google Scholar 

  76. N. Jiang and D. M. Schrader, J. Chem. Phys. 109, 9430 (1998); Phys. Rev. Lett. 81, 5113 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Kluwer Academic Publishers

About this chapter

Cite this chapter

Armour, E.A.G., Chamberlain, C.W. (2001). Positron Physics in a New Perspective. In: Surko, C.M., Gianturco, F.A. (eds) New Directions in Antimatter Chemistry and Physics. Springer, Dordrecht. https://doi.org/10.1007/0-306-47613-4_5

Download citation

  • DOI: https://doi.org/10.1007/0-306-47613-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-7152-6

  • Online ISBN: 978-0-306-47613-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics